Properties

Label 364.2.u.a.309.1
Level $364$
Weight $2$
Character 364.309
Analytic conductor $2.907$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [364,2,Mod(225,364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(364, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("364.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.u (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 309.1
Root \(3.23100i\) of defining polynomial
Character \(\chi\) \(=\) 364.309
Dual form 364.2.u.a.225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61550 - 2.79813i) q^{3} +3.14769i q^{5} +(0.866025 + 0.500000i) q^{7} +(-3.71968 + 6.44268i) q^{9} +(-3.33264 + 1.92410i) q^{11} +(1.38576 + 3.32861i) q^{13} +(8.80765 - 5.08510i) q^{15} +(0.0971843 - 0.168328i) q^{17} +(5.33141 + 3.07809i) q^{19} -3.23100i q^{21} +(-4.01081 - 6.94693i) q^{23} -4.90796 q^{25} +14.3436 q^{27} +(1.35952 + 2.35475i) q^{29} +8.51671i q^{31} +(10.7678 + 6.21677i) q^{33} +(-1.57385 + 2.72598i) q^{35} +(3.10928 - 1.79515i) q^{37} +(7.07520 - 9.25491i) q^{39} +(-3.44934 + 1.99148i) q^{41} +(-5.74755 + 9.95506i) q^{43} +(-20.2796 - 11.7084i) q^{45} -4.35126i q^{47} +(0.500000 + 0.866025i) q^{49} -0.628005 q^{51} -0.576803 q^{53} +(-6.05647 - 10.4901i) q^{55} -19.8906i q^{57} +(1.80715 + 1.04336i) q^{59} +(-1.70255 + 2.94891i) q^{61} +(-6.44268 + 3.71968i) q^{63} +(-10.4775 + 4.36194i) q^{65} +(4.69408 - 2.71013i) q^{67} +(-12.9589 + 22.4456i) q^{69} +(-7.92574 - 4.57593i) q^{71} -3.31209i q^{73} +(7.92882 + 13.7331i) q^{75} -3.84820 q^{77} -8.98752 q^{79} +(-12.0130 - 20.8072i) q^{81} +7.66353i q^{83} +(0.529845 + 0.305906i) q^{85} +(4.39260 - 7.60821i) q^{87} +(4.42996 - 2.55764i) q^{89} +(-0.464204 + 3.57554i) q^{91} +(23.8309 - 13.7588i) q^{93} +(-9.68888 + 16.7816i) q^{95} +(8.33696 + 4.81334i) q^{97} -28.6282i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} + 6 q^{11} + 10 q^{13} + 6 q^{15} + 2 q^{17} - 44 q^{25} - 12 q^{27} - 22 q^{29} + 42 q^{33} - 6 q^{35} + 12 q^{37} + 24 q^{39} + 36 q^{41} + 6 q^{43} - 30 q^{45} + 8 q^{49} - 4 q^{51} + 8 q^{53}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61550 2.79813i −0.932710 1.61550i −0.778668 0.627436i \(-0.784104\pi\)
−0.154042 0.988064i \(-0.549229\pi\)
\(4\) 0 0
\(5\) 3.14769i 1.40769i 0.710353 + 0.703845i \(0.248535\pi\)
−0.710353 + 0.703845i \(0.751465\pi\)
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 0 0
\(9\) −3.71968 + 6.44268i −1.23989 + 2.14756i
\(10\) 0 0
\(11\) −3.33264 + 1.92410i −1.00483 + 0.580138i −0.909673 0.415324i \(-0.863668\pi\)
−0.0951552 + 0.995462i \(0.530335\pi\)
\(12\) 0 0
\(13\) 1.38576 + 3.32861i 0.384340 + 0.923191i
\(14\) 0 0
\(15\) 8.80765 5.08510i 2.27412 1.31297i
\(16\) 0 0
\(17\) 0.0971843 0.168328i 0.0235707 0.0408256i −0.853999 0.520274i \(-0.825830\pi\)
0.877570 + 0.479448i \(0.159163\pi\)
\(18\) 0 0
\(19\) 5.33141 + 3.07809i 1.22311 + 0.706162i 0.965579 0.260108i \(-0.0837583\pi\)
0.257529 + 0.966271i \(0.417092\pi\)
\(20\) 0 0
\(21\) 3.23100i 0.705062i
\(22\) 0 0
\(23\) −4.01081 6.94693i −0.836313 1.44854i −0.892957 0.450141i \(-0.851374\pi\)
0.0566448 0.998394i \(-0.481960\pi\)
\(24\) 0 0
\(25\) −4.90796 −0.981593
\(26\) 0 0
\(27\) 14.3436 2.76043
\(28\) 0 0
\(29\) 1.35952 + 2.35475i 0.252456 + 0.437267i 0.964201 0.265171i \(-0.0854283\pi\)
−0.711745 + 0.702438i \(0.752095\pi\)
\(30\) 0 0
\(31\) 8.51671i 1.52965i 0.644240 + 0.764823i \(0.277174\pi\)
−0.644240 + 0.764823i \(0.722826\pi\)
\(32\) 0 0
\(33\) 10.7678 + 6.21677i 1.87443 + 1.08220i
\(34\) 0 0
\(35\) −1.57385 + 2.72598i −0.266029 + 0.460775i
\(36\) 0 0
\(37\) 3.10928 1.79515i 0.511163 0.295120i −0.222149 0.975013i \(-0.571307\pi\)
0.733312 + 0.679893i \(0.237974\pi\)
\(38\) 0 0
\(39\) 7.07520 9.25491i 1.13294 1.48197i
\(40\) 0 0
\(41\) −3.44934 + 1.99148i −0.538696 + 0.311016i −0.744550 0.667566i \(-0.767336\pi\)
0.205854 + 0.978583i \(0.434003\pi\)
\(42\) 0 0
\(43\) −5.74755 + 9.95506i −0.876494 + 1.51813i −0.0213310 + 0.999772i \(0.506790\pi\)
−0.855163 + 0.518359i \(0.826543\pi\)
\(44\) 0 0
\(45\) −20.2796 11.7084i −3.02310 1.74539i
\(46\) 0 0
\(47\) 4.35126i 0.634696i −0.948309 0.317348i \(-0.897208\pi\)
0.948309 0.317348i \(-0.102792\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) −0.628005 −0.0879383
\(52\) 0 0
\(53\) −0.576803 −0.0792300 −0.0396150 0.999215i \(-0.512613\pi\)
−0.0396150 + 0.999215i \(0.512613\pi\)
\(54\) 0 0
\(55\) −6.05647 10.4901i −0.816655 1.41449i
\(56\) 0 0
\(57\) 19.8906i 2.63458i
\(58\) 0 0
\(59\) 1.80715 + 1.04336i 0.235271 + 0.135834i 0.613002 0.790082i \(-0.289962\pi\)
−0.377730 + 0.925916i \(0.623295\pi\)
\(60\) 0 0
\(61\) −1.70255 + 2.94891i −0.217989 + 0.377569i −0.954193 0.299191i \(-0.903283\pi\)
0.736204 + 0.676760i \(0.236617\pi\)
\(62\) 0 0
\(63\) −6.44268 + 3.71968i −0.811702 + 0.468636i
\(64\) 0 0
\(65\) −10.4775 + 4.36194i −1.29957 + 0.541032i
\(66\) 0 0
\(67\) 4.69408 2.71013i 0.573474 0.331095i −0.185062 0.982727i \(-0.559249\pi\)
0.758535 + 0.651632i \(0.225915\pi\)
\(68\) 0 0
\(69\) −12.9589 + 22.4456i −1.56007 + 2.70213i
\(70\) 0 0
\(71\) −7.92574 4.57593i −0.940612 0.543063i −0.0504599 0.998726i \(-0.516069\pi\)
−0.890152 + 0.455663i \(0.849402\pi\)
\(72\) 0 0
\(73\) 3.31209i 0.387650i −0.981036 0.193825i \(-0.937911\pi\)
