Properties

Label 3675.2.a.z.1.1
Level $3675$
Weight $2$
Character 3675.1
Self dual yes
Analytic conductor $29.345$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3675,2,Mod(1,3675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3675.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3450227428\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3675.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +1.00000 q^{3} -1.41421 q^{6} +2.82843 q^{8} +1.00000 q^{9} +3.41421 q^{11} +1.58579 q^{13} -4.00000 q^{16} +6.24264 q^{17} -1.41421 q^{18} -6.65685 q^{19} -4.82843 q^{22} +6.24264 q^{23} +2.82843 q^{24} -2.24264 q^{26} +1.00000 q^{27} -0.242641 q^{29} -0.171573 q^{31} +3.41421 q^{33} -8.82843 q^{34} +5.58579 q^{37} +9.41421 q^{38} +1.58579 q^{39} +2.24264 q^{41} +10.4142 q^{43} -8.82843 q^{46} -9.31371 q^{47} -4.00000 q^{48} +6.24264 q^{51} -1.17157 q^{53} -1.41421 q^{54} -6.65685 q^{57} +0.343146 q^{58} +1.41421 q^{59} +12.4853 q^{61} +0.242641 q^{62} +8.00000 q^{64} -4.82843 q^{66} -11.7279 q^{67} +6.24264 q^{69} -3.41421 q^{71} +2.82843 q^{72} -2.07107 q^{73} -7.89949 q^{74} -2.24264 q^{78} -4.65685 q^{79} +1.00000 q^{81} -3.17157 q^{82} -5.41421 q^{83} -14.7279 q^{86} -0.242641 q^{87} +9.65685 q^{88} -3.75736 q^{89} -0.171573 q^{93} +13.1716 q^{94} +10.8284 q^{97} +3.41421 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9} + 4 q^{11} + 6 q^{13} - 8 q^{16} + 4 q^{17} - 2 q^{19} - 4 q^{22} + 4 q^{23} + 4 q^{26} + 2 q^{27} + 8 q^{29} - 6 q^{31} + 4 q^{33} - 12 q^{34} + 14 q^{37} + 16 q^{38} + 6 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) −1.41421 −0.577350
\(7\) 0 0
\(8\) 2.82843 1.00000
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.41421 1.02942 0.514712 0.857363i \(-0.327899\pi\)
0.514712 + 0.857363i \(0.327899\pi\)
\(12\) 0 0
\(13\) 1.58579 0.439818 0.219909 0.975520i \(-0.429424\pi\)
0.219909 + 0.975520i \(0.429424\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 6.24264 1.51406 0.757031 0.653379i \(-0.226649\pi\)
0.757031 + 0.653379i \(0.226649\pi\)
\(18\) −1.41421 −0.333333
\(19\) −6.65685 −1.52719 −0.763594 0.645697i \(-0.776567\pi\)
−0.763594 + 0.645697i \(0.776567\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.82843 −1.02942
\(23\) 6.24264 1.30168 0.650840 0.759215i \(-0.274417\pi\)
0.650840 + 0.759215i \(0.274417\pi\)
\(24\) 2.82843 0.577350
\(25\) 0 0
\(26\) −2.24264 −0.439818
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.242641 −0.0450572 −0.0225286 0.999746i \(-0.507172\pi\)
−0.0225286 + 0.999746i \(0.507172\pi\)
\(30\) 0 0
\(31\) −0.171573 −0.0308154 −0.0154077 0.999881i \(-0.504905\pi\)
−0.0154077 + 0.999881i \(0.504905\pi\)
\(32\) 0 0
\(33\) 3.41421 0.594338
\(34\) −8.82843 −1.51406
\(35\) 0 0
\(36\) 0 0
\(37\) 5.58579 0.918298 0.459149 0.888359i \(-0.348154\pi\)
0.459149 + 0.888359i \(0.348154\pi\)
\(38\) 9.41421 1.52719
\(39\) 1.58579 0.253929
\(40\) 0 0
\(41\) 2.24264 0.350242 0.175121 0.984547i \(-0.443968\pi\)
0.175121 + 0.984547i \(0.443968\pi\)
\(42\) 0 0
\(43\) 10.4142 1.58815 0.794076 0.607818i \(-0.207955\pi\)
0.794076 + 0.607818i \(0.207955\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −8.82843 −1.30168
\(47\) −9.31371 −1.35854 −0.679272 0.733887i \(-0.737704\pi\)
−0.679272 + 0.733887i \(0.737704\pi\)
\(48\) −4.00000 −0.577350
\(49\) 0 0
\(50\) 0 0
\(51\) 6.24264 0.874145
\(52\) 0 0
\(53\) −1.17157 −0.160928 −0.0804640 0.996758i \(-0.525640\pi\)
−0.0804640 + 0.996758i \(0.525640\pi\)
\(54\) −1.41421 −0.192450
\(55\) 0 0
\(56\) 0 0
\(57\) −6.65685 −0.881722
\(58\) 0.343146 0.0450572
\(59\) 1.41421 0.184115 0.0920575 0.995754i \(-0.470656\pi\)
0.0920575 + 0.995754i \(0.470656\pi\)
\(60\) 0 0
\(61\) 12.4853 1.59858 0.799288 0.600948i \(-0.205210\pi\)
0.799288 + 0.600948i \(0.205210\pi\)
\(62\) 0.242641 0.0308154
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) −4.82843 −0.594338
\(67\) −11.7279 −1.43279 −0.716397 0.697693i \(-0.754210\pi\)
−0.716397 + 0.697693i \(0.754210\pi\)
\(68\) 0 0
\(69\) 6.24264 0.751526
\(70\) 0 0
\(71\) −3.41421 −0.405193 −0.202596 0.979262i \(-0.564938\pi\)
−0.202596 + 0.979262i \(0.564938\pi\)
\(72\) 2.82843 0.333333
\(73\) −2.07107 −0.242400 −0.121200 0.992628i \(-0.538674\pi\)
−0.121200 + 0.992628i \(0.538674\pi\)
\(74\) −7.89949 −0.918298
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −2.24264 −0.253929
\(79\) −4.65685 −0.523937 −0.261969 0.965076i \(-0.584372\pi\)
