Properties

Label 363.2.e.l.148.1
Level $363$
Weight $2$
Character 363.148
Analytic conductor $2.899$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,2,Mod(124,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.124");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 363.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.89856959337\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 148.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 363.148
Dual form 363.2.e.l.130.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 + 2.12663i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-2.42705 + 1.76336i) q^{4} +(0.618034 - 1.90211i) q^{5} +(0.690983 - 2.12663i) q^{6} +(3.61803 - 2.62866i) q^{7} +(-1.80902 - 1.31433i) q^{8} +(0.309017 + 0.951057i) q^{9} +4.47214 q^{10} +3.00000 q^{12} +(8.09017 + 5.87785i) q^{14} +(-1.61803 + 1.17557i) q^{15} +(-0.309017 + 0.951057i) q^{16} +(1.38197 - 4.25325i) q^{17} +(-1.80902 + 1.31433i) q^{18} +(3.61803 + 2.62866i) q^{19} +(1.85410 + 5.70634i) q^{20} -4.47214 q^{21} -4.00000 q^{23} +(0.690983 + 2.12663i) q^{24} +(0.809017 + 0.587785i) q^{25} +(0.309017 - 0.951057i) q^{27} +(-4.14590 + 12.7598i) q^{28} +(-3.61803 + 2.62866i) q^{29} +(-3.61803 - 2.62866i) q^{30} -6.70820 q^{32} +10.0000 q^{34} +(-2.76393 - 8.50651i) q^{35} +(-2.42705 - 1.76336i) q^{36} +(-1.61803 + 1.17557i) q^{37} +(-3.09017 + 9.51057i) q^{38} +(-3.61803 + 2.62866i) q^{40} +(3.61803 + 2.62866i) q^{41} +(-3.09017 - 9.51057i) q^{42} +4.47214 q^{43} +2.00000 q^{45} +(-2.76393 - 8.50651i) q^{46} +(-6.47214 - 4.70228i) q^{47} +(0.809017 - 0.587785i) q^{48} +(4.01722 - 12.3637i) q^{49} +(-0.690983 + 2.12663i) q^{50} +(-3.61803 + 2.62866i) q^{51} +(1.85410 + 5.70634i) q^{53} +2.23607 q^{54} -10.0000 q^{56} +(-1.38197 - 4.25325i) q^{57} +(-8.09017 - 5.87785i) q^{58} +(1.85410 - 5.70634i) q^{60} +(2.76393 - 8.50651i) q^{61} +(3.61803 + 2.62866i) q^{63} +(-4.01722 - 12.3637i) q^{64} -12.0000 q^{67} +(4.14590 + 12.7598i) q^{68} +(3.23607 + 2.35114i) q^{69} +(16.1803 - 11.7557i) q^{70} +(-2.47214 + 7.60845i) q^{71} +(0.690983 - 2.12663i) q^{72} +(7.23607 - 5.25731i) q^{73} +(-3.61803 - 2.62866i) q^{74} +(-0.309017 - 0.951057i) q^{75} -13.4164 q^{76} +(4.14590 + 12.7598i) q^{79} +(1.61803 + 1.17557i) q^{80} +(-0.809017 + 0.587785i) q^{81} +(-3.09017 + 9.51057i) q^{82} +(-2.76393 + 8.50651i) q^{83} +(10.8541 - 7.88597i) q^{84} +(-7.23607 - 5.25731i) q^{85} +(3.09017 + 9.51057i) q^{86} +4.47214 q^{87} -14.0000 q^{89} +(1.38197 + 4.25325i) q^{90} +(9.70820 - 7.05342i) q^{92} +(5.52786 - 17.0130i) q^{94} +(7.23607 - 5.25731i) q^{95} +(5.42705 + 3.94298i) q^{96} +(0.618034 + 1.90211i) q^{97} +29.0689 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - q^{3} - 3 q^{4} - 2 q^{5} + 5 q^{6} + 10 q^{7} - 5 q^{8} - q^{9} + 12 q^{12} + 10 q^{14} - 2 q^{15} + q^{16} + 10 q^{17} - 5 q^{18} + 10 q^{19} - 6 q^{20} - 16 q^{23} + 5 q^{24} + q^{25}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690983 + 2.12663i 0.488599 + 1.50375i 0.826700 + 0.562643i \(0.190215\pi\)
−0.338101 + 0.941110i \(0.609785\pi\)
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −2.42705 + 1.76336i −1.21353 + 0.881678i
\(5\) 0.618034 1.90211i 0.276393 0.850651i −0.712454 0.701719i \(-0.752416\pi\)
0.988847 0.148932i \(-0.0475836\pi\)
\(6\) 0.690983 2.12663i 0.282093 0.868192i
\(7\) 3.61803 2.62866i 1.36749 0.993538i 0.369560 0.929207i \(-0.379509\pi\)
0.997929 0.0643314i \(-0.0204915\pi\)
\(8\) −1.80902 1.31433i −0.639584 0.464685i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 4.47214 1.41421
\(11\) 0 0
\(12\) 3.00000 0.866025
\(13\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(14\) 8.09017 + 5.87785i 2.16219 + 1.57092i
\(15\) −1.61803 + 1.17557i −0.417775 + 0.303531i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 1.38197 4.25325i 0.335176 1.03157i −0.631459 0.775409i \(-0.717544\pi\)
0.966635 0.256157i \(-0.0824563\pi\)
\(18\) −1.80902 + 1.31433i −0.426389 + 0.309790i
\(19\) 3.61803 + 2.62866i 0.830034 + 0.603055i 0.919569 0.392929i \(-0.128538\pi\)
−0.0895350 + 0.995984i \(0.528538\pi\)
\(20\) 1.85410 + 5.70634i 0.414590 + 1.27598i
\(21\) −4.47214 −0.975900
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0.690983 + 2.12663i 0.141046 + 0.434096i
\(25\) 0.809017 + 0.587785i 0.161803 + 0.117557i
\(26\) 0 0
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) −4.14590 + 12.7598i −0.783501 + 2.41137i
\(29\) −3.61803 + 2.62866i −0.671852 + 0.488129i −0.870645 0.491912i \(-0.836298\pi\)
0.198793 + 0.980042i \(0.436298\pi\)
\(30\) −3.61803 2.62866i −0.660560 0.479925i
\(31\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(32\) −6.70820 −1.18585
\(33\) 0 0
\(34\) 10.0000 1.71499
\(35\) −2.76393 8.50651i −0.467190 1.43786i
\(36\) −2.42705 1.76336i −0.404508 0.293893i
\(37\) −1.61803 + 1.17557i −0.266003 + 0.193263i −0.712789 0.701378i \(-0.752568\pi\)
0.446786 + 0.894641i \(0.352568\pi\)
\(38\) −3.09017 + 9.51057i −0.501292 + 1.54282i
\(39\) 0 0
\(40\) −3.61803 + 2.62866i −0.572061 + 0.415627i
\(41\) 3.61803 + 2.62866i 0.565042 + 0.410527i 0.833301 0.552820i \(-0.186448\pi\)
−0.268259 + 0.963347i \(0.586448\pi\)
\(42\) −3.09017 9.51057i −0.476824 1.46751i
\(43\) 4.47214 0.681994 0.340997 0.940064i \(-0.389235\pi\)
0.340997 + 0.940064i \(0.389235\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) −2.76393 8.50651i −0.407520 1.25422i
\(47\) −6.47214 4.70228i −0.944058 0.685898i 0.00533600 0.999986i \(-0.498301\pi\)
−0.949394 + 0.314087i \(0.898301\pi\)
\(48\) 0.809017 0.587785i 0.116772 0.0848395i
\(49\) 4.01722 12.3637i 0.573889 1.76625i
\(50\) −0.690983 + 2.12663i −0.0977198 + 0.300750i
\(51\) −3.61803 + 2.62866i −0.506626 + 0.368085i
\(52\) 0 0
\(53\) 1.85410 + 5.70634i 0.254680 + 0.783826i 0.993892 + 0.110353i \(0.0351982\pi\)
−0.739212 + 0.673473i \(0.764802\pi\)
\(54\) 2.23607 0.304290
\(55\) 0 0
\(56\) −10.0000 −1.33631
\(57\) −1.38197 4.25325i −0.183046 0.563357i
\(58\) −8.09017 5.87785i −1.06229 0.771800i
\(59\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(60\) 1.85410 5.70634i 0.239364 0.736685i
\(61\) 2.76393 8.50651i 0.353885 1.08915i −0.602768 0.797917i \(-0.705935\pi\)
0.956653 0.291230i \(-0.0940645\pi\)
\(62\) 0 0
\(63\) 3.61803 + 2.62866i 0.455829 + 0.331179i
\(64\) −4.01722 12.3637i −0.502153 1.54547i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 4.14590 + 12.7598i 0.502764 + 1.54735i