0.981036 0.193825i \(-0.0620894\pi\)
\(74\) 0 0
\(75\) 7.92882 + 13.7331i 0.915541 + 1.58576i
\(76\) 0 0
\(77\) −3.84820 −0.438543
\(78\) 0 0
\(79\) −8.98752 −1.01117 −0.505587 0.862775i \(-0.668724\pi\)
−0.505587 + 0.862775i \(0.668724\pi\)
\(80\) 0 0
\(81\) −12.0130 20.8072i −1.33478 2.31191i
\(82\) 0 0
\(83\) 7.66353i 0.841181i 0.907251 + 0.420591i \(0.138177\pi\)
−0.907251 + 0.420591i \(0.861823\pi\)
\(84\) 0 0
\(85\) 0.529845 + 0.305906i 0.0574698 + 0.0331802i
\(86\) 0 0
\(87\) 4.39260 7.60821i 0.470936 0.815686i
\(88\) 0 0
\(89\) 4.42996 2.55764i 0.469574 0.271109i −0.246487 0.969146i \(-0.579276\pi\)
0.716062 + 0.698037i \(0.245943\pi\)
\(90\) 0 0
\(91\) −0.464204 + 3.57554i −0.0486618 + 0.374819i
\(92\) 0 0
\(93\) 23.8309 13.7588i 2.47114 1.42672i
\(94\) 0 0
\(95\) −9.68888 + 16.7816i −0.994058 + 1.72176i
\(96\) 0 0
\(97\) 8.33696 + 4.81334i 0.846490 + 0.488721i 0.859465 0.511195i \(-0.170797\pi\)
−0.0129752 + 0.999916i \(0.504130\pi\)
\(98\) 0 0
\(99\) 28.6282i 2.87724i
\(100\) 0 0
\(101\) −1.27079 2.20107i −0.126448 0.219015i 0.795850 0.605494i \(-0.207024\pi\)
−0.922298 + 0.386479i \(0.873691\pi\)
\(102\) 0 0
\(103\) 3.35392 0.330471 0.165236 0.986254i \(-0.447162\pi\)
0.165236 + 0.986254i \(0.447162\pi\)
\(104\) 0 0
\(105\) 10.1702 0.992510
\(106\) 0 0
\(107\) 6.45650 + 11.1830i 0.624174 + 1.08110i 0.988700 + 0.149907i \(0.0478975\pi\)
−0.364526 + 0.931193i \(0.618769\pi\)
\(108\) 0 0
\(109\) 8.04268i 0.770349i −0.922844 0.385174i \(-0.874141\pi\)
0.922844 0.385174i \(-0.125859\pi\)
\(110\) 0 0
\(111\) −10.0461 5.80012i −0.953534 0.550523i
\(112\) 0 0
\(113\) 4.00235 6.93227i 0.376509 0.652133i −0.614043 0.789273i \(-0.710458\pi\)
0.990552 + 0.137140i \(0.0437910\pi\)
\(114\) 0 0
\(115\) 21.8668 12.6248i 2.03909 1.17727i
\(116\) 0 0
\(117\) −26.5998 3.45339i −2.45915 0.319266i
\(118\) 0 0
\(119\) 0.168328 0.0971843i 0.0154306 0.00890887i
\(120\) 0 0
\(121\) 1.90432 3.29839i 0.173120 0.299853i
\(122\) 0 0
\(123\) 11.1448 + 6.43446i 1.00489 + 0.580176i
\(124\) 0 0
\(125\) 0.289701i 0.0259116i
\(126\) 0 0
\(127\) 0.664383 + 1.15075i 0.0589545 + 0.102112i 0.893996 0.448074i \(-0.147890\pi\)
−0.835042 + 0.550186i \(0.814557\pi\)
\(128\) 0 0
\(129\) 37.1407 3.27006
\(130\) 0 0
\(131\) −0.592761 −0.0517897 −0.0258949 0.999665i \(-0.508244\pi\)
−0.0258949 + 0.999665i \(0.508244\pi\)
\(132\) 0 0
\(133\) 3.07809 + 5.33141i 0.266904 + 0.462292i
\(134\) 0 0
\(135\) 45.1492i 3.88583i
\(136\) 0 0
\(137\) −2.21732 1.28017i −0.189439 0.109372i 0.402281 0.915516i \(-0.368217\pi\)
−0.591720 + 0.806144i \(0.701551\pi\)
\(138\) 0 0
\(139\) 9.01150 15.6084i 0.764345 1.32388i −0.176247 0.984346i \(-0.556396\pi\)
0.940592 0.339538i \(-0.110271\pi\)
\(140\) 0 0
\(141\) −12.1754 + 7.02946i −1.02535 + 0.591987i
\(142\) 0 0
\(143\) −11.0228 8.42673i −0.921775 0.704679i
\(144\) 0 0
\(145\) −7.41204 + 4.27934i −0.615536 + 0.355380i
\(146\) 0 0
\(147\) 1.61550 2.79813i 0.133244 0.230786i
\(148\) 0 0
\(149\) 7.02164 + 4.05394i 0.575235 + 0.332112i 0.759237 0.650814i \(-0.225572\pi\)
−0.184002 + 0.982926i \(0.558905\pi\)
\(150\) 0 0
\(151\) 3.58804i 0.291991i −0.989285 0.145995i \(-0.953362\pi\)
0.989285 0.145995i \(-0.0466385\pi\)
\(152\) 0 0
\(153\) 0.722990 + 1.25226i 0.0584503 + 0.101239i
\(154\) 0 0
\(155\) −26.8080 −2.15327
\(156\) 0 0
\(157\) 14.3447 1.14483 0.572417 0.819963i \(-0.306006\pi\)
0.572417 + 0.819963i \(0.306006\pi\)
\(158\) 0 0
\(159\) 0.931826 + 1.61397i 0.0738986 + 0.127996i
\(160\) 0 0
\(161\) 8.02163i 0.632193i
\(162\) 0 0
\(163\) 0.213164 + 0.123070i 0.0166963 + 0.00963961i 0.508325 0.861165i \(-0.330265\pi\)
−0.491629 + 0.870805i \(0.663598\pi\)
\(164\) 0 0
\(165\) −19.5685 + 33.8936i −1.52340 + 2.63861i
\(166\) 0 0
\(167\) 1.56604 0.904156i 0.121184 0.0699657i −0.438183 0.898886i \(-0.644378\pi\)
0.559367 + 0.828920i \(0.311044\pi\)
\(168\) 0 0
\(169\) −9.15934 + 9.22532i −0.704565 + 0.709640i
\(170\) 0 0
\(171\) −39.6623 + 22.8990i −3.03305 + 1.75113i
\(172\) 0 0
\(173\) −5.39981 + 9.35275i −0.410540 + 0.711076i −0.994949 0.100383i \(-0.967993\pi\)
0.584409 + 0.811459i \(0.301326\pi\)
\(174\) 0 0
\(175\) −4.25042 2.45398i −0.321302 0.185504i
\(176\) 0 0
\(177\) 6.74220i 0.506775i
\(178\) 0 0
\(179\) 4.33823 + 7.51404i 0.324255 + 0.561626i 0.981361 0.192172i \(-0.0615532\pi\)
−0.657106 + 0.753798i \(0.728220\pi\)
\(180\) 0 0
\(181\) −10.0087 −0.743940 −0.371970 0.928245i \(-0.621318\pi\)
−0.371970 + 0.928245i \(0.621318\pi\)
\(182\) 0 0
\(183\) 11.0019 0.813283
\(184\) 0 0
\(185\) 5.65057 + 9.78707i 0.415438 + 0.719559i
\(186\) 0 0
\(187\) 0.747970i 0.0546970i
\(188\) 0 0
\(189\) 12.4219 + 7.17180i 0.903562 + 0.521672i
\(190\) 0 0
\(191\) 12.0156 20.8117i 0.869420 1.50588i 0.00682903 0.999977i \(-0.497826\pi\)
0.862591 0.505902i \(-0.168840\pi\)
\(192\) 0 0
\(193\) −2.83457 + 1.63654i −0.204037 + 0.117801i −0.598537 0.801095i \(-0.704251\pi\)
0.394500 + 0.918896i \(0.370918\pi\)
\(194\) 0 0
\(195\) 29.1316 + 22.2705i 2.08616 + 1.59483i
\(196\) 0 0
\(197\) 11.0439 6.37619i 0.786844 0.454285i −0.0520061 0.998647i \(-0.516562\pi\)
0.838850 + 0.544362i \(0.183228\pi\)
\(198\) 0 0
\(199\) 13.6616 23.6625i 0.968442 1.67739i 0.268373 0.963315i \(-0.413514\pi\)
0.700069 0.714076i \(-0.253153\pi\)
\(200\) 0 0
\(201\) −15.1666 8.75643i −1.06977 0.617631i