−0.261969 + 0.965076i \(0.584372\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −3.17157 −0.350242
\(83\) −5.41421 −0.594287 −0.297144 0.954833i \(-0.596034\pi\)
−0.297144 + 0.954833i \(0.596034\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −14.7279 −1.58815
\(87\) −0.242641 −0.0260138
\(88\) 9.65685 1.02942
\(89\) −3.75736 −0.398279 −0.199140 0.979971i \(-0.563815\pi\)
−0.199140 + 0.979971i \(0.563815\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.171573 −0.0177913
\(94\) 13.1716 1.35854
\(95\) 0 0
\(96\) 0 0
\(97\) 10.8284 1.09946 0.549730 0.835342i \(-0.314731\pi\)
0.549730 + 0.835342i \(0.314731\pi\)
\(98\) 0 0
\(99\) 3.41421 0.343141
\(100\) 0 0
\(101\) −6.24264 −0.621166 −0.310583 0.950546i \(-0.600524\pi\)
−0.310583 + 0.950546i \(0.600524\pi\)
\(102\) −8.82843 −0.874145
\(103\) 1.24264 0.122441 0.0612205 0.998124i \(-0.480501\pi\)
0.0612205 + 0.998124i \(0.480501\pi\)
\(104\) 4.48528 0.439818
\(105\) 0 0
\(106\) 1.65685 0.160928
\(107\) −15.4142 −1.49015 −0.745074 0.666982i \(-0.767586\pi\)
−0.745074 + 0.666982i \(0.767586\pi\)
\(108\) 0 0
\(109\) −13.4853 −1.29166 −0.645828 0.763483i \(-0.723488\pi\)
−0.645828 + 0.763483i \(0.723488\pi\)
\(110\) 0 0
\(111\) 5.58579 0.530179
\(112\) 0 0
\(113\) 4.34315 0.408569 0.204284 0.978912i \(-0.434513\pi\)
0.204284 + 0.978912i \(0.434513\pi\)
\(114\) 9.41421 0.881722
\(115\) 0 0
\(116\) 0 0
\(117\) 1.58579 0.146606
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) 0.656854 0.0597140
\(122\) −17.6569 −1.59858
\(123\) 2.24264 0.202212
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 18.0711 1.60355 0.801774 0.597627i \(-0.203890\pi\)
0.801774 + 0.597627i \(0.203890\pi\)
\(128\) −11.3137 −1.00000
\(129\) 10.4142 0.916920
\(130\) 0 0
\(131\) −10.4853 −0.916103 −0.458052 0.888926i \(-0.651453\pi\)
−0.458052 + 0.888926i \(0.651453\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 16.5858 1.43279
\(135\) 0 0
\(136\) 17.6569 1.51406
\(137\) 2.92893 0.250236 0.125118 0.992142i \(-0.460069\pi\)
0.125118 + 0.992142i \(0.460069\pi\)
\(138\) −8.82843 −0.751526
\(139\) 11.4853 0.974169 0.487084 0.873355i \(-0.338060\pi\)
0.487084 + 0.873355i \(0.338060\pi\)
\(140\) 0 0
\(141\) −9.31371 −0.784356
\(142\) 4.82843 0.405193
\(143\) 5.41421 0.452759
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) 2.92893 0.242400
\(147\) 0 0
\(148\) 0 0
\(149\) 17.6569 1.44651 0.723253 0.690583i \(-0.242646\pi\)
0.723253 + 0.690583i \(0.242646\pi\)
\(150\) 0 0
\(151\) −6.48528 −0.527765 −0.263882 0.964555i \(-0.585003\pi\)
−0.263882 + 0.964555i \(0.585003\pi\)
\(152\) −18.8284 −1.52719
\(153\) 6.24264 0.504688
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.1421 1.28828 0.644141 0.764906i \(-0.277215\pi\)
0.644141 + 0.764906i \(0.277215\pi\)
\(158\) 6.58579 0.523937
\(159\) −1.17157 −0.0929118
\(160\) 0 0
\(161\) 0 0
\(162\) −1.41421 −0.111111
\(163\) 19.3137 1.51277 0.756383 0.654129i \(-0.226965\pi\)
0.756383 + 0.654129i \(0.226965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 7.65685 0.594287
\(167\) −11.7574 −0.909812 −0.454906 0.890540i \(-0.650327\pi\)
−0.454906 + 0.890540i \(0.650327\pi\)
\(168\) 0 0
\(169\) −10.4853 −0.806560
\(170\) 0 0
\(171\) −6.65685 −0.509062
\(172\) 0 0
\(173\) 2.82843 0.215041 0.107521 0.994203i \(-0.465709\pi\)
0.107521 + 0.994203i \(0.465709\pi\)
\(174\) 0.343146 0.0260138
\(175\) 0 0
\(176\) −13.6569 −1.02942
\(177\) 1.41421 0.106299
\(178\) 5.31371 0.398279
\(179\) 19.6569 1.46922 0.734611 0.678488i \(-0.237365\pi\)
0.734611 + 0.678488i \(0.237365\pi\)
\(180\) 0 0
\(181\) 0.656854 0.0488236 0.0244118 0.999702i \(-0.492229\pi\)
0.0244118 + 0.999702i \(0.492229\pi\)
\(182\) 0 0
\(183\) 12.4853 0.922939
\(184\) 17.6569 1.30168
\(185\) 0 0
\(186\) 0.242641 0.0177913
\(187\) 21.3137 1.55861
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.9706 1.37266 0.686331 0.727289i \(-0.259220\pi\)
0.686331 + 0.727289i \(0.259220\pi\)
\(192\) 8.00000 0.577350
\(193\) 6.75736 0.486405 0.243203 0.969975i \(-0.421802\pi\)
0.243203 + 0.969975i \(0.421802\pi\)
\(194\) −15.3137 −1.09946
\(195\) 0 0
\(196\) 0 0
\(197\) −5.55635 −0.395873 −0.197937 0.980215i \(-0.563424\pi\)
−0.197937 + 0.980215i \(0.563424\pi\)
\(198\) −4.82843 −0.343141
\(199\) 5.51472 0.390928 0.195464 0.980711i \(-0.437379\pi\)
0.195464 + 0.980711i \(0.437379\pi\)
\(200\) 0 0
\(201\) −11.7279 −0.827224
\(202\) 8.82843 0.621166
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.75736 −0.122441
\(207\) 6.24264 0.433894