\(69\) 3.23607 + 2.35114i 0.389577 + 0.283044i
\(70\) 16.1803 11.7557i 1.93392 1.40508i
\(71\) −2.47214 + 7.60845i −0.293389 + 0.902957i 0.690369 + 0.723457i \(0.257448\pi\)
−0.983758 + 0.179500i \(0.942552\pi\)
\(72\) 0.690983 2.12663i 0.0814331 0.250625i
\(73\) 7.23607 5.25731i 0.846918 0.615322i −0.0773767 0.997002i \(-0.524654\pi\)
0.924294 + 0.381680i \(0.124654\pi\)
\(74\) −3.61803 2.62866i −0.420588 0.305575i
\(75\) −0.309017 0.951057i −0.0356822 0.109819i
\(76\) −13.4164 −1.53897
\(77\) 0 0
\(78\) 0 0
\(79\) 4.14590 + 12.7598i 0.466450 + 1.43559i 0.857150 + 0.515067i \(0.172233\pi\)
−0.390700 + 0.920518i \(0.627767\pi\)
\(80\) 1.61803 + 1.17557i 0.180902 + 0.131433i
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −3.09017 + 9.51057i −0.341252 + 1.05027i
\(83\) −2.76393 + 8.50651i −0.303381 + 0.933711i 0.676895 + 0.736079i \(0.263325\pi\)
−0.980276 + 0.197631i \(0.936675\pi\)
\(84\) 10.8541 7.88597i 1.18428 0.860430i
\(85\) −7.23607 5.25731i −0.784862 0.570235i
\(86\) 3.09017 + 9.51057i 0.333222 + 1.02555i
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 1.38197 + 4.25325i 0.145672 + 0.448332i
\(91\) 0 0
\(92\) 9.70820 7.05342i 1.01215 0.735370i
\(93\) 0 0
\(94\) 5.52786 17.0130i 0.570156 1.75476i
\(95\) 7.23607 5.25731i 0.742405 0.539389i
\(96\) 5.42705 + 3.94298i 0.553896 + 0.402429i
\(97\) 0.618034 + 1.90211i 0.0627518 + 0.193130i 0.977517 0.210855i \(-0.0676247\pi\)
−0.914766 + 0.403985i \(0.867625\pi\)
\(98\) 29.0689 2.93640
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) 1.38197 + 4.25325i 0.137511 + 0.423215i 0.995972 0.0896637i \(-0.0285792\pi\)
−0.858461 + 0.512878i \(0.828579\pi\)
\(102\) −8.09017 5.87785i −0.801046 0.581994i
\(103\) −12.9443 + 9.40456i −1.27544 + 0.926659i −0.999405 0.0344892i \(-0.989020\pi\)
−0.276032 + 0.961148i \(0.589020\pi\)
\(104\) 0 0
\(105\) −2.76393 + 8.50651i −0.269732 + 0.830150i
\(106\) −10.8541 + 7.88597i −1.05424 + 0.765953i
\(107\) −7.23607 5.25731i −0.699537 0.508243i 0.180244 0.983622i \(-0.442311\pi\)
−0.879781 + 0.475378i \(0.842311\pi\)
\(108\) 0.927051 + 2.85317i 0.0892055 + 0.274546i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 1.38197 + 4.25325i 0.130584 + 0.401895i
\(113\) −4.85410 3.52671i −0.456636 0.331765i 0.335575 0.942014i \(-0.391070\pi\)
−0.792210 + 0.610249i \(0.791070\pi\)
\(114\) 8.09017 5.87785i 0.757714 0.550511i
\(115\) −2.47214 + 7.60845i −0.230528 + 0.709492i
\(116\) 4.14590 12.7598i 0.384937 1.18471i
\(117\) 0 0
\(118\) 0 0
\(119\) −6.18034 19.0211i −0.566551 1.74366i
\(120\) 4.47214 0.408248
\(121\) 0 0
\(122\) 20.0000 1.81071
\(123\) −1.38197 4.25325i −0.124608 0.383503i
\(124\) 0 0
\(125\) 9.70820 7.05342i 0.868328 0.630877i
\(126\) −3.09017 + 9.51057i −0.275294 + 0.847268i
\(127\) 4.14590 12.7598i 0.367889 1.13225i −0.580263 0.814429i \(-0.697050\pi\)
0.948152 0.317817i \(-0.102950\pi\)
\(128\) 12.6631 9.20029i 1.11927 0.813199i
\(129\) −3.61803 2.62866i −0.318550 0.231440i
\(130\) 0 0
\(131\) −17.8885 −1.56293 −0.781465 0.623949i \(-0.785527\pi\)
−0.781465 + 0.623949i \(0.785527\pi\)
\(132\) 0 0
\(133\) 20.0000 1.73422
\(134\) −8.29180 25.5195i −0.716302 2.20455i
\(135\) −1.61803 1.17557i −0.139258 0.101177i
\(136\) −8.09017 + 5.87785i −0.693726 + 0.504022i
\(137\) 6.79837 20.9232i 0.580824 1.78759i −0.0346048 0.999401i \(-0.511017\pi\)
0.615429 0.788192i \(-0.288983\pi\)
\(138\) −2.76393 + 8.50651i −0.235282 + 0.724122i
\(139\) −10.8541 + 7.88597i −0.920633 + 0.668879i −0.943681 0.330855i \(-0.892663\pi\)
0.0230486 + 0.999734i \(0.492663\pi\)
\(140\) 21.7082 + 15.7719i 1.83468 + 1.33297i
\(141\) 2.47214 + 7.60845i 0.208191 + 0.640747i
\(142\) −17.8885 −1.50117
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 2.76393 + 8.50651i 0.229532 + 0.706427i
\(146\) 16.1803 + 11.7557i 1.33909 + 0.972909i
\(147\) −10.5172 + 7.64121i −0.867446 + 0.630236i
\(148\) 1.85410 5.70634i 0.152406 0.469058i
\(149\) −6.90983 + 21.2663i −0.566075 + 1.74220i 0.0986594 + 0.995121i \(0.468545\pi\)
−0.664735 + 0.747079i \(0.731455\pi\)
\(150\) 1.80902 1.31433i 0.147706 0.107314i
\(151\) −10.8541 7.88597i −0.883294 0.641751i 0.0508267 0.998707i \(-0.483814\pi\)
−0.934121 + 0.356957i \(0.883814\pi\)
\(152\) −3.09017 9.51057i −0.250646 0.771409i
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.61803 1.17557i −0.129133 0.0938207i 0.521344 0.853347i \(-0.325431\pi\)
−0.650477 + 0.759526i \(0.725431\pi\)
\(158\) −24.2705 + 17.6336i −1.93086 + 1.40285i
\(159\) 1.85410 5.70634i 0.147040 0.452542i
\(160\) −4.14590 + 12.7598i −0.327762 + 1.00875i
\(161\) −14.4721 + 10.5146i −1.14056 + 0.828668i
\(162\) −1.80902 1.31433i −0.142130 0.103263i
\(163\) 1.23607 + 3.80423i 0.0968163 + 0.297970i 0.987723 0.156217i \(-0.0499299\pi\)
−0.890906 + 0.454187i \(0.849930\pi\)
\(164\) −13.4164 −1.04765
\(165\) 0 0
\(166\) −20.0000 −1.55230
\(167\) 2.76393 + 8.50651i 0.213879 + 0.658253i 0.999231 + 0.0392036i \(0.0124821\pi\)
−0.785352 + 0.619050i \(0.787518\pi\)
\(168\) 8.09017 + 5.87785i 0.624170 + 0.453486i
\(169\) 10.5172 7.64121i 0.809017 0.587785i
\(170\) 6.18034 19.0211i 0.474010 1.45885i
\(171\) −1.38197 + 4.25325i −0.105682 + 0.325254i
\(172\) −10.8541 + 7.88597i −0.827618 + 0.601299i
\(173\) 10.8541 + 7.88597i 0.825222 + 0.599559i 0.918204 0.396109i \(-0.129640\pi\)
−0.0929814 + 0.995668i \(0.529640\pi\)
\(174\) 3.09017 + 9.51057i 0.234265 + 0.720994i
\(175\) 4.47214 0.338062
\(176\) 0 0
\(177\) 0 0
\(178\) −9.67376 29.7728i −0.725079 2.23156i
\(179\) 3.23607 + 2.35114i 0.241875 + 0.175733i 0.702118 0.712060i \(-0.252238\pi\)
−0.460243 + 0.887793i \(0.652238\pi\)
\(180\) −4.85410 + 3.52671i −0.361803 + 0.262866i
\(181\) −3.09017 + 9.51057i −0.229691 + 0.706915i 0.768091 + 0.640341i \(0.221207\pi\)
−0.997781 + 0.0665740i \(0.978793\pi\)
\(182\) 0 0
\(183\) −7.23607 + 5.25731i −0.534906 + 0.388632i
\(184\) 7.23607 + 5.25731i 0.533450 + 0.387574i
\(185\) 1.23607 + 3.80423i 0.0908775 + 0.279692i
\(186\) 0 0
\(187\) 0 0
\(188\) 24.0000 1.75038
\(189\) −1.38197 4.25325i −0.100523 0.309379i
\(190\) 16.1803 + 11.7557i 1.17385 + 0.852848i
\(191\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(192\) −4.01722 + 12.3637i −0.289918 + 0.892276i
\(193\) −5.52786 + 17.0130i −0.397904 + 1.22462i 0.528772 + 0.848764i \(0.322653\pi\)
−0.926677 + 0.375860i \(0.877347\pi\)
\(194\) −3.61803 + 2.62866i −0.259760 + 0.188726i