\(202\) 0 0
\(203\) 2.71904i 0.190839i
\(204\) 0 0
\(205\) −6.26855 10.8575i −0.437815 0.758317i
\(206\) 0 0
\(207\) 59.6758 4.14776
\(208\) 0 0
\(209\) −23.6902 −1.63869
\(210\) 0 0
\(211\) −13.2929 23.0239i −0.915118 1.58503i −0.806728 0.590923i \(-0.798764\pi\)
−0.108390 0.994108i \(-0.534570\pi\)
\(212\) 0 0
\(213\) 29.5696i 2.02608i
\(214\) 0 0
\(215\) −31.3355 18.0915i −2.13706 1.23383i
\(216\) 0 0
\(217\) −4.25836 + 7.37569i −0.289076 + 0.500694i
\(218\) 0 0
\(219\) −9.26764 + 5.35068i −0.626249 + 0.361565i
\(220\) 0 0
\(221\) 0.694974 + 0.0902268i 0.0467490 + 0.00606931i
\(222\) 0 0
\(223\) 13.1063 7.56691i 0.877661 0.506718i 0.00777474 0.999970i \(-0.497525\pi\)
0.869887 + 0.493252i \(0.164192\pi\)
\(224\) 0 0
\(225\) 18.2561 31.6205i 1.21707 2.10803i
\(226\) 0 0
\(227\) −18.5376 10.7027i −1.23038 0.710362i −0.263274 0.964721i \(-0.584802\pi\)
−0.967110 + 0.254359i \(0.918136\pi\)
\(228\) 0 0
\(229\) 8.36123i 0.552526i −0.961082 0.276263i \(-0.910904\pi\)
0.961082 0.276263i \(-0.0890961\pi\)
\(230\) 0 0
\(231\) 6.21677 + 10.7678i 0.409033 + 0.708467i
\(232\) 0 0
\(233\) 26.1663 1.71421 0.857107 0.515138i \(-0.172260\pi\)
0.857107 + 0.515138i \(0.172260\pi\)
\(234\) 0 0
\(235\) 13.6964 0.893456
\(236\) 0 0
\(237\) 14.5193 + 25.1482i 0.943132 + 1.63355i
\(238\) 0 0
\(239\) 18.3562i 1.18736i 0.804700 + 0.593682i \(0.202326\pi\)
−0.804700 + 0.593682i \(0.797674\pi\)
\(240\) 0 0
\(241\) −2.88804 1.66741i −0.186035 0.107407i 0.404090 0.914719i \(-0.367588\pi\)
−0.590125 + 0.807312i \(0.700922\pi\)
\(242\) 0 0
\(243\) −17.2988 + 29.9623i −1.10972 + 1.92209i
\(244\) 0 0
\(245\) −2.72598 + 1.57385i −0.174157 + 0.100549i
\(246\) 0 0
\(247\) −2.85772 + 22.0117i −0.181833 + 1.40057i
\(248\) 0 0
\(249\) 21.4435 12.3804i 1.35893 0.784578i
\(250\) 0 0
\(251\) −6.09884 + 10.5635i −0.384956 + 0.666763i −0.991763 0.128086i \(-0.959117\pi\)
0.606807 + 0.794849i \(0.292450\pi\)
\(252\) 0 0
\(253\) 26.7332 + 15.4344i 1.68070 + 0.970353i
\(254\) 0 0
\(255\) 1.97677i 0.123790i
\(256\) 0 0
\(257\) 7.63648 + 13.2268i 0.476350 + 0.825063i 0.999633 0.0270962i \(-0.00862605\pi\)
−0.523282 + 0.852159i \(0.675293\pi\)
\(258\) 0 0
\(259\) 3.59029 0.223090
\(260\) 0 0
\(261\) −20.2279 −1.25208
\(262\) 0 0
\(263\) −12.4495 21.5631i −0.767666 1.32964i −0.938825 0.344394i \(-0.888085\pi\)
0.171159 0.985243i \(-0.445249\pi\)
\(264\) 0 0
\(265\) 1.81560i 0.111531i
\(266\) 0 0
\(267\) −14.3132 8.26373i −0.875953 0.505732i
\(268\) 0 0
\(269\) 3.92836 6.80413i 0.239517 0.414855i −0.721059 0.692874i \(-0.756344\pi\)
0.960576 + 0.278019i \(0.0896777\pi\)
\(270\) 0 0
\(271\) 2.28514 1.31933i 0.138812 0.0801433i −0.428986 0.903311i \(-0.641129\pi\)
0.567798 + 0.823168i \(0.307796\pi\)
\(272\) 0 0
\(273\) 10.7548 4.47739i 0.650907 0.270984i
\(274\) 0 0
\(275\) 16.3565 9.44342i 0.986333 0.569459i
\(276\) 0 0
\(277\) 5.82743 10.0934i 0.350136 0.606454i −0.636137 0.771576i \(-0.719469\pi\)
0.986273 + 0.165122i \(0.0528019\pi\)
\(278\) 0 0
\(279\) −54.8705 31.6795i −3.28501 1.89660i
\(280\) 0 0
\(281\) 3.86501i 0.230567i 0.993333 + 0.115283i \(0.0367776\pi\)
−0.993333 + 0.115283i \(0.963222\pi\)
\(282\) 0 0
\(283\) 3.42431 + 5.93109i 0.203554 + 0.352566i 0.949671 0.313249i \(-0.101417\pi\)
−0.746117 + 0.665815i \(0.768084\pi\)
\(284\) 0 0
\(285\) 62.6095 3.70867
\(286\) 0 0
\(287\) −3.98295 −0.235106
\(288\) 0 0
\(289\) 8.48111 + 14.6897i 0.498889 + 0.864101i
\(290\) 0 0
\(291\) 31.1038i 1.82334i
\(292\) 0 0
\(293\) 1.28946 + 0.744468i 0.0753309 + 0.0434923i 0.537192 0.843460i \(-0.319485\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(294\) 0 0
\(295\) −3.28418 + 5.68836i −0.191212 + 0.331189i
\(296\) 0 0
\(297\) −47.8021 + 27.5985i −2.77376 + 1.60143i
\(298\) 0 0
\(299\) 17.5656 22.9772i 1.01585 1.32881i
\(300\) 0 0
\(301\) −9.95506 + 5.74755i −0.573800 + 0.331284i
\(302\) 0 0
\(303\) −4.10592 + 7.11166i −0.235879 + 0.408554i
\(304\) 0 0
\(305\) −9.28225 5.35911i −0.531500 0.306862i
\(306\) 0 0
\(307\) 2.33128i 0.133053i 0.997785 + 0.0665265i \(0.0211917\pi\)
−0.997785 + 0.0665265i \(0.978808\pi\)
\(308\) 0 0
\(309\) −5.41826 9.38470i −0.308234 0.533877i
\(310\) 0 0
\(311\) 11.8244 0.670502 0.335251 0.942129i \(-0.391179\pi\)
0.335251 + 0.942129i \(0.391179\pi\)
\(312\) 0 0
\(313\) −18.4087 −1.04052 −0.520260 0.854008i \(-0.674165\pi\)
−0.520260 + 0.854008i \(0.674165\pi\)
\(314\) 0 0
\(315\) −11.7084 20.2796i −0.659695 1.14262i
\(316\) 0 0
\(317\) 8.42274i 0.473068i −0.971623 0.236534i \(-0.923988\pi\)
0.971623 0.236534i \(-0.0760115\pi\)
\(318\) 0 0
\(319\) −9.06156 5.23170i −0.507350 0.292919i
\(320\) 0 0
\(321\) 20.8610 36.1323i 1.16435 2.01671i
\(322\) 0 0
\(323\) 1.03626 0.598284i 0.0576590 0.0332894i
\(324\) 0 0
\(325\) −6.80126 16.3367i −0.377266 0.906198i
\(326\) 0 0
\(327\) −22.5044 + 12.9929i −1.24450 + 0.718512i
\(328\) 0 0
\(329\) 2.17563 3.76830i 0.119946 0.207753i
\(330\) 0 0
\(331\) 15.6375 + 9.02830i 0.859513 + 0.496240i 0.863849 0.503750i \(-0.168047\pi\)
−0.00433587 + 0.999991i \(0.501380\pi\)
\(332\) 0 0
\(333\) 26.7095i 1.46367i
\(334\) 0 0
\(335\) 8.53065 + 14.7755i 0.466079 + 0.807273i
\(336\) 0 0
\(337\) −3.64765 −0.198700 −0.0993500 0.995053i \(-0.531676\pi\)
−0.0993500 + 0.995053i \(0.531676\pi\)
\(338\) 0 0
\(339\) −25.8632 −1.40469