\(208\) −6.34315 −0.439818
\(209\) −22.7279 −1.57212
\(210\) 0 0
\(211\) 0.142136 0.00978502 0.00489251 0.999988i \(-0.498443\pi\)
0.00489251 + 0.999988i \(0.498443\pi\)
\(212\) 0 0
\(213\) −3.41421 −0.233938
\(214\) 21.7990 1.49015
\(215\) 0 0
\(216\) 2.82843 0.192450
\(217\) 0 0
\(218\) 19.0711 1.29166
\(219\) −2.07107 −0.139950
\(220\) 0 0
\(221\) 9.89949 0.665912
\(222\) −7.89949 −0.530179
\(223\) −17.1716 −1.14989 −0.574947 0.818191i \(-0.694977\pi\)
−0.574947 + 0.818191i \(0.694977\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.14214 −0.408569
\(227\) −23.0711 −1.53128 −0.765640 0.643269i \(-0.777578\pi\)
−0.765640 + 0.643269i \(0.777578\pi\)
\(228\) 0 0
\(229\) −14.3137 −0.945876 −0.472938 0.881096i \(-0.656807\pi\)
−0.472938 + 0.881096i \(0.656807\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.686292 −0.0450572
\(233\) 22.4853 1.47306 0.736530 0.676405i \(-0.236463\pi\)
0.736530 + 0.676405i \(0.236463\pi\)
\(234\) −2.24264 −0.146606
\(235\) 0 0
\(236\) 0 0
\(237\) −4.65685 −0.302495
\(238\) 0 0
\(239\) 17.3137 1.11993 0.559965 0.828516i \(-0.310814\pi\)
0.559965 + 0.828516i \(0.310814\pi\)
\(240\) 0 0
\(241\) −10.3431 −0.666261 −0.333130 0.942881i \(-0.608105\pi\)
−0.333130 + 0.942881i \(0.608105\pi\)
\(242\) −0.928932 −0.0597140
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) −3.17157 −0.202212
\(247\) −10.5563 −0.671684
\(248\) −0.485281 −0.0308154
\(249\) −5.41421 −0.343112
\(250\) 0 0
\(251\) −5.41421 −0.341742 −0.170871 0.985293i \(-0.554658\pi\)
−0.170871 + 0.985293i \(0.554658\pi\)
\(252\) 0 0
\(253\) 21.3137 1.33998
\(254\) −25.5563 −1.60355
\(255\) 0 0
\(256\) 0 0
\(257\) 29.8995 1.86508 0.932540 0.361068i \(-0.117588\pi\)
0.932540 + 0.361068i \(0.117588\pi\)
\(258\) −14.7279 −0.916920
\(259\) 0 0
\(260\) 0 0
\(261\) −0.242641 −0.0150191
\(262\) 14.8284 0.916103
\(263\) −1.17157 −0.0722423 −0.0361211 0.999347i \(-0.511500\pi\)
−0.0361211 + 0.999347i \(0.511500\pi\)
\(264\) 9.65685 0.594338
\(265\) 0 0
\(266\) 0 0
\(267\) −3.75736 −0.229947
\(268\) 0 0
\(269\) 8.14214 0.496435 0.248217 0.968704i \(-0.420155\pi\)
0.248217 + 0.968704i \(0.420155\pi\)
\(270\) 0 0
\(271\) 20.1421 1.22355 0.611774 0.791033i \(-0.290456\pi\)
0.611774 + 0.791033i \(0.290456\pi\)
\(272\) −24.9706 −1.51406
\(273\) 0 0
\(274\) −4.14214 −0.250236
\(275\) 0 0
\(276\) 0 0
\(277\) 23.3848 1.40506 0.702528 0.711657i \(-0.252055\pi\)
0.702528 + 0.711657i \(0.252055\pi\)
\(278\) −16.2426 −0.974169
\(279\) −0.171573 −0.0102718
\(280\) 0 0
\(281\) 9.65685 0.576080 0.288040 0.957618i \(-0.406996\pi\)
0.288040 + 0.957618i \(0.406996\pi\)
\(282\) 13.1716 0.784356
\(283\) 13.2426 0.787193 0.393597 0.919283i \(-0.371231\pi\)
0.393597 + 0.919283i \(0.371231\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −7.65685 −0.452759
\(287\) 0 0
\(288\) 0 0
\(289\) 21.9706 1.29239
\(290\) 0 0
\(291\) 10.8284 0.634774
\(292\) 0 0
\(293\) 15.3137 0.894636 0.447318 0.894375i \(-0.352379\pi\)
0.447318 + 0.894375i \(0.352379\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 15.7990 0.918298
\(297\) 3.41421 0.198113
\(298\) −24.9706 −1.44651
\(299\) 9.89949 0.572503
\(300\) 0 0
\(301\) 0 0
\(302\) 9.17157 0.527765
\(303\) −6.24264 −0.358630
\(304\) 26.6274 1.52719
\(305\) 0 0
\(306\) −8.82843 −0.504688
\(307\) −1.58579 −0.0905056 −0.0452528 0.998976i \(-0.514409\pi\)
−0.0452528 + 0.998976i \(0.514409\pi\)
\(308\) 0 0
\(309\) 1.24264 0.0706914
\(310\) 0 0
\(311\) −17.0711 −0.968011 −0.484006 0.875065i \(-0.660819\pi\)
−0.484006 + 0.875065i \(0.660819\pi\)
\(312\) 4.48528 0.253929
\(313\) −26.2132 −1.48166 −0.740829 0.671694i \(-0.765567\pi\)
−0.740829 + 0.671694i \(0.765567\pi\)
\(314\) −22.8284 −1.28828
\(315\) 0 0
\(316\) 0 0
\(317\) −0.100505 −0.00564493 −0.00282246 0.999996i \(-0.500898\pi\)
−0.00282246 + 0.999996i \(0.500898\pi\)
\(318\) 1.65685 0.0929118
\(319\) −0.828427 −0.0463830
\(320\) 0 0
\(321\) −15.4142 −0.860338
\(322\) 0 0
\(323\) −41.5563 −2.31226
\(324\) 0 0
\(325\) 0 0
\(326\) −27.3137 −1.51277
\(327\) −13.4853 −0.745738
\(328\) 6.34315 0.350242
\(329\) 0 0
\(330\) 0 0
\(331\) −27.6274 −1.51854 −0.759270 0.650776i \(-0.774444\pi\)
−0.759270 + 0.650776i \(0.774444\pi\)
\(332\) 0 0
\(333\) 5.58579 0.306099
\(334\) 16.6274 0.909812
\(335\) 0 0
\(336\) 0 0
\(337\) 0.899495 0.0489986 0.0244993 0.999700i \(-0.492201\pi\)
0.0244993 + 0.999700i \(0.492201\pi\)
\(338\) 14.8284 0.806560
\(339\) 4.34315 0.235887
\(340\) 0 0