\(195\) 0 0
\(196\) 12.0517 + 37.0912i 0.860833 + 2.64937i
\(197\) 22.3607 1.59313 0.796566 0.604551i \(-0.206648\pi\)
0.796566 + 0.604551i \(0.206648\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −0.690983 2.12663i −0.0488599 0.150375i
\(201\) 9.70820 + 7.05342i 0.684764 + 0.497510i
\(202\) −8.09017 + 5.87785i −0.569222 + 0.413564i
\(203\) −6.18034 + 19.0211i −0.433775 + 1.33502i
\(204\) 4.14590 12.7598i 0.290271 0.893362i
\(205\) 7.23607 5.25731i 0.505389 0.367187i
\(206\) −28.9443 21.0292i −2.01664 1.46518i
\(207\) −1.23607 3.80423i −0.0859127 0.264412i
\(208\) 0 0
\(209\) 0 0
\(210\) −20.0000 −1.38013
\(211\) −1.38197 4.25325i −0.0951385 0.292806i 0.892151 0.451737i \(-0.149195\pi\)
−0.987290 + 0.158931i \(0.949195\pi\)
\(212\) −14.5623 10.5801i −1.00014 0.726647i
\(213\) 6.47214 4.70228i 0.443463 0.322195i
\(214\) 6.18034 19.0211i 0.422479 1.30026i
\(215\) 2.76393 8.50651i 0.188499 0.580139i
\(216\) −1.80902 + 1.31433i −0.123088 + 0.0894287i
\(217\) 0 0
\(218\) 0 0
\(219\) −8.94427 −0.604398
\(220\) 0 0
\(221\) 0 0
\(222\) 1.38197 + 4.25325i 0.0927515 + 0.285460i
\(223\) 12.9443 + 9.40456i 0.866813 + 0.629776i 0.929730 0.368243i \(-0.120040\pi\)
−0.0629172 + 0.998019i \(0.520040\pi\)
\(224\) −24.2705 + 17.6336i −1.62164 + 1.17819i
\(225\) −0.309017 + 0.951057i −0.0206011 + 0.0634038i
\(226\) 4.14590 12.7598i 0.275781 0.848767i
\(227\) −7.23607 + 5.25731i −0.480275 + 0.348940i −0.801432 0.598086i \(-0.795928\pi\)
0.321157 + 0.947026i \(0.395928\pi\)
\(228\) 10.8541 + 7.88597i 0.718830 + 0.522261i
\(229\) 3.09017 + 9.51057i 0.204204 + 0.628476i 0.999745 + 0.0225760i \(0.00718678\pi\)
−0.795541 + 0.605900i \(0.792813\pi\)
\(230\) −17.8885 −1.17954
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) −1.38197 4.25325i −0.0905356 0.278640i 0.895529 0.445003i \(-0.146798\pi\)
−0.986065 + 0.166363i \(0.946798\pi\)
\(234\) 0 0
\(235\) −12.9443 + 9.40456i −0.844391 + 0.613486i
\(236\) 0 0
\(237\) 4.14590 12.7598i 0.269305 0.828836i
\(238\) 36.1803 26.2866i 2.34522 1.70390i
\(239\) −7.23607 5.25731i −0.468062 0.340067i 0.328623 0.944461i \(-0.393415\pi\)
−0.796686 + 0.604394i \(0.793415\pi\)
\(240\) −0.618034 1.90211i −0.0398939 0.122781i
\(241\) 8.94427 0.576151 0.288076 0.957608i \(-0.406985\pi\)
0.288076 + 0.957608i \(0.406985\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 8.29180 + 25.5195i 0.530828 + 1.63372i
\(245\) −21.0344 15.2824i −1.34384 0.976358i
\(246\) 8.09017 5.87785i 0.515810 0.374758i
\(247\) 0 0
\(248\) 0 0
\(249\) 7.23607 5.25731i 0.458567 0.333169i
\(250\) 21.7082 + 15.7719i 1.37295 + 0.997505i
\(251\) −3.70820 11.4127i −0.234060 0.720362i −0.997245 0.0741818i \(-0.976365\pi\)
0.763185 0.646180i \(-0.223635\pi\)
\(252\) −13.4164 −0.845154
\(253\) 0 0
\(254\) 30.0000 1.88237
\(255\) 2.76393 + 8.50651i 0.173084 + 0.532698i
\(256\) 7.28115 + 5.29007i 0.455072 + 0.330629i
\(257\) 17.7984 12.9313i 1.11023 0.806631i 0.127532 0.991834i \(-0.459294\pi\)
0.982700 + 0.185204i \(0.0592945\pi\)
\(258\) 3.09017 9.51057i 0.192386 0.592102i
\(259\) −2.76393 + 8.50651i −0.171742 + 0.528569i
\(260\) 0 0
\(261\) −3.61803 2.62866i −0.223951 0.162710i
\(262\) −12.3607 38.0423i −0.763645 2.35026i
\(263\) 8.94427 0.551527 0.275764 0.961225i \(-0.411069\pi\)
0.275764 + 0.961225i \(0.411069\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 13.8197 + 42.5325i 0.847338 + 2.60784i
\(267\) 11.3262 + 8.22899i 0.693155 + 0.503606i
\(268\) 29.1246 21.1603i 1.77907 1.29257i
\(269\) −3.09017 + 9.51057i −0.188411 + 0.579869i −0.999990 0.00437267i \(-0.998608\pi\)
0.811579 + 0.584242i \(0.198608\pi\)
\(270\) 1.38197 4.25325i 0.0841038 0.258845i
\(271\) 10.8541 7.88597i 0.659340 0.479038i −0.207100 0.978320i \(-0.566403\pi\)
0.866440 + 0.499281i \(0.166403\pi\)
\(272\) 3.61803 + 2.62866i 0.219376 + 0.159386i
\(273\) 0 0
\(274\) 49.1935 2.97189
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(278\) −24.2705 17.6336i −1.45565 1.05759i
\(279\) 0 0
\(280\) −6.18034 + 19.0211i −0.369346 + 1.13673i
\(281\) 9.67376 29.7728i 0.577088 1.77610i −0.0518675 0.998654i \(-0.516517\pi\)
0.628956 0.777441i \(-0.283483\pi\)
\(282\) −14.4721 + 10.5146i −0.861803 + 0.626137i
\(283\) 10.8541 + 7.88597i 0.645209 + 0.468772i 0.861636 0.507527i \(-0.169440\pi\)
−0.216427 + 0.976299i \(0.569440\pi\)
\(284\) −7.41641 22.8254i −0.440083 1.35444i
\(285\) −8.94427 −0.529813
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) −2.07295 6.37988i −0.122150 0.375938i
\(289\) −2.42705 1.76336i −0.142768 0.103727i
\(290\) −16.1803 + 11.7557i −0.950142 + 0.690319i
\(291\) 0.618034 1.90211i 0.0362298 0.111504i
\(292\) −8.29180 + 25.5195i −0.485241 + 1.49342i
\(293\) 18.0902 13.1433i 1.05684 0.767838i 0.0833380 0.996521i \(-0.473442\pi\)
0.973501 + 0.228683i \(0.0734419\pi\)
\(294\) −23.5172 17.0863i −1.37155 0.996491i
\(295\) 0 0
\(296\) 4.47214 0.259938
\(297\) 0 0
\(298\) −50.0000 −2.89642
\(299\) 0 0
\(300\) 2.42705 + 1.76336i 0.140126 + 0.101807i
\(301\) 16.1803 11.7557i 0.932619 0.677588i
\(302\) 9.27051 28.5317i 0.533458 1.64181i
\(303\) 1.38197 4.25325i 0.0793919 0.244343i
\(304\) −3.61803 + 2.62866i −0.207508 + 0.150764i
\(305\) −14.4721 10.5146i −0.828672 0.602066i
\(306\) 3.09017 + 9.51057i 0.176653 + 0.543683i
\(307\) −4.47214 −0.255238 −0.127619 0.991823i \(-0.540734\pi\)
−0.127619 + 0.991823i \(0.540734\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 9.70820 + 7.05342i 0.550502 + 0.399963i 0.827970 0.560772i \(-0.189495\pi\)
−0.277469 + 0.960735i \(0.589495\pi\)
\(312\) 0 0
\(313\) 4.32624 13.3148i 0.244533 0.752596i −0.751179 0.660098i \(-0.770515\pi\)
0.995713 0.0924984i \(-0.0294853\pi\)
\(314\) 1.38197 4.25325i 0.0779889 0.240025i
\(315\) 7.23607 5.25731i 0.407706 0.296216i
\(316\) −32.5623 23.6579i −1.83177 1.33086i
\(317\) 5.56231 + 17.1190i 0.312410 + 0.961500i 0.976807 + 0.214120i \(0.0686884\pi\)
−0.664397 + 0.747380i \(0.731312\pi\)
\(318\) 13.4164 0.752355
\(319\) 0 0
\(320\) −26.0000 −1.45344
\(321\) 2.76393 + 8.50651i 0.154268 + 0.474787i
\(322\) −32.3607 23.5114i −1.80339 1.31024i
\(323\) 16.1803 11.7557i 0.900298 0.654105i
\(324\) 0.927051 2.85317i 0.0515028 0.158509i
\(325\) 0 0
\(326\) −7.23607 + 5.25731i −0.400769 + 0.291176i
\(327\) 0 0
\(328\) −3.09017 9.51057i −0.170626 0.525133i
\(329\) −35.7771 −1.97245
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −8.29180 25.5195i −0.455071 1.40057i