\(340\) 0 0
\(341\) −16.3870 28.3831i −0.887406 1.53703i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −70.6517 40.7908i −3.80376 2.19610i
\(346\) 0 0
\(347\) −7.29727 + 12.6392i −0.391738 + 0.678510i −0.992679 0.120783i \(-0.961459\pi\)
0.600941 + 0.799294i \(0.294793\pi\)
\(348\) 0 0
\(349\) −15.4877 + 8.94182i −0.829037 + 0.478645i −0.853523 0.521056i \(-0.825538\pi\)
0.0244861 + 0.999700i \(0.492205\pi\)
\(350\) 0 0
\(351\) 19.8768 + 47.7443i 1.06094 + 2.54840i
\(352\) 0 0
\(353\) 5.52760 3.19136i 0.294204 0.169859i −0.345632 0.938370i \(-0.612335\pi\)
0.639836 + 0.768511i \(0.279002\pi\)
\(354\) 0 0
\(355\) 14.4036 24.9478i 0.764464 1.32409i
\(356\) 0 0
\(357\) −0.543869 0.314003i −0.0287846 0.0166188i
\(358\) 0 0
\(359\) 30.4944i 1.60943i 0.593659 + 0.804717i \(0.297683\pi\)
−0.593659 + 0.804717i \(0.702317\pi\)
\(360\) 0 0
\(361\) 9.44927 + 16.3666i 0.497330 + 0.861400i
\(362\) 0 0
\(363\) −12.3057 −0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) 3.58169 + 6.20366i 0.186962 + 0.323829i 0.944236 0.329269i \(-0.106802\pi\)
−0.757274 + 0.653098i \(0.773469\pi\)
\(368\) 0 0
\(369\) 29.6306i 1.54251i
\(370\) 0 0
\(371\) −0.499526 0.288402i −0.0259341 0.0149731i
\(372\) 0 0
\(373\) 0.582337 1.00864i 0.0301523 0.0522252i −0.850556 0.525885i \(-0.823734\pi\)
0.880708 + 0.473660i \(0.157067\pi\)
\(374\) 0 0
\(375\) 0.810620 0.468011i 0.0418602 0.0241680i
\(376\) 0 0
\(377\) −5.95410 + 7.78843i −0.306652 + 0.401125i
\(378\) 0 0
\(379\) −25.1318 + 14.5099i −1.29093 + 0.745322i −0.978820 0.204723i \(-0.934371\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(380\) 0 0
\(381\) 2.14662 3.71806i 0.109975 0.190482i
\(382\) 0 0
\(383\) 19.0154 + 10.9786i 0.971642 + 0.560978i 0.899737 0.436433i \(-0.143759\pi\)
0.0719059 + 0.997411i \(0.477092\pi\)
\(384\) 0 0
\(385\) 12.1129i 0.617333i
\(386\) 0 0
\(387\) −42.7582 74.0593i −2.17352 3.76465i
\(388\) 0 0
\(389\) −29.1973 −1.48036 −0.740180 0.672409i \(-0.765260\pi\)
−0.740180 + 0.672409i \(0.765260\pi\)
\(390\) 0 0
\(391\) −1.55915 −0.0788498
\(392\) 0 0
\(393\) 0.957605 + 1.65862i 0.0483048 + 0.0836664i
\(394\) 0 0
\(395\) 28.2899i 1.42342i
\(396\) 0 0
\(397\) 27.6698 + 15.9752i 1.38871 + 0.801771i 0.993170 0.116679i \(-0.0372248\pi\)
0.395538 + 0.918450i \(0.370558\pi\)
\(398\) 0 0
\(399\) 9.94531 17.2258i 0.497888 0.862368i
\(400\) 0 0
\(401\) 31.9176 18.4276i 1.59389 0.920232i 0.601257 0.799056i \(-0.294667\pi\)
0.992631 0.121176i \(-0.0386664\pi\)
\(402\) 0 0
\(403\) −28.3488 + 11.8021i −1.41216 + 0.587905i
\(404\) 0 0
\(405\) 65.4947 37.8134i 3.25446 1.87896i
\(406\) 0 0
\(407\) −6.90808 + 11.9651i −0.342421 + 0.593090i
\(408\) 0 0
\(409\) 4.89732 + 2.82747i 0.242157 + 0.139809i 0.616168 0.787615i \(-0.288684\pi\)
−0.374011 + 0.927424i \(0.622018\pi\)
\(410\) 0 0
\(411\) 8.27247i 0.408051i
\(412\) 0 0
\(413\) 1.04336 + 1.80715i 0.0513404 + 0.0889242i
\(414\) 0 0
\(415\) −24.1224 −1.18412
\(416\) 0 0
\(417\) −58.2323 −2.85165
\(418\) 0 0
\(419\) 12.9031 + 22.3488i 0.630358 + 1.09181i 0.987478 + 0.157754i \(0.0504254\pi\)
−0.357120 + 0.934059i \(0.616241\pi\)
\(420\) 0 0
\(421\) 28.8606i 1.40658i 0.710903 + 0.703290i \(0.248286\pi\)
−0.710903 + 0.703290i \(0.751714\pi\)
\(422\) 0 0
\(423\) 28.0338 + 16.1853i 1.36305 + 0.786957i
\(424\) 0 0
\(425\) −0.476977 + 0.826149i −0.0231368 + 0.0400741i
\(426\) 0 0
\(427\) −2.94891 + 1.70255i −0.142708 + 0.0823923i
\(428\) 0 0
\(429\) −5.77170 + 44.4567i −0.278660 + 2.14639i
\(430\) 0 0
\(431\) −27.4281 + 15.8356i −1.32116 + 0.762774i −0.983914 0.178641i \(-0.942830\pi\)
−0.337249 + 0.941415i \(0.609496\pi\)
\(432\) 0 0
\(433\) 15.6517 27.1095i 0.752172 1.30280i −0.194597 0.980883i \(-0.562340\pi\)
0.946768 0.321916i \(-0.104327\pi\)
\(434\) 0 0
\(435\) 23.9483 + 13.8266i 1.14823 + 0.662933i
\(436\) 0 0
\(437\) 49.3826i 2.36229i
\(438\) 0 0
\(439\) 18.4786 + 32.0059i 0.881935 + 1.52756i 0.849187 + 0.528092i \(0.177093\pi\)
0.0327479 + 0.999464i \(0.489574\pi\)
\(440\) 0 0
\(441\) −7.43937 −0.354256
\(442\) 0 0
\(443\) 28.2871 1.34396 0.671981 0.740568i \(-0.265444\pi\)
0.671981 + 0.740568i \(0.265444\pi\)
\(444\) 0 0
\(445\) 8.05065 + 13.9441i 0.381638 + 0.661016i
\(446\) 0 0
\(447\) 26.1966i 1.23906i
\(448\) 0 0
\(449\) 21.0690 + 12.1642i 0.994308 + 0.574064i 0.906559 0.422079i \(-0.138699\pi\)
0.0877485 + 0.996143i \(0.472033\pi\)
\(450\) 0 0
\(451\) 7.66360 13.2737i 0.360865 0.625036i
\(452\) 0 0
\(453\) −10.0398 + 5.79649i −0.471712 + 0.272343i
\(454\) 0 0
\(455\) −11.2547 1.46117i −0.527629 0.0685008i
\(456\) 0 0
\(457\) −1.34199 + 0.774798i −0.0627756 + 0.0362435i −0.531059 0.847335i \(-0.678206\pi\)
0.468284 + 0.883578i \(0.344873\pi\)
\(458\) 0 0
\(459\) 1.39397 2.41443i 0.0650651 0.112696i
\(460\) 0 0
\(461\) 11.2195 + 6.47760i 0.522545 + 0.301692i 0.737975 0.674828i \(-0.235782\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(462\) 0 0
\(463\) 28.1690i 1.30912i −0.756008 0.654562i \(-0.772853\pi\)
0.756008 0.654562i \(-0.227147\pi\)
\(464\) 0 0
\(465\) 43.3083 + 75.0122i 2.00837 + 3.47861i
\(466\) 0 0
\(467\) −29.2908 −1.35542 −0.677709 0.735330i \(-0.737027\pi\)
−0.677709 + 0.735330i \(0.737027\pi\)
\(468\) 0 0
\(469\) 5.42026 0.250284
\(470\) 0 0
\(471\) −23.1739 40.1384i −1.06780 1.84948i
\(472\) 0 0
