Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [366,3,Mod(37,366)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(366, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 13]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("366.37");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 366 = 2 \cdot 3 \cdot 61 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 366.s (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.97277767559\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −0.642040 | + | 1.26007i | −1.64728 | + | 0.535233i | −1.17557 | − | 1.61803i | −4.68375 | − | 6.44663i | 0.383185 | − | 2.41933i | −3.06260 | + | 1.56047i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 11.1304 | − | 1.76288i |
37.2 | −0.642040 | + | 1.26007i | −1.64728 | + | 0.535233i | −1.17557 | − | 1.61803i | −3.06365 | − | 4.21676i | 0.383185 | − | 2.41933i | −6.63267 | + | 3.37952i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 7.28041 | − | 1.15310i |
37.3 | −0.642040 | + | 1.26007i | −1.64728 | + | 0.535233i | −1.17557 | − | 1.61803i | −0.695904 | − | 0.957829i | 0.383185 | − | 2.41933i | 8.24931 | − | 4.20323i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 1.65373 | − | 0.261926i |
37.4 | −0.642040 | + | 1.26007i | −1.64728 | + | 0.535233i | −1.17557 | − | 1.61803i | 2.30152 | + | 3.16777i | 0.383185 | − | 2.41933i | −1.21093 | + | 0.616999i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | −5.46930 | + | 0.866251i |
37.5 | −0.642040 | + | 1.26007i | −1.64728 | + | 0.535233i | −1.17557 | − | 1.61803i | 3.44549 | + | 4.74231i | 0.383185 | − | 2.41933i | 3.66563 | − | 1.86773i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | −8.18781 | + | 1.29682i |
37.6 | −0.642040 | + | 1.26007i | 1.64728 | − | 0.535233i | −1.17557 | − | 1.61803i | −5.41919 | − | 7.45887i | −0.383185 | + | 2.41933i | 0.532814 | − | 0.271482i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 12.8781 | − | 2.03968i |
37.7 | −0.642040 | + | 1.26007i | 1.64728 | − | 0.535233i | −1.17557 | − | 1.61803i | −1.24209 | − | 1.70959i | −0.383185 | + | 2.41933i | 5.13070 | − | 2.61422i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 2.95169 | − | 0.467501i |
37.8 | −0.642040 | + | 1.26007i | 1.64728 | − | 0.535233i | −1.17557 | − | 1.61803i | −1.15144 | − | 1.58482i | −0.383185 | + | 2.41933i | −6.58739 | + | 3.35644i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | 2.73627 | − | 0.433382i |
37.9 | −0.642040 | + | 1.26007i | 1.64728 | − | 0.535233i | −1.17557 | − | 1.61803i | 2.16962 | + | 2.98622i | −0.383185 | + | 2.41933i | −9.86354 | + | 5.02573i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | −5.15583 | + | 0.816604i |
37.10 | −0.642040 | + | 1.26007i | 1.64728 | − | 0.535233i | −1.17557 | − | 1.61803i | 2.94681 | + | 4.05594i | −0.383185 | + | 2.41933i | 6.29591 | − | 3.20793i | 2.79360 | − | 0.442463i | 2.42705 | − | 1.76336i | −7.00276 | + | 1.10913i |
85.1 | 1.26007 | + | 0.642040i | −1.64728 | + | 0.535233i | 1.17557 | + | 1.61803i | −5.20482 | − | 7.16382i | −2.41933 | − | 0.383185i | 2.86610 | + | 5.62504i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | −1.95900 | − | 12.3686i |
85.2 | 1.26007 | + | 0.642040i | −1.64728 | + | 0.535233i | 1.17557 | + | 1.61803i | −2.70670 | − | 3.72546i | −2.41933 | − | 0.383185i | 0.0226989 | + | 0.0445491i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | −1.01875 | − | 6.43216i |
85.3 | 1.26007 | + | 0.642040i | −1.64728 | + | 0.535233i | 1.17557 | + | 1.61803i | 0.381580 | + | 0.525200i | −2.41933 | − | 0.383185i | −4.85898 | − | 9.53628i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 0.143620 | + | 0.906779i |
85.4 | 1.26007 | + | 0.642040i | −1.64728 | + | 0.535233i | 1.17557 | + | 1.61803i | 3.57646 | + | 4.92258i | −2.41933 | − | 0.383185i | −2.25210 | − | 4.41999i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 1.34612 | + | 8.49904i |
85.5 | 1.26007 | + | 0.642040i | −1.64728 | + | 0.535233i | 1.17557 | + | 1.61803i | 3.88584 | + | 5.34840i | −2.41933 | − | 0.383185i | 4.39558 | + | 8.62680i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 1.46256 | + | 9.23423i |
85.6 | 1.26007 | + | 0.642040i | 1.64728 | − | 0.535233i | 1.17557 | + | 1.61803i | −3.85777 | − | 5.30976i | 2.41933 | + | 0.383185i | −3.06055 | − | 6.00667i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | −1.45199 | − | 9.16753i |
85.7 | 1.26007 | + | 0.642040i | 1.64728 | − | 0.535233i | 1.17557 | + | 1.61803i | −3.00896 | − | 4.14148i | 2.41933 | + | 0.383185i | 4.80197 | + | 9.42440i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | −1.13252 | − | 7.15044i |
85.8 | 1.26007 | + | 0.642040i | 1.64728 | − | 0.535233i | 1.17557 | + | 1.61803i | 0.415468 | + | 0.571843i | 2.41933 | + | 0.383185i | −3.82718 | − | 7.51126i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 0.156375 | + | 0.987311i |
85.9 | 1.26007 | + | 0.642040i | 1.64728 | − | 0.535233i | 1.17557 | + | 1.61803i | 2.50035 | + | 3.44144i | 2.41933 | + | 0.383185i | 1.92026 | + | 3.76873i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 0.941088 | + | 5.94179i |
85.10 | 1.26007 | + | 0.642040i | 1.64728 | − | 0.535233i | 1.17557 | + | 1.61803i | 3.88327 | + | 5.34486i | 2.41933 | + | 0.383185i | 1.76675 | + | 3.46745i | 0.442463 | + | 2.79360i | 2.42705 | − | 1.76336i | 1.46159 | + | 9.22813i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
61.j | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 366.3.s.a | ✓ | 80 |
61.j | odd | 20 | 1 | inner | 366.3.s.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
366.3.s.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
366.3.s.a | ✓ | 80 | 61.j | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{80} + 40 T_{5}^{79} + 478 T_{5}^{78} - 2560 T_{5}^{77} - 107113 T_{5}^{76} + \cdots + 55\!\cdots\!16 \)
acting on \(S_{3}^{\mathrm{new}}(366, [\chi])\).