\(341\) −0.585786 −0.0317221
\(342\) 9.41421 0.509062
\(343\) 0 0
\(344\) 29.4558 1.58815
\(345\) 0 0
\(346\) −4.00000 −0.215041
\(347\) 24.9706 1.34049 0.670245 0.742140i \(-0.266189\pi\)
0.670245 + 0.742140i \(0.266189\pi\)
\(348\) 0 0
\(349\) −16.6274 −0.890045 −0.445023 0.895519i \(-0.646804\pi\)
−0.445023 + 0.895519i \(0.646804\pi\)
\(350\) 0 0
\(351\) 1.58579 0.0846430
\(352\) 0 0
\(353\) −5.89949 −0.313998 −0.156999 0.987599i \(-0.550182\pi\)
−0.156999 + 0.987599i \(0.550182\pi\)
\(354\) −2.00000 −0.106299
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −27.7990 −1.46922
\(359\) −26.5858 −1.40314 −0.701572 0.712599i \(-0.747518\pi\)
−0.701572 + 0.712599i \(0.747518\pi\)
\(360\) 0 0
\(361\) 25.3137 1.33230
\(362\) −0.928932 −0.0488236
\(363\) 0.656854 0.0344759
\(364\) 0 0
\(365\) 0 0
\(366\) −17.6569 −0.922939
\(367\) 19.5858 1.02237 0.511185 0.859471i \(-0.329207\pi\)
0.511185 + 0.859471i \(0.329207\pi\)
\(368\) −24.9706 −1.30168
\(369\) 2.24264 0.116747
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −19.2426 −0.996346 −0.498173 0.867078i \(-0.665996\pi\)
−0.498173 + 0.867078i \(0.665996\pi\)
\(374\) −30.1421 −1.55861
\(375\) 0 0
\(376\) −26.3431 −1.35854
\(377\) −0.384776 −0.0198170
\(378\) 0 0
\(379\) 14.7990 0.760173 0.380087 0.924951i \(-0.375894\pi\)
0.380087 + 0.924951i \(0.375894\pi\)
\(380\) 0 0
\(381\) 18.0711 0.925809
\(382\) −26.8284 −1.37266
\(383\) −12.4853 −0.637968 −0.318984 0.947760i \(-0.603342\pi\)
−0.318984 + 0.947760i \(0.603342\pi\)
\(384\) −11.3137 −0.577350
\(385\) 0 0
\(386\) −9.55635 −0.486405
\(387\) 10.4142 0.529384
\(388\) 0 0
\(389\) 16.8701 0.855346 0.427673 0.903934i \(-0.359334\pi\)
0.427673 + 0.903934i \(0.359334\pi\)
\(390\) 0 0
\(391\) 38.9706 1.97083
\(392\) 0 0
\(393\) −10.4853 −0.528912
\(394\) 7.85786 0.395873
\(395\) 0 0
\(396\) 0 0
\(397\) 24.2132 1.21523 0.607613 0.794233i \(-0.292127\pi\)
0.607613 + 0.794233i \(0.292127\pi\)
\(398\) −7.79899 −0.390928
\(399\) 0 0
\(400\) 0 0
\(401\) 0.485281 0.0242338 0.0121169 0.999927i \(-0.496143\pi\)
0.0121169 + 0.999927i \(0.496143\pi\)
\(402\) 16.5858 0.827224
\(403\) −0.272078 −0.0135532
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19.0711 0.945318
\(408\) 17.6569 0.874145
\(409\) −26.3137 −1.30113 −0.650565 0.759451i \(-0.725468\pi\)
−0.650565 + 0.759451i \(0.725468\pi\)
\(410\) 0 0
\(411\) 2.92893 0.144474
\(412\) 0 0
\(413\) 0 0
\(414\) −8.82843 −0.433894
\(415\) 0 0
\(416\) 0 0
\(417\) 11.4853 0.562437
\(418\) 32.1421 1.57212
\(419\) −3.17157 −0.154941 −0.0774707 0.996995i \(-0.524684\pi\)
−0.0774707 + 0.996995i \(0.524684\pi\)
\(420\) 0 0
\(421\) 27.4853 1.33955 0.669775 0.742564i \(-0.266390\pi\)
0.669775 + 0.742564i \(0.266390\pi\)
\(422\) −0.201010 −0.00978502
\(423\) −9.31371 −0.452848
\(424\) −3.31371 −0.160928
\(425\) 0 0
\(426\) 4.82843 0.233938
\(427\) 0 0
\(428\) 0 0
\(429\) 5.41421 0.261401
\(430\) 0 0
\(431\) 36.8284 1.77396 0.886981 0.461805i \(-0.152798\pi\)
0.886981 + 0.461805i \(0.152798\pi\)
\(432\) −4.00000 −0.192450
\(433\) 24.5563 1.18010 0.590051 0.807366i \(-0.299107\pi\)
0.590051 + 0.807366i \(0.299107\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −41.5563 −1.98791
\(438\) 2.92893 0.139950
\(439\) 0.343146 0.0163775 0.00818873 0.999966i \(-0.497393\pi\)
0.00818873 + 0.999966i \(0.497393\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −14.0000 −0.665912
\(443\) −0.485281 −0.0230564 −0.0115282 0.999934i \(-0.503670\pi\)
−0.0115282 + 0.999934i \(0.503670\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 24.2843 1.14989
\(447\) 17.6569 0.835141
\(448\) 0 0
\(449\) −6.97056 −0.328961 −0.164481 0.986380i \(-0.552595\pi\)
−0.164481 + 0.986380i \(0.552595\pi\)
\(450\) 0 0
\(451\) 7.65685 0.360547
\(452\) 0 0
\(453\) −6.48528 −0.304705
\(454\) 32.6274 1.53128
\(455\) 0 0
\(456\) −18.8284 −0.881722
\(457\) 20.8995 0.977637 0.488819 0.872385i \(-0.337428\pi\)
0.488819 + 0.872385i \(0.337428\pi\)
\(458\) 20.2426 0.945876
\(459\) 6.24264 0.291382
\(460\) 0 0
\(461\) −27.0711 −1.26083 −0.630413 0.776260i \(-0.717114\pi\)
−0.630413 + 0.776260i \(0.717114\pi\)
\(462\) 0 0
\(463\) 10.4142 0.483990 0.241995 0.970278i \(-0.422198\pi\)
0.241995 + 0.970278i \(0.422198\pi\)
\(464\) 0.970563 0.0450572
\(465\) 0 0
\(466\) −31.7990 −1.47306
\(467\) −6.68629 −0.309405 −0.154702 0.987961i \(-0.549442\pi\)
−0.154702 + 0.987961i \(0.549442\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.1421 0.743790