\(473\) 44.2355i 2.03395i
\(474\) 0 0
\(475\) −26.1664 15.1072i −1.20059 0.693164i
\(476\) 0 0
\(477\) 2.14553 3.71616i 0.0982369 0.170151i
\(478\) 0 0
\(479\) −16.8625 + 9.73555i −0.770466 + 0.444829i −0.833041 0.553211i \(-0.813402\pi\)
0.0625747 + 0.998040i \(0.480069\pi\)
\(480\) 0 0
\(481\) 10.2841 + 7.86197i 0.468913 + 0.358475i
\(482\) 0 0
\(483\) −22.4456 + 12.9589i −1.02131 + 0.589652i
\(484\) 0 0
\(485\) −15.1509 + 26.2422i −0.687968 + 1.19160i
\(486\) 0 0
\(487\) 3.92783 + 2.26773i 0.177987 + 0.102761i 0.586346 0.810060i \(-0.300566\pi\)
−0.408360 + 0.912821i \(0.633899\pi\)
\(488\) 0 0
\(489\) 0.795281i 0.0359638i
\(490\) 0 0
\(491\) 9.07433 + 15.7172i 0.409519 + 0.709307i 0.994836 0.101497i \(-0.0323633\pi\)
−0.585317 + 0.810804i \(0.699030\pi\)
\(492\) 0 0
\(493\) 0.528495 0.0238022
\(494\) 0 0
\(495\) 90.1127 4.05026
\(496\) 0 0
\(497\) −4.57593 7.92574i −0.205258 0.355518i
\(498\) 0 0
\(499\) 6.65532i 0.297933i −0.988842 0.148967i \(-0.952405\pi\)
0.988842 0.148967i \(-0.0475947\pi\)
\(500\) 0 0
\(501\) −5.05989 2.92133i −0.226059 0.130515i
\(502\) 0 0
\(503\) −7.45978 + 12.9207i −0.332615 + 0.576106i −0.983024 0.183478i \(-0.941264\pi\)
0.650409 + 0.759584i \(0.274598\pi\)
\(504\) 0 0
\(505\) 6.92829 4.00005i 0.308305 0.178000i
\(506\) 0 0
\(507\) 40.6105 + 10.7255i 1.80358 + 0.476337i
\(508\) 0 0
\(509\) −15.3869 + 8.88365i −0.682014 + 0.393761i −0.800613 0.599181i \(-0.795493\pi\)
0.118599 + 0.992942i \(0.462160\pi\)
\(510\) 0 0
\(511\) 1.65604 2.86835i 0.0732590 0.126888i
\(512\) 0 0
\(513\) 76.4716 + 44.1509i 3.37630 + 1.94931i
\(514\) 0 0
\(515\) 10.5571i 0.465201i
\(516\) 0 0
\(517\) 8.37226 + 14.5012i 0.368211 + 0.637761i
\(518\) 0 0
\(519\) 34.8936 1.53166
\(520\) 0 0
\(521\) 38.0579 1.66735 0.833673 0.552258i \(-0.186234\pi\)
0.833673 + 0.552258i \(0.186234\pi\)
\(522\) 0 0
\(523\) −6.94526 12.0295i −0.303695 0.526015i 0.673275 0.739392i \(-0.264887\pi\)
−0.976970 + 0.213377i \(0.931554\pi\)
\(524\) 0 0
\(525\) 15.8576i 0.692084i
\(526\) 0 0
\(527\) 1.43360 + 0.827691i 0.0624487 + 0.0360548i
\(528\) 0 0
\(529\) −20.6733 + 35.8071i −0.898837 + 1.55683i
\(530\) 0 0
\(531\) −13.4441 + 7.76195i −0.583424 + 0.336840i
\(532\) 0 0
\(533\) −11.4088 8.72181i −0.494170 0.377783i
\(534\) 0 0
\(535\) −35.2006 + 20.3231i −1.52185 + 0.878643i
\(536\) 0 0
\(537\) 14.0168 24.2779i 0.604871 1.04767i
\(538\) 0 0
\(539\) −3.33264 1.92410i −0.143547 0.0828769i
\(540\) 0 0
\(541\) 41.8453i 1.79907i −0.436850 0.899535i \(-0.643906\pi\)
0.436850 0.899535i \(-0.356094\pi\)
\(542\) 0 0
\(543\) 16.1690 + 28.0056i 0.693880 + 1.20184i
\(544\) 0 0
\(545\) 25.3159 1.08441
\(546\) 0 0
\(547\) −22.3475 −0.955509 −0.477754 0.878493i \(-0.658549\pi\)
−0.477754 + 0.878493i \(0.658549\pi\)
\(548\) 0 0
\(549\) −12.6659 21.9380i −0.540568 0.936291i
\(550\) 0 0
\(551\) 16.7389i 0.713100i
\(552\) 0 0
\(553\) −7.78342 4.49376i −0.330985 0.191094i
\(554\) 0 0
\(555\) 18.2570 31.6220i 0.774966 1.34228i
\(556\) 0 0
\(557\) 26.5499 15.3286i 1.12495 0.649493i 0.182293 0.983244i \(-0.441648\pi\)
0.942661 + 0.333752i \(0.108315\pi\)
\(558\) 0 0
\(559\) −41.1013 5.33608i −1.73840 0.225692i
\(560\) 0 0
\(561\) 2.09292 1.20835i 0.0883630 0.0510164i
\(562\) 0 0
\(563\) −16.6237 + 28.7930i −0.700604 + 1.21348i 0.267651 + 0.963516i \(0.413753\pi\)
−0.968255 + 0.249966i \(0.919581\pi\)
\(564\) 0 0
\(565\) 21.8206 + 12.5982i 0.918001 + 0.530008i
\(566\) 0 0
\(567\) 24.0261i 1.00900i
\(568\) 0 0
\(569\) 5.80511 + 10.0547i 0.243363 + 0.421517i 0.961670 0.274209i \(-0.0884161\pi\)
−0.718307 + 0.695726i \(0.755083\pi\)
\(570\) 0 0
\(571\) 16.6994 0.698847 0.349423 0.936965i \(-0.386377\pi\)
0.349423 + 0.936965i \(0.386377\pi\)
\(572\) 0 0
\(573\) −77.6450 −3.24366
\(574\) 0 0
\(575\) 19.6849 + 34.0953i 0.820918 + 1.42187i
\(576\) 0 0
\(577\) 37.2583i 1.55108i −0.631297 0.775541i \(-0.717477\pi\)
0.631297 0.775541i \(-0.282523\pi\)
\(578\) 0 0
\(579\) 9.15849 + 5.28765i 0.380614 + 0.219747i
\(580\) 0 0
\(581\) −3.83176 + 6.63681i −0.158968 + 0.275341i
\(582\) 0 0
\(583\) 1.92228 1.10983i 0.0796126 0.0459643i
\(584\) 0 0
\(585\) 10.8702 83.7279i 0.449427 3.46172i
\(586\) 0 0
\(587\) 36.1912 20.8950i 1.49377 0.862429i 0.493796 0.869578i \(-0.335609\pi\)
0.999974 + 0.00714861i \(0.00227549\pi\)
\(588\) 0 0
\(589\) −26.2152 + 45.4061i −1.08018 + 1.87092i
\(590\) 0 0
\(591\) −35.6828 20.6015i −1.46779 0.847432i
\(592\) 0 0
\(593\) 4.33672i 0.178088i −0.996028 0.0890438i \(-0.971619\pi\)
0.996028 0.0890438i \(-0.0283811\pi\)
\(594\) 0 0
\(595\) 0.305906 + 0.529845i 0.0125409 + 0.0217215i
\(596\) 0 0
\(597\) −88.2810 −3.61310
\(598\) 0 0
\(599\) 22.7578 0.929858 0.464929 0.885348i \(-0.346080\pi\)
0.464929 + 0.885348i \(0.346080\pi\)
\(600\) 0 0
\(601\) 13.7634 + 23.8389i 0.561421 + 0.972410i 0.997373 + 0.0724402i \(0.0230786\pi\)
−0.435951 + 0.899970i \(0.643588\pi\)
\(602\) 0 0
\(603\) 40.3233i 1.64209i
\(604\) 0 0
\(605\) 10.3823 + 5.99423i 0.422101 + 0.243700i
\(606\) 0 0
\(607\) 4.53483 7.85456i 0.184063 0.318807i −0.759197 0.650861i \(-0.774408\pi\)
0.943260 + 0.332054i \(0.107742\pi\)
\(608\) 0 0
\(609\) 7.60821 4.39260i 0.308300 0.177997i
\(610\) 0 0
\(611\) 14.4837 6.02980i 0.585946 0.243939i
\(612\) 0 0
\(613\) −8.12241 + 4.68947i −0.328061 + 0.189406i −0.654980 0.755646i \(-0.727323\pi\)
