Properties

Label 363.4.a.j
Level $363$
Weight $4$
Character orbit 363.a
Self dual yes
Analytic conductor $21.418$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,4,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.4176933321\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{3} + \beta q^{4} + ( - 4 \beta + 10) q^{5} - 3 \beta q^{6} + (2 \beta - 2) q^{7} + (7 \beta - 8) q^{8} + 9 q^{9} + ( - 6 \beta + 32) q^{10} + 3 \beta q^{12} + ( - 8 \beta + 42) q^{13} + \cdots + (311 \beta + 32) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 6 q^{3} + q^{4} + 16 q^{5} - 3 q^{6} - 2 q^{7} - 9 q^{8} + 18 q^{9} + 58 q^{10} + 3 q^{12} + 76 q^{13} - 32 q^{14} + 48 q^{15} - 119 q^{16} + 26 q^{17} - 9 q^{18} + 54 q^{19} - 58 q^{20}+ \cdots + 375 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
−3.37228 3.00000 3.37228 −3.48913 −10.1168 4.74456 15.6060 9.00000 11.7663
1.2 2.37228 3.00000 −2.37228 19.4891 7.11684 −6.74456 −24.6060 9.00000 46.2337
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.4.a.j 2
3.b odd 2 1 1089.4.a.t 2
11.b odd 2 1 33.4.a.d 2
33.d even 2 1 99.4.a.e 2
44.c even 2 1 528.4.a.o 2
55.d odd 2 1 825.4.a.k 2
55.e even 4 2 825.4.c.i 4
77.b even 2 1 1617.4.a.j 2
88.b odd 2 1 2112.4.a.ba 2
88.g even 2 1 2112.4.a.bh 2
132.d odd 2 1 1584.4.a.x 2
165.d even 2 1 2475.4.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.d 2 11.b odd 2 1
99.4.a.e 2 33.d even 2 1
363.4.a.j 2 1.a even 1 1 trivial
528.4.a.o 2 44.c even 2 1
825.4.a.k 2 55.d odd 2 1
825.4.c.i 4 55.e even 4 2
1089.4.a.t 2 3.b odd 2 1
1584.4.a.x 2 132.d odd 2 1
1617.4.a.j 2 77.b even 2 1
2112.4.a.ba 2 88.b odd 2 1
2112.4.a.bh 2 88.g even 2 1
2475.4.a.o 2 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(363))\):

\( T_{2}^{2} + T_{2} - 8 \) Copy content Toggle raw display
\( T_{5}^{2} - 16T_{5} - 68 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 16T - 68 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 32 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 76T + 916 \) Copy content Toggle raw display
$17$ \( T^{2} - 26T - 7256 \) Copy content Toggle raw display
$19$ \( T^{2} - 54T - 1944 \) Copy content Toggle raw display
$23$ \( (T - 112)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 222T - 5136 \) Copy content Toggle raw display
$31$ \( T^{2} + 40T - 88832 \) Copy content Toggle raw display
$37$ \( T^{2} + 48T - 15396 \) Copy content Toggle raw display
$41$ \( T^{2} - 494T + 60976 \) Copy content Toggle raw display
$43$ \( T^{2} - 66T - 59928 \) Copy content Toggle raw display
$47$ \( T^{2} + 64T - 17984 \) Copy content Toggle raw display
$53$ \( T^{2} + 84T - 133404 \) Copy content Toggle raw display
$59$ \( (T - 196)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 1104 T + 282396 \) Copy content Toggle raw display
$67$ \( T^{2} - 928T + 24688 \) Copy content Toggle raw display
$71$ \( T^{2} - 456T - 227328 \) Copy content Toggle raw display
$73$ \( T^{2} - 592T - 436292 \) Copy content Toggle raw display
$79$ \( T^{2} - 230T - 31952 \) Copy content Toggle raw display
$83$ \( T^{2} + 348T - 835776 \) Copy content Toggle raw display
$89$ \( T^{2} - 972T + 235668 \) Copy content Toggle raw display
$97$ \( T^{2} + 1184 T - 1104836 \) Copy content Toggle raw display
show more
show less