\(472\) 4.00000 0.184115
\(473\) 35.5563 1.63488
\(474\) 6.58579 0.302495
\(475\) 0 0
\(476\) 0 0
\(477\) −1.17157 −0.0536426
\(478\) −24.4853 −1.11993
\(479\) −34.6274 −1.58217 −0.791084 0.611708i \(-0.790483\pi\)
−0.791084 + 0.611708i \(0.790483\pi\)
\(480\) 0 0
\(481\) 8.85786 0.403884
\(482\) 14.6274 0.666261
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) −1.41421 −0.0641500
\(487\) −0.899495 −0.0407600 −0.0203800 0.999792i \(-0.506488\pi\)
−0.0203800 + 0.999792i \(0.506488\pi\)
\(488\) 35.3137 1.59858
\(489\) 19.3137 0.873396
\(490\) 0 0
\(491\) −10.1421 −0.457708 −0.228854 0.973461i \(-0.573498\pi\)
−0.228854 + 0.973461i \(0.573498\pi\)
\(492\) 0 0
\(493\) −1.51472 −0.0682195
\(494\) 14.9289 0.671684
\(495\) 0 0
\(496\) 0.686292 0.0308154
\(497\) 0 0
\(498\) 7.65685 0.343112
\(499\) 8.79899 0.393897 0.196948 0.980414i \(-0.436897\pi\)
0.196948 + 0.980414i \(0.436897\pi\)
\(500\) 0 0
\(501\) −11.7574 −0.525280
\(502\) 7.65685 0.341742
\(503\) 18.4853 0.824218 0.412109 0.911135i \(-0.364792\pi\)
0.412109 + 0.911135i \(0.364792\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −30.1421 −1.33998
\(507\) −10.4853 −0.465668
\(508\) 0 0
\(509\) 13.7990 0.611629 0.305815 0.952091i \(-0.401071\pi\)
0.305815 + 0.952091i \(0.401071\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) −6.65685 −0.293907
\(514\) −42.2843 −1.86508
\(515\) 0 0
\(516\) 0 0
\(517\) −31.7990 −1.39852
\(518\) 0 0
\(519\) 2.82843 0.124154
\(520\) 0 0
\(521\) −39.1127 −1.71356 −0.856779 0.515683i \(-0.827538\pi\)
−0.856779 + 0.515683i \(0.827538\pi\)
\(522\) 0.343146 0.0150191
\(523\) 7.58579 0.331703 0.165852 0.986151i \(-0.446963\pi\)
0.165852 + 0.986151i \(0.446963\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.65685 0.0722423
\(527\) −1.07107 −0.0466564
\(528\) −13.6569 −0.594338
\(529\) 15.9706 0.694372
\(530\) 0 0
\(531\) 1.41421 0.0613716
\(532\) 0 0
\(533\) 3.55635 0.154043
\(534\) 5.31371 0.229947
\(535\) 0 0
\(536\) −33.1716 −1.43279
\(537\) 19.6569 0.848256
\(538\) −11.5147 −0.496435
\(539\) 0 0
\(540\) 0 0
\(541\) 32.3137 1.38927 0.694637 0.719360i \(-0.255565\pi\)
0.694637 + 0.719360i \(0.255565\pi\)
\(542\) −28.4853 −1.22355
\(543\) 0.656854 0.0281883
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 31.7990 1.35963 0.679813 0.733385i \(-0.262061\pi\)
0.679813 + 0.733385i \(0.262061\pi\)
\(548\) 0 0
\(549\) 12.4853 0.532859
\(550\) 0 0
\(551\) 1.61522 0.0688108
\(552\) 17.6569 0.751526
\(553\) 0 0
\(554\) −33.0711 −1.40506
\(555\) 0 0
\(556\) 0 0
\(557\) 8.34315 0.353510 0.176755 0.984255i \(-0.443440\pi\)
0.176755 + 0.984255i \(0.443440\pi\)
\(558\) 0.242641 0.0102718
\(559\) 16.5147 0.698498
\(560\) 0 0
\(561\) 21.3137 0.899865
\(562\) −13.6569 −0.576080
\(563\) 14.2843 0.602010 0.301005 0.953623i \(-0.402678\pi\)
0.301005 + 0.953623i \(0.402678\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −18.7279 −0.787193
\(567\) 0 0
\(568\) −9.65685 −0.405193
\(569\) −36.8701 −1.54567 −0.772837 0.634605i \(-0.781163\pi\)
−0.772837 + 0.634605i \(0.781163\pi\)
\(570\) 0 0
\(571\) 27.9706 1.17053 0.585266 0.810841i \(-0.300990\pi\)
0.585266 + 0.810841i \(0.300990\pi\)
\(572\) 0 0
\(573\) 18.9706 0.792507
\(574\) 0 0
\(575\) 0 0
\(576\) 8.00000 0.333333
\(577\) −6.55635 −0.272944 −0.136472 0.990644i \(-0.543576\pi\)
−0.136472 + 0.990644i \(0.543576\pi\)
\(578\) −31.0711 −1.29239
\(579\) 6.75736 0.280826
\(580\) 0 0
\(581\) 0 0
\(582\) −15.3137 −0.634774
\(583\) −4.00000 −0.165663
\(584\) −5.85786 −0.242400
\(585\) 0 0
\(586\) −21.6569 −0.894636
\(587\) −30.2426 −1.24825 −0.624124 0.781326i \(-0.714544\pi\)
−0.624124 + 0.781326i \(0.714544\pi\)
\(588\) 0 0
\(589\) 1.14214 0.0470609
\(590\) 0 0
\(591\) −5.55635 −0.228558
\(592\) −22.3431 −0.918298
\(593\) −13.4142 −0.550856 −0.275428 0.961322i \(-0.588820\pi\)
−0.275428 + 0.961322i \(0.588820\pi\)
\(594\) −4.82843 −0.198113
\(595\) 0 0
\(596\) 0 0
\(597\) 5.51472 0.225702
\(598\) −14.0000 −0.572503
\(599\) −42.1421 −1.72188 −0.860940 0.508706i \(-0.830124\pi\)
−0.860940 + 0.508706i \(0.830124\pi\)
\(600\) 0 0
\(601\) −24.1716 −0.985979 −0.492990 0.870035i \(-0.664096\pi\)
−0.492990 + 0.870035i \(0.664096\pi\)
\(602\) 0 0
\(603\) −11.7279 −0.477598
\(604\) 0 0
\(605\) 0 0
\(606\) 8.82843 0.358630
\(607\) 1.24264 0.0504372 0.0252186 0.999682i \(-0.491972\pi\)
0.0252186 + 0.999682i \(0.491972\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.7696 −0.597512
\(612\) 0 0