0.326919 + 0.945052i \(0.393990\pi\)
\(614\) 0 0
\(615\) −20.2537 + 35.0804i −0.816708 + 1.41458i
\(616\) 0 0
\(617\) −26.0786 15.0565i −1.04988 0.606151i −0.127267 0.991869i \(-0.540620\pi\)
−0.922617 + 0.385718i \(0.873954\pi\)
\(618\) 0 0
\(619\) 39.8942i 1.60348i 0.597671 + 0.801742i \(0.296093\pi\)
−0.597671 + 0.801742i \(0.703907\pi\)
\(620\) 0 0
\(621\) −57.5295 99.6441i −2.30858 3.99858i
\(622\) 0 0
\(623\) 5.11527 0.204939
\(624\) 0 0
\(625\) −25.4517 −1.01807
\(626\) 0 0
\(627\) 38.2715 + 66.2883i 1.52842 + 2.64730i
\(628\) 0 0
\(629\) 0.697840i 0.0278247i
\(630\) 0 0
\(631\) −21.3804 12.3440i −0.851140 0.491406i 0.00989522 0.999951i \(-0.496850\pi\)
−0.861035 + 0.508545i \(0.830184\pi\)
\(632\) 0 0
\(633\) −42.9492 + 74.3903i −1.70708 + 2.95675i
\(634\) 0 0
\(635\) −3.62219 + 2.09127i −0.143742 + 0.0829896i
\(636\) 0 0
\(637\) −2.18978 + 2.86441i −0.0867624 + 0.113492i
\(638\) 0 0
\(639\) 58.9625 34.0420i 2.33252 1.34668i
\(640\) 0 0
\(641\) −9.30883 + 16.1234i −0.367677 + 0.636834i −0.989202 0.146560i \(-0.953180\pi\)
0.621525 + 0.783394i \(0.286513\pi\)
\(642\) 0 0
\(643\) −27.4384 15.8415i −1.08206 0.624729i −0.150611 0.988593i \(-0.548124\pi\)
−0.931452 + 0.363864i \(0.881457\pi\)
\(644\) 0 0
\(645\) 116.908i 4.60323i
\(646\) 0 0
\(647\) 14.8291 + 25.6848i 0.582994 + 1.00977i 0.995122 + 0.0986488i \(0.0314521\pi\)
−0.412129 + 0.911126i \(0.635215\pi\)
\(648\) 0 0
\(649\) −8.03013 −0.315210
\(650\) 0 0
\(651\) 27.5175 1.07850
\(652\) 0 0
\(653\) −6.34483 10.9896i −0.248292 0.430055i 0.714760 0.699370i \(-0.246536\pi\)
−0.963052 + 0.269315i \(0.913203\pi\)
\(654\) 0 0
\(655\) 1.86583i 0.0729039i
\(656\) 0 0
\(657\) 21.3387 + 12.3199i 0.832502 + 0.480645i
\(658\) 0 0
\(659\) 12.2763 21.2632i 0.478217 0.828296i −0.521471 0.853269i \(-0.674617\pi\)
0.999688 + 0.0249730i \(0.00794998\pi\)
\(660\) 0 0
\(661\) 22.1333 12.7787i 0.860887 0.497033i −0.00342228 0.999994i \(-0.501089\pi\)
0.864309 + 0.502961i \(0.167756\pi\)
\(662\) 0 0
\(663\) −0.870264 2.09039i −0.0337983 0.0811839i
\(664\) 0 0
\(665\) −16.7816 + 9.68888i −0.650764 + 0.375719i
\(666\) 0 0
\(667\) 10.9055 18.8890i 0.422264 0.731383i
\(668\) 0 0
\(669\) −42.3464 24.4487i −1.63721 0.945242i
\(670\) 0 0
\(671\) 13.1035i 0.505856i
\(672\) 0 0
\(673\) −3.39829 5.88601i −0.130994 0.226889i 0.793066 0.609136i \(-0.208484\pi\)
−0.924060 + 0.382247i \(0.875150\pi\)
\(674\) 0 0
\(675\) −70.3979 −2.70962
\(676\) 0 0
\(677\) −26.0956 −1.00294 −0.501468 0.865176i \(-0.667207\pi\)
−0.501468 + 0.865176i \(0.667207\pi\)
\(678\) 0 0
\(679\) 4.81334 + 8.33696i 0.184719 + 0.319943i
\(680\) 0 0
\(681\) 69.1608i 2.65025i
\(682\) 0 0
\(683\) 42.1666 + 24.3449i 1.61346 + 0.931532i 0.988560 + 0.150827i \(0.0481936\pi\)
0.624900 + 0.780705i \(0.285140\pi\)
\(684\) 0 0
\(685\) 4.02958 6.97944i 0.153962 0.266671i
\(686\) 0 0
\(687\) −23.3958 + 13.5076i −0.892606 + 0.515346i
\(688\) 0 0
\(689\) −0.799310 1.91995i −0.0304513 0.0731445i
\(690\) 0 0
\(691\) −3.10942 + 1.79522i −0.118288 + 0.0682935i −0.557977 0.829857i \(-0.688422\pi\)
0.439689 + 0.898150i \(0.355089\pi\)
\(692\) 0 0
\(693\) 14.3141 24.7927i 0.543747 0.941798i
\(694\) 0 0
\(695\) 49.1303 + 28.3654i 1.86362 + 1.07596i
\(696\) 0 0
\(697\) 0.774161i 0.0293234i
\(698\) 0 0
\(699\) −42.2717 73.2168i −1.59886 2.76931i
\(700\) 0 0
\(701\) −15.8746 −0.599575 −0.299787 0.954006i \(-0.596916\pi\)
−0.299787 + 0.954006i \(0.596916\pi\)
\(702\) 0 0
\(703\) 22.1025 0.833611
\(704\) 0 0
\(705\) −22.1266 38.3244i −0.833335 1.44338i
\(706\) 0 0
\(707\) 2.54158i 0.0955858i
\(708\) 0 0
\(709\) −19.6154 11.3250i −0.736673 0.425318i 0.0841852 0.996450i \(-0.473171\pi\)
−0.820858 + 0.571132i \(0.806505\pi\)
\(710\) 0 0
\(711\) 33.4307 57.9037i 1.25375 2.17156i
\(712\) 0 0
\(713\) 59.1650 34.1589i 2.21575 1.27926i
\(714\) 0 0
\(715\) 26.5248 34.6965i 0.991969 1.29757i
\(716\) 0 0
\(717\) 51.3630 29.6544i 1.91819 1.10747i
\(718\) 0 0
\(719\) 5.12631 8.87903i 0.191179 0.331132i −0.754462 0.656344i \(-0.772102\pi\)
0.945641 + 0.325212i \(0.105436\pi\)
\(720\) 0 0
\(721\) 2.90458 + 1.67696i 0.108172 + 0.0624532i
\(722\) 0 0
\(723\) 10.7748i 0.400719i
\(724\) 0 0
\(725\) −6.67246 11.5570i −0.247809 0.429218i
\(726\) 0 0
\(727\) −5.60059 −0.207715 −0.103857 0.994592i \(-0.533119\pi\)
−0.103857 + 0.994592i \(0.533119\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) 1.11714 + 1.93495i 0.0413191 + 0.0715667i
\(732\) 0 0
\(733\) 41.1556i 1.52012i −0.649855 0.760058i \(-0.725170\pi\)
0.649855 0.760058i \(-0.274830\pi\)
\(734\) 0 0
\(735\) 8.80765 + 5.08510i 0.324875 + 0.187567i
\(736\) 0 0
\(737\) −10.4291 + 18.0638i −0.384162 + 0.665388i
\(738\) 0 0
\(739\) 10.5196 6.07347i 0.386968 0.223416i −0.293877 0.955843i \(-0.594946\pi\)
0.680846 + 0.732427i \(0.261612\pi\)
\(740\) 0 0
\(741\) 66.2082 27.5636i 2.43222 1.01257i
\(742\) 0 0
\(743\) 0.486744 0.281022i 0.0178569 0.0103097i −0.491045 0.871134i \(-0.663385\pi\)
0.508902 + 0.860825i \(0.330052\pi\)
\(744\) 0 0
\(745\) −12.7606 + 22.1020i −0.467511 + 0.809753i
\(746\) 0 0
\(747\) −49.3737 28.5059i −1.80649 1.04298i
\(748\) 0 0
\(749\) 12.9130i 0.471831i
\(750\) 0 0
\(751\) −11.3569 19.6707i −0.414418 0.717794i 0.580949 0.813940i \(-0.302682\pi\)
−0.995367 + 0.0961463i \(0.969348\pi\)