\(333\) −1.61803 1.17557i −0.0886677 0.0644209i
\(334\) −16.1803 + 11.7557i −0.885349 + 0.643244i
\(335\) −7.41641 + 22.8254i −0.405202 + 1.24708i
\(336\) 1.38197 4.25325i 0.0753924 0.232034i
\(337\) −7.23607 + 5.25731i −0.394174 + 0.286384i −0.767164 0.641451i \(-0.778333\pi\)
0.372990 + 0.927835i \(0.378333\pi\)
\(338\) 23.5172 + 17.0863i 1.27917 + 0.929370i
\(339\) 1.85410 + 5.70634i 0.100701 + 0.309926i
\(340\) 26.8328 1.45521
\(341\) 0 0
\(342\) −10.0000 −0.540738
\(343\) −8.29180 25.5195i −0.447715 1.37792i
\(344\) −8.09017 5.87785i −0.436193 0.316913i
\(345\) 6.47214 4.70228i 0.348448 0.253162i
\(346\) −9.27051 + 28.5317i −0.498386 + 1.53387i
\(347\) 2.76393 8.50651i 0.148376 0.456653i −0.849054 0.528306i \(-0.822827\pi\)
0.997430 + 0.0716528i \(0.0228274\pi\)
\(348\) −10.8541 + 7.88597i −0.581841 + 0.422732i
\(349\) 21.7082 + 15.7719i 1.16201 + 0.844252i 0.990031 0.140848i \(-0.0449828\pi\)
0.171982 + 0.985100i \(0.444983\pi\)
\(350\) 3.09017 + 9.51057i 0.165177 + 0.508361i
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 12.9443 + 9.40456i 0.687011 + 0.499142i
\(356\) 33.9787 24.6870i 1.80087 1.30841i
\(357\) −6.18034 + 19.0211i −0.327098 + 1.00670i
\(358\) −2.76393 + 8.50651i −0.146078 + 0.449583i
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) −3.61803 2.62866i −0.190687 0.138542i
\(361\) 0.309017 + 0.951057i 0.0162641 + 0.0500556i
\(362\) −22.3607 −1.17525
\(363\) 0 0
\(364\) 0 0
\(365\) −5.52786 17.0130i −0.289342 0.890502i
\(366\) −16.1803 11.7557i −0.845760 0.614481i
\(367\) −6.47214 + 4.70228i −0.337843 + 0.245457i −0.743751 0.668457i \(-0.766955\pi\)
0.405908 + 0.913914i \(0.366955\pi\)
\(368\) 1.23607 3.80423i 0.0644345 0.198309i
\(369\) −1.38197 + 4.25325i −0.0719423 + 0.221416i
\(370\) −7.23607 + 5.25731i −0.376185 + 0.273315i
\(371\) 21.7082 + 15.7719i 1.12703 + 0.818838i
\(372\) 0 0
\(373\) −26.8328 −1.38935 −0.694675 0.719323i \(-0.744452\pi\)
−0.694675 + 0.719323i \(0.744452\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 5.52786 + 17.0130i 0.285078 + 0.877379i
\(377\) 0 0
\(378\) 8.09017 5.87785i 0.416113 0.302324i
\(379\) −6.18034 + 19.0211i −0.317463 + 0.977050i 0.657266 + 0.753659i \(0.271713\pi\)
−0.974729 + 0.223391i \(0.928287\pi\)
\(380\) −8.29180 + 25.5195i −0.425360 + 1.30912i
\(381\) −10.8541 + 7.88597i −0.556072 + 0.404010i
\(382\) 0 0
\(383\) −11.1246 34.2380i −0.568441 1.74948i −0.657499 0.753455i \(-0.728386\pi\)
0.0890579 0.996026i \(-0.471614\pi\)
\(384\) −15.6525 −0.798762
\(385\) 0 0
\(386\) −40.0000 −2.03595
\(387\) 1.38197 + 4.25325i 0.0702493 + 0.216205i
\(388\) −4.85410 3.52671i −0.246430 0.179042i
\(389\) −8.09017 + 5.87785i −0.410188 + 0.298019i −0.773678 0.633579i \(-0.781585\pi\)
0.363490 + 0.931598i \(0.381585\pi\)
\(390\) 0 0
\(391\) −5.52786 + 17.0130i −0.279556 + 0.860385i
\(392\) −23.5172 + 17.0863i −1.18780 + 0.862987i
\(393\) 14.4721 + 10.5146i 0.730023 + 0.530393i
\(394\) 15.4508 + 47.5528i 0.778403 + 2.39568i
\(395\) 26.8328 1.35011
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) −16.1803 11.7557i −0.810030 0.588521i
\(400\) −0.809017 + 0.587785i −0.0404508 + 0.0293893i
\(401\) 9.27051 28.5317i 0.462947 1.42480i −0.398599 0.917125i \(-0.630503\pi\)
0.861546 0.507679i \(-0.169497\pi\)
\(402\) −8.29180 + 25.5195i −0.413557 + 1.27280i
\(403\) 0 0
\(404\) −10.8541 7.88597i −0.540012 0.392342i
\(405\) 0.618034 + 1.90211i 0.0307104 + 0.0945168i
\(406\) −44.7214 −2.21948
\(407\) 0 0
\(408\) 10.0000 0.495074
\(409\) −8.29180 25.5195i −0.410003 1.26186i −0.916645 0.399703i \(-0.869113\pi\)
0.506642 0.862157i \(-0.330887\pi\)
\(410\) 16.1803 + 11.7557i 0.799090 + 0.580573i
\(411\) −17.7984 + 12.9313i −0.877929 + 0.637853i
\(412\) 14.8328 45.6507i 0.730760 2.24905i
\(413\) 0 0
\(414\) 7.23607 5.25731i 0.355633 0.258383i
\(415\) 14.4721 + 10.5146i 0.710409 + 0.516143i
\(416\) 0 0
\(417\) 13.4164 0.657004
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) −8.29180 25.5195i −0.404598 1.24523i
\(421\) −8.09017 5.87785i −0.394291 0.286469i 0.372921 0.927863i \(-0.378356\pi\)
−0.767211 + 0.641394i \(0.778356\pi\)
\(422\) 8.09017 5.87785i 0.393823 0.286129i
\(423\) 2.47214 7.60845i 0.120199 0.369936i
\(424\) 4.14590 12.7598i 0.201343 0.619669i
\(425\) 3.61803 2.62866i 0.175500 0.127509i
\(426\) 14.4721 + 10.5146i 0.701177 + 0.509435i
\(427\) −12.3607 38.0423i −0.598175 1.84099i
\(428\) 26.8328 1.29701
\(429\) 0 0
\(430\) 20.0000 0.964486
\(431\) −2.76393 8.50651i −0.133134 0.409744i 0.862161 0.506634i \(-0.169110\pi\)
−0.995295 + 0.0968900i \(0.969110\pi\)
\(432\) 0.809017 + 0.587785i 0.0389238 + 0.0282798i
\(433\) 4.85410 3.52671i 0.233273 0.169483i −0.465008 0.885307i \(-0.653949\pi\)
0.698281 + 0.715824i \(0.253949\pi\)
\(434\) 0 0
\(435\) 2.76393 8.50651i 0.132520 0.407856i
\(436\) 0 0
\(437\) −14.4721 10.5146i −0.692296 0.502983i
\(438\) −6.18034 19.0211i −0.295308 0.908865i
\(439\) −13.4164 −0.640330 −0.320165 0.947362i \(-0.603738\pi\)
−0.320165 + 0.947362i \(0.603738\pi\)
\(440\) 0 0
\(441\) 13.0000 0.619048
\(442\) 0 0
\(443\) 19.4164 + 14.1068i 0.922501 + 0.670236i 0.944145 0.329529i \(-0.106890\pi\)
−0.0216440 + 0.999766i \(0.506890\pi\)
\(444\) −4.85410 + 3.52671i −0.230365 + 0.167370i
\(445\) −8.65248 + 26.6296i −0.410167 + 1.26236i
\(446\) −11.0557 + 34.0260i −0.523504 + 1.61118i
\(447\) 18.0902 13.1433i 0.855636 0.621656i
\(448\) −47.0344 34.1725i −2.22217 1.61450i
\(449\) −1.85410 5.70634i −0.0875005 0.269299i 0.897726 0.440554i \(-0.145218\pi\)
−0.985227 + 0.171255i \(0.945218\pi\)
\(450\) −2.23607 −0.105409
\(451\) 0 0
\(452\) 18.0000 0.846649
\(453\) 4.14590 + 12.7598i 0.194791 + 0.599506i
\(454\) −16.1803 11.7557i −0.759381 0.551723i
\(455\) 0 0
\(456\) −3.09017 + 9.51057i −0.144710 + 0.445373i
\(457\) 8.29180 25.5195i 0.387874 1.19375i −0.546500 0.837459i \(-0.684040\pi\)
0.934374 0.356294i \(-0.115960\pi\)
\(458\) −18.0902 + 13.1433i −0.845298 + 0.614145i
\(459\) −3.61803 2.62866i −0.168875 0.122695i
\(460\) −7.41641 22.8254i −0.345792 1.06424i
\(461\) 13.4164 0.624864 0.312432 0.949940i \(-0.398856\pi\)
0.312432 + 0.949940i \(0.398856\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) −1.38197 4.25325i −0.0641562 0.197452i
\(465\) 0 0
\(466\) 8.09017 5.87785i 0.374770 0.272286i
\(467\) −2.47214 + 7.60845i −0.114397 + 0.352077i −0.991821 0.127639i \(-0.959260\pi\)
