Properties

Label 3675.1.c.b
Level $3675$
Weight $1$
Character orbit 3675.c
Self dual yes
Analytic conductor $1.834$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3675,1,Mod(1226,3675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3675.1226");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 525)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.3675.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.94539375.1
Stark unit: Root of $x^{6} - 31646x^{5} - 3919425x^{4} - 1009371460x^{3} - 3919425x^{2} - 31646x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{3} + q^{4} + q^{9} - q^{12} + q^{13} + q^{16} + q^{19} - q^{27} - 2 q^{31} + q^{36} - q^{37} - q^{39} + 2 q^{43} - q^{48} + q^{52} - q^{57} + q^{61} + q^{64} - q^{67} + q^{73}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(0\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1226.1
0
0 −1.00000 1.00000 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.1.c.b 1
3.b odd 2 1 CM 3675.1.c.b 1
5.b even 2 1 3675.1.c.d 1
5.c odd 4 2 3675.1.f.a 2
7.b odd 2 1 3675.1.c.c 1
7.c even 3 2 3675.1.u.b 2
7.d odd 6 2 525.1.u.a 2
15.d odd 2 1 3675.1.c.d 1
15.e even 4 2 3675.1.f.a 2
21.c even 2 1 3675.1.c.c 1
21.g even 6 2 525.1.u.a 2
21.h odd 6 2 3675.1.u.b 2
35.c odd 2 1 3675.1.c.a 1
35.f even 4 2 3675.1.f.b 2
35.i odd 6 2 525.1.u.b yes 2
35.j even 6 2 3675.1.u.a 2
35.k even 12 4 525.1.p.a 4
35.l odd 12 4 3675.1.p.a 4
105.g even 2 1 3675.1.c.a 1
105.k odd 4 2 3675.1.f.b 2
105.o odd 6 2 3675.1.u.a 2
105.p even 6 2 525.1.u.b yes 2
105.w odd 12 4 525.1.p.a 4
105.x even 12 4 3675.1.p.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.1.p.a 4 35.k even 12 4
525.1.p.a 4 105.w odd 12 4
525.1.u.a 2 7.d odd 6 2
525.1.u.a 2 21.g even 6 2
525.1.u.b yes 2 35.i odd 6 2
525.1.u.b yes 2 105.p even 6 2
3675.1.c.a 1 35.c odd 2 1
3675.1.c.a 1 105.g even 2 1
3675.1.c.b 1 1.a even 1 1 trivial
3675.1.c.b 1 3.b odd 2 1 CM
3675.1.c.c 1 7.b odd 2 1
3675.1.c.c 1 21.c even 2 1
3675.1.c.d 1 5.b even 2 1
3675.1.c.d 1 15.d odd 2 1
3675.1.f.a 2 5.c odd 4 2
3675.1.f.a 2 15.e even 4 2
3675.1.f.b 2 35.f even 4 2
3675.1.f.b 2 105.k odd 4 2
3675.1.p.a 4 35.l odd 12 4
3675.1.p.a 4 105.x even 12 4
3675.1.u.a 2 35.j even 6 2
3675.1.u.a 2 105.o odd 6 2
3675.1.u.b 2 7.c even 3 2
3675.1.u.b 2 21.h odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3675, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display
\( T_{19} - 1 \) Copy content Toggle raw display
\( T_{37} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T + 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 1 \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less