\(752\) 0 0
\(753\) 39.4107 1.43621
\(754\) 0 0
\(755\) 11.2941 0.411033
\(756\) 0 0
\(757\) −9.74099 16.8719i −0.354042 0.613219i 0.632911 0.774224i \(-0.281860\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(758\) 0 0
\(759\) 99.7372i 3.62023i
\(760\) 0 0
\(761\) 37.0082 + 21.3667i 1.34155 + 0.774543i 0.987034 0.160509i \(-0.0513135\pi\)
0.354513 + 0.935051i \(0.384647\pi\)
\(762\) 0 0
\(763\) 4.02134 6.96516i 0.145582 0.252156i
\(764\) 0 0
\(765\) −3.94171 + 2.27575i −0.142513 + 0.0822799i
\(766\) 0 0
\(767\) −0.968665 + 7.46117i −0.0349765 + 0.269407i
\(768\) 0 0
\(769\) −29.5477 + 17.0593i −1.06552 + 0.615176i −0.926953 0.375178i \(-0.877582\pi\)
−0.138563 + 0.990354i \(0.544248\pi\)
\(770\) 0 0
\(771\) 24.6735 42.7357i 0.888593 1.53909i
\(772\) 0 0
\(773\) −25.0026 14.4353i −0.899281 0.519200i −0.0223144 0.999751i \(-0.507103\pi\)
−0.876967 + 0.480551i \(0.840437\pi\)
\(774\) 0 0
\(775\) 41.7997i 1.50149i
\(776\) 0 0
\(777\) −5.80012 10.0461i −0.208078 0.360402i
\(778\) 0 0
\(779\) −24.5198 −0.878512
\(780\) 0 0
\(781\) 35.2182 1.26021
\(782\) 0 0
\(783\) 19.5004 + 33.7757i 0.696887 + 1.20704i
\(784\) 0 0
\(785\) 45.1528i 1.61157i
\(786\) 0 0
\(787\) 38.9448 + 22.4848i 1.38823 + 0.801497i 0.993116 0.117134i \(-0.0373706\pi\)
0.395117 + 0.918631i \(0.370704\pi\)
\(788\) 0 0
\(789\) −40.2242 + 69.6704i −1.43202 + 2.48033i
\(790\) 0 0
\(791\) 6.93227 4.00235i 0.246483 0.142307i
\(792\) 0 0
\(793\) −12.1751 1.58066i −0.432350 0.0561310i
\(794\) 0 0
\(795\) −5.08028 + 2.93310i −0.180179 + 0.104026i
\(796\) 0 0
\(797\) −10.7092 + 18.5489i −0.379340 + 0.657036i −0.990966 0.134111i \(-0.957182\pi\)
0.611627 + 0.791147i \(0.290515\pi\)
\(798\) 0 0
\(799\) −0.732440 0.422874i −0.0259118 0.0149602i
\(800\) 0 0
\(801\) 38.0544i 1.34459i
\(802\) 0 0
\(803\) 6.37278 + 11.0380i 0.224891 + 0.389522i
\(804\) 0 0
\(805\) 25.2496 0.889932
\(806\) 0 0
\(807\) −25.3851 −0.893598
\(808\) 0 0
\(809\) 4.12749 + 7.14902i 0.145115 + 0.251346i 0.929416 0.369034i \(-0.120312\pi\)
−0.784301 + 0.620381i \(0.786978\pi\)
\(810\) 0 0
\(811\) 43.7679i 1.53690i 0.639910 + 0.768450i \(0.278971\pi\)
−0.639910 + 0.768450i \(0.721029\pi\)
\(812\) 0 0
\(813\) −7.38329 4.26274i −0.258943 0.149501i
\(814\) 0 0
\(815\) −0.387387 + 0.670975i −0.0135696 + 0.0235032i
\(816\) 0 0
\(817\) −61.2851 + 35.3830i −2.14409 + 1.23789i
\(818\) 0 0
\(819\) −21.3094 16.2906i −0.744611 0.569240i
\(820\) 0 0
\(821\) 19.1465 11.0542i 0.668216 0.385795i −0.127184 0.991879i \(-0.540594\pi\)
0.795400 + 0.606084i \(0.207261\pi\)
\(822\) 0 0
\(823\) −21.0355 + 36.4346i −0.733252 + 1.27003i 0.222234 + 0.974993i \(0.428665\pi\)
−0.955486 + 0.295037i \(0.904668\pi\)
\(824\) 0 0
\(825\) −52.8478 30.5117i −1.83992 1.06228i
\(826\) 0 0
\(827\) 44.4242i 1.54478i −0.635148 0.772390i \(-0.719061\pi\)
0.635148 0.772390i \(-0.280939\pi\)
\(828\) 0 0
\(829\) −8.97394 15.5433i −0.311678 0.539842i 0.667048 0.745015i \(-0.267558\pi\)
−0.978726 + 0.205173i \(0.934224\pi\)
\(830\) 0 0
\(831\) −37.6569 −1.30630
\(832\) 0 0
\(833\) 0.194369 0.00673448
\(834\) 0 0
\(835\) 2.84600 + 4.92942i 0.0984900 + 0.170590i
\(836\) 0 0
\(837\) 122.160i 4.22248i
\(838\) 0 0
\(839\) 3.09534 + 1.78709i 0.106863 + 0.0616973i 0.552479 0.833527i \(-0.313682\pi\)
−0.445616 + 0.895224i \(0.647015\pi\)
\(840\) 0 0
\(841\) 10.8034 18.7121i 0.372532 0.645244i
\(842\) 0 0
\(843\) 10.8148 6.24392i 0.372481 0.215052i
\(844\) 0 0
\(845\) −29.0385 28.8308i −0.998953 0.991809i
\(846\) 0 0
\(847\) 3.29839 1.90432i 0.113334 0.0654334i
\(848\) 0 0
\(849\) 11.0640 19.1633i 0.379714 0.657684i
\(850\) 0 0
\(851\) −24.9415 14.4000i −0.854984 0.493625i
\(852\) 0 0
\(853\) 24.4780i 0.838111i 0.907961 + 0.419055i \(0.137639\pi\)
−0.907961 + 0.419055i \(0.862361\pi\)
\(854\) 0 0
\(855\) −72.0791 124.845i −2.46505 4.26960i
\(856\) 0 0
\(857\) −26.9438 −0.920384 −0.460192 0.887820i \(-0.652219\pi\)
−0.460192 + 0.887820i \(0.652219\pi\)
\(858\) 0 0
\(859\) −17.9537 −0.612573 −0.306287 0.951939i \(-0.599087\pi\)
−0.306287 + 0.951939i \(0.599087\pi\)
\(860\) 0 0
\(861\) 6.43446 + 11.1448i 0.219286 + 0.379814i
\(862\) 0 0
\(863\) 11.0841i 0.377308i 0.982044 + 0.188654i \(0.0604125\pi\)
−0.982044 + 0.188654i \(0.939588\pi\)
\(864\) 0 0
\(865\) −29.4396 16.9969i −1.00098 0.577913i
\(866\) 0 0
\(867\) 27.4025 47.4625i 0.930637 1.61191i
\(868\) 0 0
\(869\) 29.9521 17.2929i 1.01606 0.586621i
\(870\) 0 0
\(871\) 15.5258 + 11.8692i 0.526073 + 0.402173i
\(872\) 0 0
\(873\) −62.0217 + 35.8082i −2.09912 + 1.21193i
\(874\) 0 0
\(875\) −0.144850 + 0.250888i −0.00489683 + 0.00848156i
\(876\) 0 0
\(877\) −3.99010 2.30368i −0.134736 0.0777899i 0.431117 0.902296i \(-0.358120\pi\)
−0.565853 + 0.824506i \(0.691453\pi\)
\(878\) 0 0
\(879\) 4.81075i 0.162263i
\(880\) 0 0
\(881\) −17.1554 29.7140i −0.577979 1.00109i −0.995711 0.0925186i \(-0.970508\pi\)
0.417732 0.908570i \(-0.362825\pi\)
\(882\) 0 0
\(883\) 42.5926 1.43336 0.716678 0.697404i \(-0.245662\pi\)
0.716678 + 0.697404i \(0.245662\pi\)
\(884\) 0 0
\(885\) 21.2224 0.713382
\(886\) 0 0
\(887\) −20.8026 36.0312i −0.698483 1.20981i −0.968992 0.247091i \(-0.920525\pi\)
0.270509 0.962717i \(-0.412808\pi\)
\(888\) 0 0
\(889\) 1.32877i 0.0445654i
\(890\) 0 0
\(891\) 80.0703 + 46.2286i 2.68246 + 1.54872i
\(892\) 0 0