0.877424 + 0.479716i \(0.159260\pi\)
\(468\) 0 0
\(469\) −43.4164 + 31.5439i −2.00478 + 1.45656i
\(470\) −28.9443 21.0292i −1.33510 0.970007i
\(471\) 0.618034 + 1.90211i 0.0284775 + 0.0876447i
\(472\) 0 0
\(473\) 0 0
\(474\) 30.0000 1.37795
\(475\) 1.38197 + 4.25325i 0.0634089 + 0.195153i
\(476\) 48.5410 + 35.2671i 2.22487 + 1.61647i
\(477\) −4.85410 + 3.52671i −0.222254 + 0.161477i
\(478\) 6.18034 19.0211i 0.282682 0.870006i
\(479\) −2.76393 + 8.50651i −0.126287 + 0.388672i −0.994133 0.108161i \(-0.965504\pi\)
0.867846 + 0.496833i \(0.165504\pi\)
\(480\) 10.8541 7.88597i 0.495420 0.359943i
\(481\) 0 0
\(482\) 6.18034 + 19.0211i 0.281507 + 0.866389i
\(483\) 17.8885 0.813957
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 0.690983 + 2.12663i 0.0313436 + 0.0964658i
\(487\) −6.47214 4.70228i −0.293280 0.213081i 0.431409 0.902157i \(-0.358017\pi\)
−0.724689 + 0.689076i \(0.758017\pi\)
\(488\) −16.1803 + 11.7557i −0.732450 + 0.532156i
\(489\) 1.23607 3.80423i 0.0558969 0.172033i
\(490\) 17.9656 55.2923i 0.811601 2.49785i
\(491\) 21.7082 15.7719i 0.979678 0.711777i 0.0220410 0.999757i \(-0.492984\pi\)
0.957637 + 0.287980i \(0.0929836\pi\)
\(492\) 10.8541 + 7.88597i 0.489341 + 0.355527i
\(493\) 6.18034 + 19.0211i 0.278349 + 0.856669i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.0557 + 34.0260i 0.495917 + 1.52628i
\(498\) 16.1803 + 11.7557i 0.725058 + 0.526786i
\(499\) 16.1803 11.7557i 0.724331 0.526258i −0.163434 0.986554i \(-0.552257\pi\)
0.887765 + 0.460297i \(0.152257\pi\)
\(500\) −11.1246 + 34.2380i −0.497508 + 1.53117i
\(501\) 2.76393 8.50651i 0.123483 0.380043i
\(502\) 21.7082 15.7719i 0.968885 0.703936i
\(503\) 21.7082 + 15.7719i 0.967921 + 0.703236i 0.954977 0.296680i \(-0.0958796\pi\)
0.0129442 + 0.999916i \(0.495880\pi\)
\(504\) −3.09017 9.51057i −0.137647 0.423634i
\(505\) 8.94427 0.398015
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 12.4377 + 38.2793i 0.551833 + 1.69837i
\(509\) −24.2705 17.6336i −1.07577 0.781594i −0.0988307 0.995104i \(-0.531510\pi\)
−0.976941 + 0.213511i \(0.931510\pi\)
\(510\) −16.1803 + 11.7557i −0.716477 + 0.520551i
\(511\) 12.3607 38.0423i 0.546804 1.68289i
\(512\) 3.45492 10.6331i 0.152687 0.469923i
\(513\) 3.61803 2.62866i 0.159740 0.116058i
\(514\) 39.7984 + 28.9152i 1.75543 + 1.27540i
\(515\) 9.88854 + 30.4338i 0.435741 + 1.34107i
\(516\) 13.4164 0.590624
\(517\) 0 0
\(518\) −20.0000 −0.878750
\(519\) −4.14590 12.7598i −0.181985 0.560091i
\(520\) 0 0
\(521\) −24.2705 + 17.6336i −1.06331 + 0.772540i −0.974698 0.223526i \(-0.928243\pi\)
−0.0886124 + 0.996066i \(0.528243\pi\)
\(522\) 3.09017 9.51057i 0.135253 0.416266i
\(523\) 1.38197 4.25325i 0.0604292 0.185982i −0.916285 0.400527i \(-0.868827\pi\)
0.976714 + 0.214545i \(0.0688270\pi\)
\(524\) 43.4164 31.5439i 1.89665 1.37800i
\(525\) −3.61803 2.62866i −0.157904 0.114724i
\(526\) 6.18034 + 19.0211i 0.269476 + 0.829361i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 8.29180 + 25.5195i 0.360173 + 1.10850i
\(531\) 0 0
\(532\) −48.5410 + 35.2671i −2.10452 + 1.52902i
\(533\) 0 0
\(534\) −9.67376 + 29.7728i −0.418625 + 1.28839i
\(535\) −14.4721 + 10.5146i −0.625685 + 0.454587i
\(536\) 21.7082 + 15.7719i 0.937652 + 0.681244i
\(537\) −1.23607 3.80423i −0.0533403 0.164164i
\(538\) −22.3607 −0.964037
\(539\) 0 0
\(540\) 6.00000 0.258199
\(541\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(542\) 24.2705 + 17.6336i 1.04251 + 0.757426i
\(543\) 8.09017 5.87785i 0.347182 0.252243i
\(544\) −9.27051 + 28.5317i −0.397470 + 1.22329i
\(545\) 0 0
\(546\) 0 0
\(547\) −32.5623 23.6579i −1.39226 1.01154i −0.995613 0.0935692i \(-0.970172\pi\)
−0.396651 0.917970i \(-0.629828\pi\)
\(548\) 20.3951 + 62.7697i 0.871236 + 2.68139i
\(549\) 8.94427 0.381732
\(550\) 0 0
\(551\) −20.0000 −0.852029
\(552\) −2.76393 8.50651i −0.117641 0.362061i
\(553\) 48.5410 + 35.2671i 2.06417 + 1.49971i
\(554\) 0 0
\(555\) 1.23607 3.80423i 0.0524682 0.161480i
\(556\) 12.4377 38.2793i 0.527476 1.62340i
\(557\) 32.5623 23.6579i 1.37971 1.00242i 0.382802 0.923830i \(-0.374959\pi\)
0.996907 0.0785870i \(-0.0250408\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 8.94427 0.377964
\(561\) 0 0
\(562\) 70.0000 2.95277
\(563\) 5.52786 + 17.0130i 0.232972 + 0.717013i 0.997384 + 0.0722854i \(0.0230292\pi\)
−0.764412 + 0.644728i \(0.776971\pi\)
\(564\) −19.4164 14.1068i −0.817578 0.594005i
\(565\) −9.70820 + 7.05342i −0.408427 + 0.296740i
\(566\) −9.27051 + 28.5317i −0.389669 + 1.19928i
\(567\) −1.38197 + 4.25325i −0.0580371 + 0.178620i
\(568\) 14.4721 10.5146i 0.607237 0.441184i
\(569\) −3.61803 2.62866i −0.151676 0.110199i 0.509359 0.860554i \(-0.329883\pi\)
−0.661035 + 0.750355i \(0.729883\pi\)
\(570\) −6.18034 19.0211i −0.258866 0.796707i
\(571\) −13.4164 −0.561459 −0.280730 0.959787i \(-0.590576\pi\)
−0.280730 + 0.959787i \(0.590576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 13.8197 + 42.5325i 0.576821 + 1.77527i
\(575\) −3.23607 2.35114i −0.134953 0.0980494i
\(576\) 10.5172 7.64121i 0.438218 0.318384i
\(577\) −0.618034 + 1.90211i −0.0257291 + 0.0791860i −0.963097 0.269156i \(-0.913255\pi\)
0.937367 + 0.348342i \(0.113255\pi\)
\(578\) 2.07295 6.37988i 0.0862233 0.265368i
\(579\) 14.4721 10.5146i 0.601441 0.436973i
\(580\) −21.7082 15.7719i −0.901384 0.654894i
\(581\) 12.3607 + 38.0423i 0.512807 + 1.57826i
\(582\) 4.47214 0.185376
\(583\) 0 0
\(584\) −20.0000 −0.827606
\(585\) 0 0
\(586\) 40.4508 + 29.3893i 1.67101 + 1.21406i
\(587\) 6.47214 4.70228i 0.267134 0.194084i −0.446152 0.894957i \(-0.647206\pi\)
0.713286 + 0.700873i \(0.247206\pi\)
\(588\) 12.0517 37.0912i 0.497002 1.52962i
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0902 13.1433i −0.744130 0.540642i
\(592\) −0.618034 1.90211i −0.0254010 0.0781764i
\(593\) −22.3607 −0.918243 −0.459122 0.888373i \(-0.651836\pi\)
−0.459122 + 0.888373i \(0.651836\pi\)
\(594\) 0 0
\(595\) −40.0000 −1.63984
\(596\) −20.7295 63.7988i −0.849113 2.61330i
\(597\) 0 0
\(598\) 0 0
\(599\) −11.1246 + 34.2380i −0.454539 + 1.39893i 0.417136 + 0.908844i \(0.363034\pi\)
−0.871675 + 0.490084i \(0.836966\pi\)
\(600\) −0.690983 + 2.12663i −0.0282093 + 0.0868192i
\(601\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(602\) 36.1803 + 26.2866i 1.47460 + 1.07136i
\(603\) −3.70820 11.4127i −0.151010 0.464760i
\(604\) 40.2492 1.63772