\(613\) −10.1421 −0.409637 −0.204818 0.978800i \(-0.565660\pi\)
−0.204818 + 0.978800i \(0.565660\pi\)
\(614\) 2.24264 0.0905056
\(615\) 0 0
\(616\) 0 0
\(617\) 8.82843 0.355419 0.177710 0.984083i \(-0.443131\pi\)
0.177710 + 0.984083i \(0.443131\pi\)
\(618\) −1.75736 −0.0706914
\(619\) 39.9706 1.60655 0.803276 0.595607i \(-0.203088\pi\)
0.803276 + 0.595607i \(0.203088\pi\)
\(620\) 0 0
\(621\) 6.24264 0.250509
\(622\) 24.1421 0.968011
\(623\) 0 0
\(624\) −6.34315 −0.253929
\(625\) 0 0
\(626\) 37.0711 1.48166
\(627\) −22.7279 −0.907666
\(628\) 0 0
\(629\) 34.8701 1.39036
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) −13.1716 −0.523937
\(633\) 0.142136 0.00564938
\(634\) 0.142136 0.00564493
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 1.17157 0.0463830
\(639\) −3.41421 −0.135064
\(640\) 0 0
\(641\) −13.2132 −0.521890 −0.260945 0.965354i \(-0.584034\pi\)
−0.260945 + 0.965354i \(0.584034\pi\)
\(642\) 21.7990 0.860338
\(643\) −24.5563 −0.968408 −0.484204 0.874955i \(-0.660891\pi\)
−0.484204 + 0.874955i \(0.660891\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 58.7696 2.31226
\(647\) −9.61522 −0.378013 −0.189007 0.981976i \(-0.560527\pi\)
−0.189007 + 0.981976i \(0.560527\pi\)
\(648\) 2.82843 0.111111
\(649\) 4.82843 0.189532
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.75736 −0.303569 −0.151784 0.988414i \(-0.548502\pi\)
−0.151784 + 0.988414i \(0.548502\pi\)
\(654\) 19.0711 0.745738
\(655\) 0 0
\(656\) −8.97056 −0.350242
\(657\) −2.07107 −0.0808001
\(658\) 0 0
\(659\) −27.3137 −1.06399 −0.531996 0.846747i \(-0.678558\pi\)
−0.531996 + 0.846747i \(0.678558\pi\)
\(660\) 0 0
\(661\) 32.3137 1.25686 0.628429 0.777867i \(-0.283698\pi\)
0.628429 + 0.777867i \(0.283698\pi\)
\(662\) 39.0711 1.51854
\(663\) 9.89949 0.384465
\(664\) −15.3137 −0.594287
\(665\) 0 0
\(666\) −7.89949 −0.306099
\(667\) −1.51472 −0.0586501
\(668\) 0 0
\(669\) −17.1716 −0.663891
\(670\) 0 0
\(671\) 42.6274 1.64561
\(672\) 0 0
\(673\) −2.27208 −0.0875822 −0.0437911 0.999041i \(-0.513944\pi\)
−0.0437911 + 0.999041i \(0.513944\pi\)
\(674\) −1.27208 −0.0489986
\(675\) 0 0
\(676\) 0 0
\(677\) −3.89949 −0.149870 −0.0749349 0.997188i \(-0.523875\pi\)
−0.0749349 + 0.997188i \(0.523875\pi\)
\(678\) −6.14214 −0.235887
\(679\) 0 0
\(680\) 0 0
\(681\) −23.0711 −0.884085
\(682\) 0.828427 0.0317221
\(683\) −20.5858 −0.787693 −0.393847 0.919176i \(-0.628856\pi\)
−0.393847 + 0.919176i \(0.628856\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −14.3137 −0.546102
\(688\) −41.6569 −1.58815
\(689\) −1.85786 −0.0707790
\(690\) 0 0
\(691\) 30.3137 1.15319 0.576594 0.817031i \(-0.304381\pi\)
0.576594 + 0.817031i \(0.304381\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −35.3137 −1.34049
\(695\) 0 0
\(696\) −0.686292 −0.0260138
\(697\) 14.0000 0.530288
\(698\) 23.5147 0.890045
\(699\) 22.4853 0.850471
\(700\) 0 0
\(701\) 41.2132 1.55660 0.778301 0.627892i \(-0.216082\pi\)
0.778301 + 0.627892i \(0.216082\pi\)
\(702\) −2.24264 −0.0846430
\(703\) −37.1838 −1.40241
\(704\) 27.3137 1.02942
\(705\) 0 0
\(706\) 8.34315 0.313998
\(707\) 0 0
\(708\) 0 0
\(709\) −11.1127 −0.417346 −0.208673 0.977985i \(-0.566914\pi\)
−0.208673 + 0.977985i \(0.566914\pi\)
\(710\) 0 0
\(711\) −4.65685 −0.174646
\(712\) −10.6274 −0.398279
\(713\) −1.07107 −0.0401118
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 17.3137 0.646592
\(718\) 37.5980 1.40314
\(719\) 17.5147 0.653189 0.326594 0.945165i \(-0.394099\pi\)
0.326594 + 0.945165i \(0.394099\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −35.7990 −1.33230
\(723\) −10.3431 −0.384666
\(724\) 0 0
\(725\) 0 0
\(726\) −0.928932 −0.0344759
\(727\) −4.75736 −0.176441 −0.0882203 0.996101i \(-0.528118\pi\)
−0.0882203 + 0.996101i \(0.528118\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 65.0122 2.40456
\(732\) 0 0
\(733\) 10.7574 0.397332 0.198666 0.980067i \(-0.436339\pi\)
0.198666 + 0.980067i \(0.436339\pi\)
\(734\) −27.6985 −1.02237
\(735\) 0 0
\(736\) 0 0
\(737\) −40.0416 −1.47495
\(738\) −3.17157 −0.116747
\(739\) −35.1421 −1.29272 −0.646362 0.763031i \(-0.723710\pi\)
−0.646362 + 0.763031i \(0.723710\pi\)
\(740\) 0 0
\(741\) −10.5563 −0.387797
\(742\) 0 0
\(743\) 4.72792 0.173451 0.0867253 0.996232i \(-0.472360\pi\)
0.0867253 + 0.996232i \(0.472360\pi\)
\(744\) −0.485281 −0.0177913
\(745\) 0 0
\(746\) 27.2132 0.996346
\(747\) −5.41421 −0.198096
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 19.6274 0.716215 0.358107 0.933680i \(-0.383422\pi\)
