Properties

Label 363.6.a.o
Level $363$
Weight $6$
Character orbit 363.a
Self dual yes
Analytic conductor $58.219$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [363,6,Mod(1,363)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("363.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.2193265921\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.54016037568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 42x^{4} + 82x^{3} + 274x^{2} - 408x - 363 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta_{2} - \beta_1) q^{2} - 9 q^{3} + ( - 7 \beta_{4} + \beta_{3} + 14) q^{4} + ( - 4 \beta_{3} - 7) q^{5} + ( - 27 \beta_{2} + 9 \beta_1) q^{6} + (\beta_{5} - 53 \beta_{2} + 17 \beta_1) q^{7}+ \cdots + (1712 \beta_{5} + 25503 \beta_{2} - 16469 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{3} + 86 q^{4} - 50 q^{5} + 486 q^{9} - 774 q^{12} - 4868 q^{14} + 450 q^{15} + 8146 q^{16} - 450 q^{20} - 3116 q^{23} - 584 q^{25} - 11802 q^{26} - 4374 q^{27} + 9608 q^{31} + 18202 q^{34} + 6966 q^{36}+ \cdots - 256938 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 42x^{4} + 82x^{3} + 274x^{2} - 408x - 363 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -21\nu^{5} + 89\nu^{4} + 991\nu^{3} - 3208\nu^{2} - 7974\nu + 10119 ) / 2427 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -32\nu^{5} - 57\nu^{4} + 1356\nu^{3} + 2200\nu^{2} - 8337\nu - 10353 ) / 2427 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 128\nu^{5} + 228\nu^{4} - 5424\nu^{3} - 8800\nu^{2} + 43056\nu + 38985 ) / 2427 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 274\nu^{5} + 33\nu^{4} - 11004\nu^{3} - 635\nu^{2} + 57582\nu + 11742 ) / 2427 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -431\nu^{5} + 16\nu^{4} + 16949\nu^{3} + 2732\nu^{2} - 77325\nu - 75354 ) / 2427 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 4\beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{5} + 4\beta_{4} - \beta_{3} + 2\beta_{2} + 2\beta _1 + 59 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{5} + 4\beta_{4} + 25\beta_{3} + 153\beta_{2} + 33\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 76\beta_{5} + 144\beta_{4} - 37\beta_{3} - 20\beta_{2} + 124\beta _1 + 1655 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -125\beta_{5} + 188\beta_{4} + 796\beta_{3} + 5311\beta_{2} + 1315\beta _1 - 404 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.669039
−5.87865
2.35154
5.81564
−2.41455
2.79506
−10.8582 −9.00000 85.9010 −20.0082 97.7240 176.759 −585.269 81.0000 217.253
1.2 −4.59126 −9.00000 −10.9203 63.3456 41.3214 112.581 197.058 81.0000 −290.836
1.3 −0.138973 −9.00000 −31.9807 −68.3374 1.25076 −15.6761 8.89158 81.0000 9.49704
1.4 0.138973 −9.00000 −31.9807 −68.3374 −1.25076 15.6761 −8.89158 81.0000 −9.49704
1.5 4.59126 −9.00000 −10.9203 63.3456 −41.3214 −112.581 −197.058 81.0000 290.836
1.6 10.8582 −9.00000 85.9010 −20.0082 −97.7240 −176.759 585.269 81.0000 −217.253
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 363.6.a.o 6
3.b odd 2 1 1089.6.a.z 6
11.b odd 2 1 inner 363.6.a.o 6
33.d even 2 1 1089.6.a.z 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
363.6.a.o 6 1.a even 1 1 trivial
363.6.a.o 6 11.b odd 2 1 inner
1089.6.a.z 6 3.b odd 2 1
1089.6.a.z 6 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 139T_{2}^{4} + 2488T_{2}^{2} - 48 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(363))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 139 T^{4} + \cdots - 48 \) Copy content Toggle raw display
$3$ \( (T + 9)^{6} \) Copy content Toggle raw display
$5$ \( (T^{3} + 25 T^{2} + \cdots - 86613)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 97312352448 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 11\!\cdots\!63 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 37\!\cdots\!03 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 14\!\cdots\!52 \) Copy content Toggle raw display
$23$ \( (T^{3} + 1558 T^{2} + \cdots - 15000846072)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 10\!\cdots\!23 \) Copy content Toggle raw display
$31$ \( (T^{3} - 4804 T^{2} + \cdots + 315824988480)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + \cdots - 1383658969825)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 37\!\cdots\!43 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 21\!\cdots\!72 \) Copy content Toggle raw display
$47$ \( (T^{3} - 6008 T^{2} + \cdots + 250338029568)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 12189 T^{2} + \cdots + 97006130145)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots - 24683076420120)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 53\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( (T^{3} + \cdots + 83671658705016)^{2} \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 16884330481656)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 57\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots + 85151598813819)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 775593398644457)^{2} \) Copy content Toggle raw display
show more
show less