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) −1.38197 4.25325i −0.0560923 0.172634i 0.919085 0.394059i \(-0.128929\pi\)
−0.975178 + 0.221425i \(0.928929\pi\)
\(608\) −24.2705 17.6336i −0.984299 0.715135i
\(609\) 16.1803 11.7557i 0.655660 0.476365i
\(610\) 12.3607 38.0423i 0.500469 1.54029i
\(611\) 0 0
\(612\) −10.8541 + 7.88597i −0.438751 + 0.318771i
\(613\) −36.1803 26.2866i −1.46131 1.06170i −0.983019 0.183503i \(-0.941256\pi\)
−0.478291 0.878201i \(-0.658744\pi\)
\(614\) −3.09017 9.51057i −0.124709 0.383815i
\(615\) −8.94427 −0.360668
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 11.0557 + 34.0260i 0.444727 + 1.36873i
\(619\) −35.5967 25.8626i −1.43075 1.03950i −0.989876 0.141937i \(-0.954667\pi\)
−0.440878 0.897567i \(-0.645333\pi\)
\(620\) 0 0
\(621\) −1.23607 + 3.80423i −0.0496017 + 0.152658i
\(622\) −8.29180 + 25.5195i −0.332471 + 1.02324i
\(623\) −50.6525 + 36.8012i −2.02935 + 1.47441i
\(624\) 0 0
\(625\) −5.87132 18.0701i −0.234853 0.722803i
\(626\) 31.3050 1.25120
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 2.76393 + 8.50651i 0.110205 + 0.339177i
\(630\) 16.1803 + 11.7557i 0.644640 + 0.468358i
\(631\) −25.8885 + 18.8091i −1.03061 + 0.748780i −0.968430 0.249286i \(-0.919804\pi\)
−0.0621766 + 0.998065i \(0.519804\pi\)
\(632\) 9.27051 28.5317i 0.368761 1.13493i
\(633\) −1.38197 + 4.25325i −0.0549282 + 0.169052i
\(634\) −32.5623 + 23.6579i −1.29321 + 0.939575i
\(635\) −21.7082 15.7719i −0.861464 0.625890i
\(636\) 5.56231 + 17.1190i 0.220560 + 0.678813i
\(637\) 0 0
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) −9.67376 29.7728i −0.382389 1.17687i
\(641\) 24.2705 + 17.6336i 0.958628 + 0.696484i 0.952832 0.303500i \(-0.0981551\pi\)
0.00579592 + 0.999983i \(0.498155\pi\)
\(642\) −16.1803 + 11.7557i −0.638587 + 0.463961i
\(643\) 11.1246 34.2380i 0.438712 1.35022i −0.450523 0.892765i \(-0.648762\pi\)
0.889235 0.457451i \(-0.151238\pi\)
\(644\) 16.5836 51.0390i 0.653485 2.01122i
\(645\) −7.23607 + 5.25731i −0.284920 + 0.207006i
\(646\) 36.1803 + 26.2866i 1.42350 + 1.03423i
\(647\) −3.70820 11.4127i −0.145785 0.448679i 0.851327 0.524636i \(-0.175799\pi\)
−0.997111 + 0.0759575i \(0.975799\pi\)
\(648\) 2.23607 0.0878410
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −9.70820 7.05342i −0.380203 0.276233i
\(653\) −37.2148 + 27.0381i −1.45633 + 1.05808i −0.472026 + 0.881585i \(0.656477\pi\)
−0.984301 + 0.176499i \(0.943523\pi\)
\(654\) 0 0
\(655\) −11.0557 + 34.0260i −0.431983 + 1.32951i
\(656\) −3.61803 + 2.62866i −0.141260 + 0.102632i
\(657\) 7.23607 + 5.25731i 0.282306 + 0.205107i
\(658\) −24.7214 76.0845i −0.963739 2.96608i
\(659\) 17.8885 0.696839 0.348419 0.937339i \(-0.386719\pi\)
0.348419 + 0.937339i \(0.386719\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −13.8197 42.5325i −0.537116 1.65307i
\(663\) 0 0
\(664\) 16.1803 11.7557i 0.627919 0.456210i
\(665\) 12.3607 38.0423i 0.479327 1.47522i
\(666\) 1.38197 4.25325i 0.0535501 0.164810i
\(667\) 14.4721 10.5146i 0.560363 0.407128i
\(668\) −21.7082 15.7719i −0.839916 0.610234i
\(669\) −4.94427 15.2169i −0.191157 0.588320i
\(670\) −53.6656 −2.07328
\(671\) 0 0
\(672\) 30.0000 1.15728
\(673\) −5.52786 17.0130i −0.213083 0.655804i −0.999284 0.0378322i \(-0.987955\pi\)
0.786201 0.617971i \(-0.212045\pi\)
\(674\) −16.1803 11.7557i −0.623243 0.452813i
\(675\) 0.809017 0.587785i 0.0311391 0.0226239i
\(676\) −12.0517 + 37.0912i −0.463525 + 1.42658i
\(677\) −9.67376 + 29.7728i −0.371793 + 1.14426i 0.573824 + 0.818979i \(0.305459\pi\)
−0.945617 + 0.325282i \(0.894541\pi\)
\(678\) −10.8541 + 7.88597i −0.416849 + 0.302859i
\(679\) 7.23607 + 5.25731i 0.277695 + 0.201757i
\(680\) 6.18034 + 19.0211i 0.237005 + 0.729427i
\(681\) 8.94427 0.342745
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) −4.14590 12.7598i −0.158522 0.487882i
\(685\) −35.5967 25.8626i −1.36008 0.988157i
\(686\) 48.5410 35.2671i 1.85330 1.34650i
\(687\) 3.09017 9.51057i 0.117897 0.362851i
\(688\) −1.38197 + 4.25325i −0.0526870 + 0.162154i
\(689\) 0 0
\(690\) 14.4721 + 10.5146i 0.550945 + 0.400285i
\(691\) 3.70820 + 11.4127i 0.141067 + 0.434159i 0.996484 0.0837803i \(-0.0266994\pi\)
−0.855418 + 0.517939i \(0.826699\pi\)
\(692\) −40.2492 −1.53005
\(693\) 0 0
\(694\) 20.0000 0.759190
\(695\) 8.29180 + 25.5195i 0.314526 + 0.968011i
\(696\) −8.09017 5.87785i −0.306657 0.222799i
\(697\) 16.1803 11.7557i 0.612874 0.445279i
\(698\) −18.5410 + 57.0634i −0.701788 + 2.15988i
\(699\) −1.38197 + 4.25325i −0.0522708 + 0.160873i
\(700\) −10.8541 + 7.88597i −0.410246 + 0.298062i
\(701\) 18.0902 + 13.1433i 0.683256 + 0.496415i 0.874436 0.485140i \(-0.161231\pi\)
−0.191180 + 0.981555i \(0.561231\pi\)
\(702\) 0 0
\(703\) −8.94427 −0.337340
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) −9.67376 29.7728i −0.364077 1.12051i
\(707\) 16.1803 + 11.7557i 0.608524 + 0.442119i
\(708\) 0 0
\(709\) −1.85410 + 5.70634i −0.0696323 + 0.214306i −0.979817 0.199896i \(-0.935939\pi\)
0.910185 + 0.414202i \(0.135939\pi\)
\(710\) −11.0557 + 34.0260i −0.414914 + 1.27697i
\(711\) −10.8541 + 7.88597i −0.407061 + 0.295747i
\(712\) 25.3262 + 18.4006i 0.949141 + 0.689591i
\(713\) 0 0
\(714\) −44.7214 −1.67365
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 2.76393 + 8.50651i 0.103221 + 0.317681i
\(718\) 0 0
\(719\) 19.4164 14.1068i 0.724110 0.526097i −0.163585 0.986529i \(-0.552306\pi\)
0.887695 + 0.460433i \(0.152306\pi\)
\(720\) −0.618034 + 1.90211i −0.0230328 + 0.0708876i
\(721\) −22.1115 + 68.0521i −0.823474 + 2.53439i
\(722\) −1.80902 + 1.31433i −0.0673246 + 0.0489142i
\(723\) −7.23607 5.25731i −0.269112 0.195522i
\(724\) −9.27051 28.5317i −0.344536 1.06037i
\(725\) −4.47214 −0.166091
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 32.3607 23.5114i 1.19772 0.870196i
\(731\) 6.18034 19.0211i 0.228588 0.703522i
\(732\) 8.29180 25.5195i 0.306474 0.943229i
\(733\) 14.4721 10.5146i 0.534541 0.388366i −0.287513 0.957777i \(-0.592828\pi\)
0.822053 + 0.569410i \(0.192828\pi\)
\(734\) −14.4721 10.5146i −0.534176 0.388102i
\(735\) 8.03444 + 24.7275i 0.296355 + 0.912086i
\(736\) 26.8328 0.989071
\(737\) 0 0
\(738\) −10.0000 −0.368105
\(739\) 1.38197 + 4.25325i 0.0508364 + 0.156458i 0.973252 0.229741i \(-0.0737878\pi\)
−0.922415 + 0.386199i \(0.873788\pi\)
\(740\) −9.70820 7.05342i −0.356881 0.259289i
\(741\) 0 0
\(742\) −18.5410 + 57.0634i −0.680662 + 2.09486i
\(743\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(744\) 0 0