0.358107 + 0.933680i \(0.383422\pi\)
\(752\) 37.2548 1.35854
\(753\) −5.41421 −0.197305
\(754\) 0.544156 0.0198170
\(755\) 0 0
\(756\) 0 0
\(757\) −41.5980 −1.51190 −0.755952 0.654627i \(-0.772826\pi\)
−0.755952 + 0.654627i \(0.772826\pi\)
\(758\) −20.9289 −0.760173
\(759\) 21.3137 0.773639
\(760\) 0 0
\(761\) −20.9289 −0.758673 −0.379337 0.925259i \(-0.623848\pi\)
−0.379337 + 0.925259i \(0.623848\pi\)
\(762\) −25.5563 −0.925809
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 17.6569 0.637968
\(767\) 2.24264 0.0809771
\(768\) 0 0
\(769\) −15.9706 −0.575913 −0.287957 0.957643i \(-0.592976\pi\)
−0.287957 + 0.957643i \(0.592976\pi\)
\(770\) 0 0
\(771\) 29.8995 1.07680
\(772\) 0 0
\(773\) −24.9289 −0.896631 −0.448316 0.893875i \(-0.647976\pi\)
−0.448316 + 0.893875i \(0.647976\pi\)
\(774\) −14.7279 −0.529384
\(775\) 0 0
\(776\) 30.6274 1.09946
\(777\) 0 0
\(778\) −23.8579 −0.855346
\(779\) −14.9289 −0.534885
\(780\) 0 0
\(781\) −11.6569 −0.417115
\(782\) −55.1127 −1.97083
\(783\) −0.242641 −0.00867127
\(784\) 0 0
\(785\) 0 0
\(786\) 14.8284 0.528912
\(787\) −13.1716 −0.469516 −0.234758 0.972054i \(-0.575430\pi\)
−0.234758 + 0.972054i \(0.575430\pi\)
\(788\) 0 0
\(789\) −1.17157 −0.0417091
\(790\) 0 0
\(791\) 0 0
\(792\) 9.65685 0.343141
\(793\) 19.7990 0.703083
\(794\) −34.2426 −1.21523
\(795\) 0 0
\(796\) 0 0
\(797\) −10.4437 −0.369933 −0.184967 0.982745i \(-0.559218\pi\)
−0.184967 + 0.982745i \(0.559218\pi\)
\(798\) 0 0
\(799\) −58.1421 −2.05692
\(800\) 0 0
\(801\) −3.75736 −0.132760
\(802\) −0.686292 −0.0242338
\(803\) −7.07107 −0.249533
\(804\) 0 0
\(805\) 0 0
\(806\) 0.384776 0.0135532
\(807\) 8.14214 0.286617
\(808\) −17.6569 −0.621166
\(809\) −4.62742 −0.162691 −0.0813457 0.996686i \(-0.525922\pi\)
−0.0813457 + 0.996686i \(0.525922\pi\)
\(810\) 0 0
\(811\) −22.9706 −0.806606 −0.403303 0.915067i \(-0.632138\pi\)
−0.403303 + 0.915067i \(0.632138\pi\)
\(812\) 0 0
\(813\) 20.1421 0.706416
\(814\) −26.9706 −0.945318
\(815\) 0 0
\(816\) −24.9706 −0.874145
\(817\) −69.3259 −2.42541
\(818\) 37.2132 1.30113
\(819\) 0 0
\(820\) 0 0
\(821\) 13.5563 0.473120 0.236560 0.971617i \(-0.423980\pi\)
0.236560 + 0.971617i \(0.423980\pi\)
\(822\) −4.14214 −0.144474
\(823\) −22.2843 −0.776781 −0.388390 0.921495i \(-0.626969\pi\)
−0.388390 + 0.921495i \(0.626969\pi\)
\(824\) 3.51472 0.122441
\(825\) 0 0
\(826\) 0 0
\(827\) −12.8284 −0.446088 −0.223044 0.974808i \(-0.571599\pi\)
−0.223044 + 0.974808i \(0.571599\pi\)
\(828\) 0 0
\(829\) −18.6569 −0.647979 −0.323990 0.946061i \(-0.605024\pi\)
−0.323990 + 0.946061i \(0.605024\pi\)
\(830\) 0 0
\(831\) 23.3848 0.811209
\(832\) 12.6863 0.439818
\(833\) 0 0
\(834\) −16.2426 −0.562437
\(835\) 0 0
\(836\) 0 0
\(837\) −0.171573 −0.00593043
\(838\) 4.48528 0.154941
\(839\) −7.27208 −0.251060 −0.125530 0.992090i \(-0.540063\pi\)
−0.125530 + 0.992090i \(0.540063\pi\)
\(840\) 0 0
\(841\) −28.9411 −0.997970
\(842\) −38.8701 −1.33955
\(843\) 9.65685 0.332600
\(844\) 0 0
\(845\) 0 0
\(846\) 13.1716 0.452848
\(847\) 0 0
\(848\) 4.68629 0.160928
\(849\) 13.2426 0.454486
\(850\) 0 0
\(851\) 34.8701 1.19533
\(852\) 0 0
\(853\) −38.0122 −1.30151 −0.650756 0.759287i \(-0.725548\pi\)
−0.650756 + 0.759287i \(0.725548\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −43.5980 −1.49015
\(857\) 6.24264 0.213245 0.106622 0.994300i \(-0.465996\pi\)
0.106622 + 0.994300i \(0.465996\pi\)
\(858\) −7.65685 −0.261401
\(859\) 15.6569 0.534205 0.267102 0.963668i \(-0.413934\pi\)
0.267102 + 0.963668i \(0.413934\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −52.0833 −1.77396
\(863\) 9.79899 0.333561 0.166781 0.985994i \(-0.446663\pi\)
0.166781 + 0.985994i \(0.446663\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −34.7279 −1.18010
\(867\) 21.9706 0.746159
\(868\) 0 0
\(869\) −15.8995 −0.539353
\(870\) 0 0
\(871\) −18.5980 −0.630169
\(872\) −38.1421 −1.29166
\(873\) 10.8284 0.366487
\(874\) 58.7696 1.98791
\(875\) 0 0
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) −0.485281 −0.0163775
\(879\) 15.3137 0.516519
\(880\) 0 0
\(881\) −21.6569 −0.729638 −0.364819 0.931078i \(-0.618869\pi\)
−0.364819 + 0.931078i \(0.618869\pi\)
\(882\) 0 0
\(883\) −8.07107 −0.271613 −0.135807 0.990735i \(-0.543363\pi\)
−0.135807 + 0.990735i \(0.543363\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.686292 0.0230564
\(887\) −5.21320 −0.175042 −0.0875211 0.996163i \(-0.527895\pi\)
−0.0875211 + 0.996163i \(0.527895\pi\)