\(893\) 13.3936 23.1983i 0.448198 0.776302i
\(894\) 0 0
\(895\) −23.6519 + 13.6554i −0.790595 + 0.456450i
\(896\) 0 0
\(897\) −92.6706 12.0312i −3.09418 0.401710i
\(898\) 0 0
\(899\) −20.0548 + 11.5786i −0.668864 + 0.386169i
\(900\) 0 0
\(901\) −0.0560562 + 0.0970922i −0.00186750 + 0.00323461i
\(902\) 0 0
\(903\) 32.1648 + 18.5704i 1.07038 + 0.617983i
\(904\) 0 0
\(905\) 31.5043i 1.04724i
\(906\) 0 0
\(907\) 7.83580 + 13.5720i 0.260183 + 0.450651i 0.966290 0.257454i \(-0.0828837\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(908\) 0 0
\(909\) 18.9077 0.627129
\(910\) 0 0
\(911\) −33.5478 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(912\) 0 0
\(913\) −14.7454 25.5398i −0.488001 0.845243i
\(914\) 0 0
\(915\) 34.6306i 1.14485i
\(916\) 0 0
\(917\) −0.513346 0.296380i −0.0169522 0.00978734i
\(918\) 0 0
\(919\) −1.66880 + 2.89045i −0.0550488 + 0.0953473i −0.892237 0.451568i \(-0.850865\pi\)
0.837188 + 0.546915i \(0.184198\pi\)
\(920\) 0 0
\(921\) 6.52321 3.76618i 0.214947 0.124100i
\(922\) 0 0
\(923\) 4.24833 32.7229i 0.139835 1.07709i
\(924\) 0 0
\(925\) −15.2603 + 8.81051i −0.501754 + 0.289688i
\(926\) 0 0
\(927\) −12.4755 + 21.6082i −0.409750 + 0.709707i
\(928\) 0 0
\(929\) 7.87813 + 4.54844i 0.258473 + 0.149230i 0.623638 0.781713i \(-0.285654\pi\)
−0.365165 + 0.930943i \(0.618987\pi\)
\(930\) 0 0
\(931\) 6.15618i 0.201761i
\(932\) 0 0
\(933\) −19.1024 33.0863i −0.625384 1.08320i
\(934\) 0 0
\(935\) −2.35438 −0.0769964
\(936\) 0 0
\(937\) 9.08442 0.296775 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(938\) 0 0
\(939\) 29.7392 + 51.5099i 0.970504 + 1.68096i
\(940\) 0 0
\(941\) 8.23345i 0.268403i 0.990954 + 0.134201i \(0.0428469\pi\)
−0.990954 + 0.134201i \(0.957153\pi\)
\(942\) 0 0
\(943\) 27.6693 + 15.9749i 0.901036 + 0.520214i
\(944\) 0 0
\(945\) −22.5746 + 39.1004i −0.734353 + 1.27194i
\(946\) 0 0
\(947\) 4.37804 2.52766i 0.142267 0.0821380i −0.427177 0.904168i \(-0.640492\pi\)
0.569444 + 0.822030i \(0.307159\pi\)
\(948\) 0 0
\(949\) 11.0247 4.58975i 0.357875 0.148990i
\(950\) 0 0
\(951\) −23.5679 + 13.6069i −0.764242 + 0.441235i
\(952\) 0 0
\(953\) 19.6579 34.0485i 0.636782 1.10294i −0.349352 0.936992i \(-0.613598\pi\)
0.986135 0.165948i \(-0.0530684\pi\)
\(954\) 0 0
\(955\) 65.5087 + 37.8215i 2.11981 + 1.22387i
\(956\) 0 0
\(957\) 33.8072i 1.09283i
\(958\) 0 0
\(959\) −1.28017 2.21732i −0.0413389 0.0716010i
\(960\) 0 0
\(961\) −41.5344 −1.33982
\(962\) 0 0
\(963\) −96.0646 −3.09564
\(964\) 0 0
\(965\) −5.15132 8.92234i −0.165827 0.287220i
\(966\) 0 0
\(967\) 21.2101i 0.682071i 0.940050 + 0.341036i \(0.110778\pi\)
−0.940050 + 0.341036i \(0.889222\pi\)
\(968\) 0 0
\(969\) −3.34815 1.93306i −0.107558 0.0620987i
\(970\) 0 0
\(971\) 11.7705 20.3871i 0.377733 0.654252i −0.612999 0.790084i \(-0.710037\pi\)
0.990732 + 0.135831i \(0.0433705\pi\)
\(972\) 0 0
\(973\) 15.6084 9.01150i 0.500381 0.288895i
\(974\) 0 0
\(975\) −34.7248 + 45.4228i −1.11208 + 1.45469i
\(976\) 0 0
\(977\) −10.7380 + 6.19958i −0.343539 + 0.198342i −0.661836 0.749649i \(-0.730222\pi\)
0.318297 + 0.947991i \(0.396889\pi\)
\(978\) 0 0
\(979\) −9.84230 + 17.0474i −0.314561 + 0.544836i
\(980\) 0 0
\(981\) 51.8164 + 29.9162i 1.65437 + 0.955151i
\(982\) 0 0
\(983\) 36.0862i 1.15097i −0.817812 0.575486i \(-0.804813\pi\)
0.817812 0.575486i \(-0.195187\pi\)
\(984\) 0 0
\(985\) 20.0703 + 34.7628i 0.639492 + 1.10763i
\(986\) 0 0
\(987\) −14.0589 −0.447500
\(988\) 0 0
\(989\) 92.2095 2.93209
\(990\) 0 0
\(991\) −26.4245 45.7686i −0.839403 1.45389i −0.890395 0.455189i \(-0.849572\pi\)
0.0509920 0.998699i \(-0.483762\pi\)
\(992\) 0 0
\(993\) 58.3409i 1.85139i
\(994\) 0 0
\(995\) 74.4823 + 43.0024i 2.36125 + 1.36327i
\(996\) 0 0
\(997\) −0.704139 + 1.21960i −0.0223003 + 0.0386252i −0.876960 0.480563i \(-0.840432\pi\)
0.854660 + 0.519188i \(0.173766\pi\)
\(998\) 0 0
\(999\) 44.5983 25.7489i 1.41103 0.814658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 364.2.u.a.309.1 yes 16
3.2 odd 2 3276.2.cf.c.1765.2 16
4.3 odd 2 1456.2.cc.f.673.8 16
7.2 even 3 2548.2.bq.e.361.8 16
7.3 odd 6 2548.2.bb.c.569.8 16
7.4 even 3 2548.2.bb.d.569.1 16
7.5 odd 6 2548.2.bq.c.361.1 16
7.6 odd 2 2548.2.u.c.1765.8 16
13.2 odd 12 4732.2.a.t.1.8 8
13.3 even 3 4732.2.g.k.337.16 16
13.4 even 6 inner 364.2.u.a.225.1 16
13.10 even 6 4732.2.g.k.337.15 16
13.11 odd 12 4732.2.a.s.1.8 8
39.17 odd 6 3276.2.cf.c.2773.7 16
52.43 odd 6 1456.2.cc.f.225.8 16
91.4 even 6 2548.2.bq.e.1941.8 16
91.17 odd 6 2548.2.bq.c.1941.1 16
91.30 even 6 2548.2.bb.d.1733.1 16
91.69 odd 6 2548.2.u.c.589.8 16
91.82 odd 6 2548.2.bb.c.1733.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 13.4 even 6 inner
364.2.u.a.309.1 yes 16 1.1 even 1 trivial
1456.2.cc.f.225.8 16 52.43 odd 6
1456.2.cc.f.673.8 16 4.3 odd 2
2548.2.u.c.589.8 16 91.69 odd 6
2548.2.u.c.1765.8 16 7.6 odd 2
2548.2.bb.c.569.8 16 7.3 odd 6
2548.2.bb.c.1733.8 16 91.82 odd 6
2548.2.bb.d.569.1 16 7.4 even 3
2548.2.bb.d.1733.1 16 91.30 even 6
2548.2.bq.c.361.1 16 7.5 odd 6
2548.2.bq.c.1941.1 16 91.17 odd 6
2548.2.bq.e.361.8 16 7.2 even 3
2548.2.bq.e.1941.8 16 91.4 even 6
3276.2.cf.c.1765.2 16 3.2 odd 2
3276.2.cf.c.2773.7 16 39.17 odd 6
4732.2.a.s.1.8 8 13.11 odd 12
4732.2.a.t.1.8 8 13.2 odd 12
4732.2.g.k.337.15 16 13.10 even 6
4732.2.g.k.337.16 16 13.3 even 3