\(745\) 36.1803 + 26.2866i 1.32555 + 0.963065i
\(746\) −18.5410 57.0634i −0.678835 2.08924i
\(747\) −8.94427 −0.327254
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) −8.29180 25.5195i −0.302774 0.931841i
\(751\) −25.8885 18.8091i −0.944686 0.686355i 0.00485778 0.999988i \(-0.498454\pi\)
−0.949544 + 0.313633i \(0.898454\pi\)
\(752\) 6.47214 4.70228i 0.236015 0.171475i
\(753\) −3.70820 + 11.4127i −0.135134 + 0.415901i
\(754\) 0 0
\(755\) −21.7082 + 15.7719i −0.790042 + 0.573999i
\(756\) 10.8541 + 7.88597i 0.394760 + 0.286810i
\(757\) 12.9787 + 39.9444i 0.471719 + 1.45180i 0.850331 + 0.526248i \(0.176401\pi\)
−0.378612 + 0.925555i \(0.623599\pi\)
\(758\) −44.7214 −1.62435
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) −9.67376 29.7728i −0.350674 1.07926i −0.958476 0.285174i \(-0.907949\pi\)
0.607802 0.794088i \(-0.292051\pi\)
\(762\) −24.2705 17.6336i −0.879228 0.638796i
\(763\) 0 0
\(764\) 0 0
\(765\) 2.76393 8.50651i 0.0999302 0.307553i
\(766\) 65.1246 47.3158i 2.35305 1.70959i
\(767\) 0 0
\(768\) −2.78115 8.55951i −0.100356 0.308865i
\(769\) 35.7771 1.29015 0.645077 0.764117i \(-0.276825\pi\)
0.645077 + 0.764117i \(0.276825\pi\)
\(770\) 0 0
\(771\) −22.0000 −0.792311
\(772\) −16.5836 51.0390i −0.596857 1.83694i
\(773\) −11.3262 8.22899i −0.407376 0.295976i 0.365162 0.930944i \(-0.381013\pi\)
−0.772539 + 0.634968i \(0.781013\pi\)
\(774\) −8.09017 + 5.87785i −0.290795 + 0.211275i
\(775\) 0 0
\(776\) 1.38197 4.25325i 0.0496097 0.152683i
\(777\) 7.23607 5.25731i 0.259592 0.188605i
\(778\) −18.0902 13.1433i −0.648564 0.471209i
\(779\) 6.18034 + 19.0211i 0.221434 + 0.681503i
\(780\) 0 0
\(781\) 0 0
\(782\) −40.0000 −1.43040
\(783\) 1.38197 + 4.25325i 0.0493874 + 0.151999i
\(784\) 10.5172 + 7.64121i 0.375615 + 0.272900i
\(785\) −3.23607 + 2.35114i −0.115500 + 0.0839158i
\(786\) −12.3607 + 38.0423i −0.440891 + 1.35692i
\(787\) 12.4377 38.2793i 0.443356 1.36451i −0.440921 0.897546i \(-0.645348\pi\)
0.884277 0.466963i \(-0.154652\pi\)
\(788\) −54.2705 + 39.4298i −1.93331 + 1.40463i
\(789\) −7.23607 5.25731i −0.257611 0.187165i
\(790\) 18.5410 + 57.0634i 0.659660 + 2.03022i
\(791\) −26.8328 −0.954065
\(792\) 0 0
\(793\) 0 0
\(794\) 15.2016 + 46.7858i 0.539486 + 1.66037i
\(795\) −9.70820 7.05342i −0.344315 0.250159i
\(796\) 0 0
\(797\) 12.9787 39.9444i 0.459730 1.41490i −0.405762 0.913979i \(-0.632994\pi\)
0.865492 0.500924i \(-0.167006\pi\)
\(798\) 13.8197 42.5325i 0.489211 1.50564i
\(799\) −28.9443 + 21.0292i −1.02397 + 0.743961i
\(800\) −5.42705 3.94298i −0.191875 0.139406i
\(801\) −4.32624 13.3148i −0.152860 0.470455i
\(802\) 67.0820 2.36875
\(803\) 0 0
\(804\) −36.0000 −1.26962
\(805\) 11.0557 + 34.0260i 0.389663 + 1.19926i
\(806\) 0 0
\(807\) 8.09017 5.87785i 0.284787 0.206910i
\(808\) 3.09017 9.51057i 0.108712 0.334581i
\(809\) −4.14590 + 12.7598i −0.145762 + 0.448609i −0.997108 0.0759949i \(-0.975787\pi\)
0.851346 + 0.524604i \(0.175787\pi\)
\(810\) −3.61803 + 2.62866i −0.127125 + 0.0923615i
\(811\) 3.61803 + 2.62866i 0.127046 + 0.0923046i 0.649494 0.760367i \(-0.274981\pi\)
−0.522447 + 0.852672i \(0.674981\pi\)
\(812\) −18.5410 57.0634i −0.650662 2.00253i
\(813\) −13.4164 −0.470534
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) −1.38197 4.25325i −0.0483785 0.148894i
\(817\) 16.1803 + 11.7557i 0.566078 + 0.411280i
\(818\) 48.5410 35.2671i 1.69720 1.23309i
\(819\) 0 0
\(820\) −8.29180 + 25.5195i −0.289562 + 0.891180i
\(821\) −18.0902 + 13.1433i −0.631351 + 0.458704i −0.856868 0.515536i \(-0.827593\pi\)
0.225517 + 0.974239i \(0.427593\pi\)
\(822\) −39.7984 28.9152i −1.38813 1.00853i
\(823\) 4.94427 + 15.2169i 0.172346 + 0.530428i 0.999502 0.0315446i \(-0.0100426\pi\)
−0.827156 + 0.561973i \(0.810043\pi\)
\(824\) 35.7771 1.24635
\(825\) 0 0
\(826\) 0 0
\(827\) 13.8197 + 42.5325i 0.480557 + 1.47900i 0.838314 + 0.545187i \(0.183541\pi\)
−0.357758 + 0.933814i \(0.616459\pi\)
\(828\) 9.70820 + 7.05342i 0.337383 + 0.245123i
\(829\) −11.3262 + 8.22899i −0.393377 + 0.285805i −0.766838 0.641841i \(-0.778171\pi\)
0.373461 + 0.927646i \(0.378171\pi\)
\(830\) −12.3607 + 38.0423i −0.429045 + 1.32047i
\(831\) 0 0
\(832\) 0 0
\(833\) −47.0344 34.1725i −1.62965 1.18401i
\(834\) 9.27051 + 28.5317i 0.321012 + 0.987972i
\(835\) 17.8885 0.619059
\(836\) 0 0
\(837\) 0 0
\(838\) 2.76393 + 8.50651i 0.0954784 + 0.293852i
\(839\) 16.1803 + 11.7557i 0.558607 + 0.405852i 0.830949 0.556349i \(-0.187798\pi\)
−0.272342 + 0.962201i \(0.587798\pi\)
\(840\) 16.1803 11.7557i 0.558275 0.405610i
\(841\) −2.78115 + 8.55951i −0.0959018 + 0.295155i
\(842\) 6.90983 21.2663i 0.238128 0.732884i
\(843\) −25.3262 + 18.4006i −0.872282 + 0.633750i
\(844\) 10.8541 + 7.88597i 0.373614 + 0.271446i
\(845\) −8.03444 24.7275i −0.276393 0.850651i
\(846\) 17.8885 0.615021
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) −4.14590 12.7598i −0.142287 0.437914i
\(850\) 8.09017 + 5.87785i 0.277491 + 0.201609i
\(851\) 6.47214 4.70228i 0.221862 0.161192i
\(852\) −7.41641 + 22.8254i −0.254082 + 0.781984i
\(853\) 2.76393 8.50651i 0.0946352 0.291257i −0.892523 0.451001i \(-0.851067\pi\)
0.987158 + 0.159744i \(0.0510669\pi\)
\(854\) 72.3607 52.5731i 2.47613 1.79901i
\(855\) 7.23607 + 5.25731i 0.247468 + 0.179796i
\(856\) 6.18034 + 19.0211i 0.211240 + 0.650129i
\(857\) 40.2492 1.37489 0.687444 0.726238i \(-0.258733\pi\)
0.687444 + 0.726238i \(0.258733\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 8.29180 + 25.5195i 0.282748 + 0.870209i
\(861\) −16.1803 11.7557i −0.551425 0.400633i
\(862\) 16.1803 11.7557i 0.551105 0.400401i
\(863\) 1.23607 3.80423i 0.0420762 0.129497i −0.927812 0.373049i \(-0.878312\pi\)
0.969888 + 0.243551i \(0.0783124\pi\)
\(864\) −2.07295 + 6.37988i −0.0705232 + 0.217048i
\(865\) 21.7082 15.7719i 0.738101 0.536262i
\(866\) 10.8541 + 7.88597i 0.368837 + 0.267976i
\(867\) 0.927051 + 2.85317i 0.0314843 + 0.0968987i
\(868\) 0 0
\(869\) 0 0
\(870\) 20.0000 0.678064
\(871\) 0 0
\(872\) 0 0
\(873\) −1.61803 + 1.17557i −0.0547622 + 0.0397870i
\(874\) 12.3607 38.0423i 0.418106 1.28680i
\(875\) 16.5836 51.0390i 0.560628 1.72543i
\(876\) 21.7082 15.7719i 0.733452 0.532884i
\(877\) 7.23607 + 5.25731i 0.244345 + 0.177527i 0.703217 0.710976i \(-0.251746\pi\)
−0.458872 + 0.888502i \(0.651746\pi\)
\(878\) −9.27051 28.5317i −0.312865 0.962898i
\(879\) −22.3607 −0.754207
