Properties

Label 3675.2.a.b
Level $3675$
Weight $2$
Character orbit 3675.a
Self dual yes
Analytic conductor $29.345$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3675,2,Mod(1,3675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3675.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3450227428\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{6} + q^{9} + 2 q^{11} - 2 q^{12} + q^{13} - 4 q^{16} + 2 q^{17} - 2 q^{18} + 5 q^{19} - 4 q^{22} - 6 q^{23} - 2 q^{26} - q^{27} + 10 q^{29} + 3 q^{31} + 8 q^{32}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 −1.00000 2.00000 0 2.00000 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.2.a.b 1
5.b even 2 1 3675.2.a.q 1
7.b odd 2 1 75.2.a.a 1
21.c even 2 1 225.2.a.e 1
28.d even 2 1 1200.2.a.c 1
35.c odd 2 1 75.2.a.c yes 1
35.f even 4 2 75.2.b.a 2
56.e even 2 1 4800.2.a.br 1
56.h odd 2 1 4800.2.a.bb 1
77.b even 2 1 9075.2.a.s 1
84.h odd 2 1 3600.2.a.j 1
105.g even 2 1 225.2.a.a 1
105.k odd 4 2 225.2.b.a 2
140.c even 2 1 1200.2.a.p 1
140.j odd 4 2 1200.2.f.d 2
280.c odd 2 1 4800.2.a.bq 1
280.n even 2 1 4800.2.a.be 1
280.s even 4 2 4800.2.f.l 2
280.y odd 4 2 4800.2.f.y 2
385.h even 2 1 9075.2.a.a 1
420.o odd 2 1 3600.2.a.bk 1
420.w even 4 2 3600.2.f.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.2.a.a 1 7.b odd 2 1
75.2.a.c yes 1 35.c odd 2 1
75.2.b.a 2 35.f even 4 2
225.2.a.a 1 105.g even 2 1
225.2.a.e 1 21.c even 2 1
225.2.b.a 2 105.k odd 4 2
1200.2.a.c 1 28.d even 2 1
1200.2.a.p 1 140.c even 2 1
1200.2.f.d 2 140.j odd 4 2
3600.2.a.j 1 84.h odd 2 1
3600.2.a.bk 1 420.o odd 2 1
3600.2.f.p 2 420.w even 4 2
3675.2.a.b 1 1.a even 1 1 trivial
3675.2.a.q 1 5.b even 2 1
4800.2.a.bb 1 56.h odd 2 1
4800.2.a.be 1 280.n even 2 1
4800.2.a.bq 1 280.c odd 2 1
4800.2.a.br 1 56.e even 2 1
4800.2.f.l 2 280.s even 4 2
4800.2.f.y 2 280.y odd 4 2
9075.2.a.a 1 385.h even 2 1
9075.2.a.s 1 77.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3675))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 5 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 8 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T - 4 \) Copy content Toggle raw display
$59$ \( T - 10 \) Copy content Toggle raw display
$61$ \( T + 7 \) Copy content Toggle raw display
$67$ \( T - 3 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 14 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 17 \) Copy content Toggle raw display
show more
show less