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 8.98278 + 27.6462i 0.302466 + 0.930894i
\(883\) −35.5967 25.8626i −1.19793 0.870344i −0.203847 0.979003i \(-0.565344\pi\)
−0.994079 + 0.108659i \(0.965344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −16.5836 + 51.0390i −0.557137 + 1.71469i
\(887\) 43.4164 31.5439i 1.45778 1.05914i 0.473846 0.880608i \(-0.342865\pi\)
0.983934 0.178532i \(-0.0571347\pi\)
\(888\) −3.61803 2.62866i −0.121413 0.0882119i
\(889\) −18.5410 57.0634i −0.621846 1.91384i
\(890\) −62.6099 −2.09869
\(891\) 0 0
\(892\) −48.0000 −1.60716
\(893\) −11.0557 34.0260i −0.369966 1.13864i
\(894\) 40.4508 + 29.3893i 1.35288 + 0.982924i
\(895\) 6.47214 4.70228i 0.216340 0.157180i
\(896\) 21.6312 66.5740i 0.722647 2.22408i
\(897\) 0 0
\(898\) 10.8541 7.88597i 0.362206 0.263158i
\(899\) 0 0
\(900\) −0.927051 2.85317i −0.0309017 0.0951057i
\(901\) 26.8328 0.893931
\(902\) 0 0
\(903\) −20.0000 −0.665558
\(904\) 4.14590 + 12.7598i 0.137891 + 0.424383i
\(905\) 16.1803 + 11.7557i 0.537853 + 0.390773i
\(906\) −24.2705 + 17.6336i −0.806334 + 0.585836i
\(907\) −3.70820 + 11.4127i −0.123129 + 0.378952i −0.993556 0.113346i \(-0.963843\pi\)
0.870427 + 0.492298i \(0.163843\pi\)
\(908\) 8.29180 25.5195i 0.275173 0.846895i
\(909\) −3.61803 + 2.62866i −0.120003 + 0.0871870i
\(910\) 0 0
\(911\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(912\) 4.47214 0.148087
\(913\) 0 0
\(914\) 60.0000 1.98462
\(915\) 5.52786 + 17.0130i 0.182746 + 0.562433i
\(916\) −24.2705 17.6336i −0.801920 0.582629i
\(917\) −64.7214 + 47.0228i −2.13729 + 1.55283i
\(918\) 3.09017 9.51057i 0.101991 0.313895i
\(919\) 6.90983 21.2663i 0.227934 0.701510i −0.770046 0.637988i \(-0.779767\pi\)
0.997980 0.0635214i \(-0.0202331\pi\)
\(920\) 14.4721 10.5146i 0.477132 0.346657i
\(921\) 3.61803 + 2.62866i 0.119218 + 0.0866171i
\(922\) 9.27051 + 28.5317i 0.305308 + 0.939641i
\(923\) 0 0
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 16.5836 + 51.0390i 0.544971 + 1.67725i
\(927\) −12.9443 9.40456i −0.425146 0.308886i
\(928\) 24.2705 17.6336i 0.796719 0.578850i
\(929\) 9.27051 28.5317i 0.304156 0.936095i −0.675835 0.737053i \(-0.736217\pi\)
0.979991 0.199042i \(-0.0637830\pi\)
\(930\) 0 0
\(931\) 47.0344 34.1725i 1.54149 1.11996i
\(932\) 10.8541 + 7.88597i 0.355538 + 0.258313i
\(933\) −3.70820 11.4127i −0.121401 0.373634i
\(934\) −17.8885 −0.585331
\(935\) 0 0
\(936\) 0 0
\(937\) 16.5836 + 51.0390i 0.541762 + 1.66737i 0.728566 + 0.684976i \(0.240187\pi\)
−0.186804 + 0.982397i \(0.559813\pi\)
\(938\) −97.0820 70.5342i −3.16984 2.30302i
\(939\) −11.3262 + 8.22899i −0.369618 + 0.268543i
\(940\) 14.8328 45.6507i 0.483793 1.48896i
\(941\) 6.90983 21.2663i 0.225254 0.693261i −0.773012 0.634392i \(-0.781251\pi\)
0.998266 0.0588688i \(-0.0187494\pi\)
\(942\) −3.61803 + 2.62866i −0.117882 + 0.0856462i
\(943\) −14.4721 10.5146i −0.471278 0.342403i
\(944\) 0 0
\(945\) −8.94427 −0.290957
\(946\) 0 0
\(947\) 52.0000 1.68977 0.844886 0.534946i \(-0.179668\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(948\) 12.4377 + 38.2793i 0.403958 + 1.24325i
\(949\) 0 0
\(950\) −8.09017 + 5.87785i −0.262480 + 0.190703i
\(951\) 5.56231 17.1190i 0.180370 0.555122i
\(952\) −13.8197 + 42.5325i −0.447898 + 1.37849i
\(953\) −18.0902 + 13.1433i −0.585998 + 0.425753i −0.840882 0.541219i \(-0.817963\pi\)
0.254883 + 0.966972i \(0.417963\pi\)
\(954\) −10.8541 7.88597i −0.351415 0.255318i
\(955\) 0 0
\(956\) 26.8328 0.867835
\(957\) 0 0
\(958\) −20.0000 −0.646171
\(959\) −30.4033 93.5716i −0.981772 3.02158i
\(960\) 21.0344 + 15.2824i 0.678884 + 0.493238i
\(961\) 25.0795 18.2213i 0.809017 0.587785i
\(962\) 0 0
\(963\) 2.76393 8.50651i 0.0890665 0.274118i
\(964\) −21.7082 + 15.7719i −0.699174 + 0.507980i
\(965\) 28.9443 + 21.0292i 0.931749 + 0.676955i
\(966\) 12.3607 + 38.0423i 0.397698 + 1.22399i
\(967\) 13.4164 0.431443 0.215721 0.976455i \(-0.430790\pi\)
0.215721 + 0.976455i \(0.430790\pi\)
\(968\) 0 0
\(969\) −20.0000 −0.642493
\(970\) 2.76393 + 8.50651i 0.0887445 + 0.273128i
\(971\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(972\) −2.42705 + 1.76336i −0.0778477 + 0.0565597i
\(973\) −18.5410 + 57.0634i −0.594398 + 1.82937i
\(974\) 5.52786 17.0130i 0.177124 0.545132i
\(975\) 0 0
\(976\) 7.23607 + 5.25731i 0.231621 + 0.168282i
\(977\) −12.9787 39.9444i −0.415226 1.27793i −0.912049 0.410082i \(-0.865500\pi\)
0.496823 0.867852i \(-0.334500\pi\)
\(978\) 8.94427 0.286006
\(979\) 0 0
\(980\) 78.0000 2.49162
\(981\) 0 0
\(982\) 48.5410 + 35.2671i 1.54901 + 1.12542i
\(983\) −29.1246 + 21.1603i −0.928931 + 0.674908i −0.945731 0.324951i \(-0.894652\pi\)
0.0168000 + 0.999859i \(0.494652\pi\)
\(984\) −3.09017 + 9.51057i −0.0985110 + 0.303186i
\(985\) 13.8197 42.5325i 0.440331 1.35520i
\(986\) −36.1803 + 26.2866i −1.15222 + 0.837134i
\(987\) 28.9443 + 21.0292i 0.921306 + 0.669368i
\(988\) 0 0
\(989\) −17.8885 −0.568823
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 16.1803 + 11.7557i 0.513468 + 0.373056i
\(994\) −64.7214 + 47.0228i −2.05284 + 1.49147i
\(995\) 0 0
\(996\) −8.29180 + 25.5195i −0.262736 + 0.808617i
\(997\) 21.7082 15.7719i 0.687506 0.499502i −0.188334 0.982105i \(-0.560309\pi\)
0.875839 + 0.482603i \(0.160309\pi\)
\(998\) 36.1803 + 26.2866i 1.14527 + 0.832086i
\(999\) 0.618034 + 1.90211i 0.0195537 + 0.0601802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.2.e.l.148.1 4
11.2 odd 10 363.2.e.a.130.1 4
11.3 even 5 363.2.a.g.1.2 yes 2
11.4 even 5 363.2.e.a.124.1 4
11.5 even 5 363.2.e.a.202.1 4
11.6 odd 10 inner 363.2.e.l.202.1 4
11.7 odd 10 inner 363.2.e.l.124.1 4
11.8 odd 10 363.2.a.g.1.1 2
11.9 even 5 inner 363.2.e.l.130.1 4
11.10 odd 2 363.2.e.a.148.1 4
33.8 even 10 1089.2.a.p.1.2 2
33.14 odd 10 1089.2.a.p.1.1 2
44.3 odd 10 5808.2.a.bx.1.2 2
44.19 even 10 5808.2.a.bx.1.1 2
55.14 even 10 9075.2.a.bi.1.1 2
55.19 odd 10 9075.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.g.1.1 2 11.8 odd 10
363.2.a.g.1.2 yes 2 11.3 even 5
363.2.e.a.124.1 4 11.4 even 5
363.2.e.a.130.1 4 11.2 odd 10
363.2.e.a.148.1 4 11.10 odd 2
363.2.e.a.202.1 4 11.5 even 5
363.2.e.l.124.1 4 11.7 odd 10 inner
363.2.e.l.130.1 4 11.9 even 5 inner
363.2.e.l.148.1 4 1.1 even 1 trivial
363.2.e.l.202.1 4 11.6 odd 10 inner
1089.2.a.p.1.1 2 33.14 odd 10
1089.2.a.p.1.2 2 33.8 even 10
5808.2.a.bx.1.1 2 44.19 even 10
5808.2.a.bx.1.2 2 44.3 odd 10
9075.2.a.bi.1.1 2 55.14 even 10
9075.2.a.bi.1.2 2 55.19 odd 10