\(888\) 15.7990 0.530179
\(889\) 0 0
\(890\) 0 0
\(891\) 3.41421 0.114380
\(892\) 0 0
\(893\) 62.0000 2.07475
\(894\) −24.9706 −0.835141
\(895\) 0 0
\(896\) 0 0
\(897\) 9.89949 0.330535
\(898\) 9.85786 0.328961
\(899\) 0.0416306 0.00138846
\(900\) 0 0
\(901\) −7.31371 −0.243655
\(902\) −10.8284 −0.360547
\(903\) 0 0
\(904\) 12.2843 0.408569
\(905\) 0 0
\(906\) 9.17157 0.304705
\(907\) 8.61522 0.286064 0.143032 0.989718i \(-0.454315\pi\)
0.143032 + 0.989718i \(0.454315\pi\)
\(908\) 0 0
\(909\) −6.24264 −0.207055
\(910\) 0 0
\(911\) 4.24264 0.140565 0.0702825 0.997527i \(-0.477610\pi\)
0.0702825 + 0.997527i \(0.477610\pi\)
\(912\) 26.6274 0.881722
\(913\) −18.4853 −0.611774
\(914\) −29.5563 −0.977637
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −8.82843 −0.291382
\(919\) −46.6569 −1.53907 −0.769534 0.638606i \(-0.779511\pi\)
−0.769534 + 0.638606i \(0.779511\pi\)
\(920\) 0 0
\(921\) −1.58579 −0.0522534
\(922\) 38.2843 1.26083
\(923\) −5.41421 −0.178211
\(924\) 0 0
\(925\) 0 0
\(926\) −14.7279 −0.483990
\(927\) 1.24264 0.0408137
\(928\) 0 0
\(929\) −51.0122 −1.67366 −0.836828 0.547466i \(-0.815593\pi\)
−0.836828 + 0.547466i \(0.815593\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −17.0711 −0.558882
\(934\) 9.45584 0.309405
\(935\) 0 0
\(936\) 4.48528 0.146606
\(937\) 7.92893 0.259027 0.129513 0.991578i \(-0.458658\pi\)
0.129513 + 0.991578i \(0.458658\pi\)
\(938\) 0 0
\(939\) −26.2132 −0.855436
\(940\) 0 0
\(941\) −11.2721 −0.367459 −0.183730 0.982977i \(-0.558817\pi\)
−0.183730 + 0.982977i \(0.558817\pi\)
\(942\) −22.8284 −0.743790
\(943\) 14.0000 0.455903
\(944\) −5.65685 −0.184115
\(945\) 0 0
\(946\) −50.2843 −1.63488
\(947\) 4.92893 0.160169 0.0800844 0.996788i \(-0.474481\pi\)
0.0800844 + 0.996788i \(0.474481\pi\)
\(948\) 0 0
\(949\) −3.28427 −0.106612
\(950\) 0 0
\(951\) −0.100505 −0.00325910
\(952\) 0 0
\(953\) −48.4853 −1.57059 −0.785296 0.619120i \(-0.787489\pi\)
−0.785296 + 0.619120i \(0.787489\pi\)
\(954\) 1.65685 0.0536426
\(955\) 0 0
\(956\) 0 0
\(957\) −0.828427 −0.0267792
\(958\) 48.9706 1.58217
\(959\) 0 0
\(960\) 0 0
\(961\) −30.9706 −0.999050
\(962\) −12.5269 −0.403884
\(963\) −15.4142 −0.496716
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −23.3848 −0.752004 −0.376002 0.926619i \(-0.622701\pi\)
−0.376002 + 0.926619i \(0.622701\pi\)
\(968\) 1.85786 0.0597140
\(969\) −41.5563 −1.33498
\(970\) 0 0
\(971\) 14.3431 0.460293 0.230147 0.973156i \(-0.426079\pi\)
0.230147 + 0.973156i \(0.426079\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.27208 0.0407600
\(975\) 0 0
\(976\) −49.9411 −1.59858
\(977\) −13.6985 −0.438253 −0.219127 0.975696i \(-0.570321\pi\)
−0.219127 + 0.975696i \(0.570321\pi\)
\(978\) −27.3137 −0.873396
\(979\) −12.8284 −0.409998
\(980\) 0 0
\(981\) −13.4853 −0.430552
\(982\) 14.3431 0.457708
\(983\) −53.1543 −1.69536 −0.847680 0.530508i \(-0.822001\pi\)
−0.847680 + 0.530508i \(0.822001\pi\)
\(984\) 6.34315 0.202212
\(985\) 0 0
\(986\) 2.14214 0.0682195
\(987\) 0 0
\(988\) 0 0
\(989\) 65.0122 2.06727
\(990\) 0 0
\(991\) −30.6569 −0.973847 −0.486924 0.873445i \(-0.661881\pi\)
−0.486924 + 0.873445i \(0.661881\pi\)
\(992\) 0 0
\(993\) −27.6274 −0.876730
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.757359 −0.0239858 −0.0119929 0.999928i \(-0.503818\pi\)
−0.0119929 + 0.999928i \(0.503818\pi\)
\(998\) −12.4437 −0.393897
\(999\) 5.58579 0.176726
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3675.2.a.z.1.1 2
5.4 even 2 735.2.a.i.1.2 2
7.2 even 3 525.2.i.g.151.2 4
7.4 even 3 525.2.i.g.226.2 4
7.6 odd 2 3675.2.a.x.1.1 2
15.14 odd 2 2205.2.a.u.1.1 2
35.2 odd 12 525.2.r.g.424.2 8
35.4 even 6 105.2.i.c.16.1 4
35.9 even 6 105.2.i.c.46.1 yes 4
35.18 odd 12 525.2.r.g.499.2 8
35.19 odd 6 735.2.i.j.361.1 4
35.23 odd 12 525.2.r.g.424.3 8
35.24 odd 6 735.2.i.j.226.1 4
35.32 odd 12 525.2.r.g.499.3 8
35.34 odd 2 735.2.a.j.1.2 2
105.44 odd 6 315.2.j.d.46.2 4
105.74 odd 6 315.2.j.d.226.2 4
105.104 even 2 2205.2.a.s.1.1 2
140.39 odd 6 1680.2.bg.p.961.1 4
140.79 odd 6 1680.2.bg.p.1201.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.i.c.16.1 4 35.4 even 6
105.2.i.c.46.1 yes 4 35.9 even 6
315.2.j.d.46.2 4 105.44 odd 6
315.2.j.d.226.2 4 105.74 odd 6
525.2.i.g.151.2 4 7.2 even 3
525.2.i.g.226.2 4 7.4 even 3
525.2.r.g.424.2 8 35.2 odd 12
525.2.r.g.424.3 8 35.23 odd 12
525.2.r.g.499.2 8 35.18 odd 12
525.2.r.g.499.3 8 35.32 odd 12
735.2.a.i.1.2 2 5.4 even 2
735.2.a.j.1.2 2 35.34 odd 2
735.2.i.j.226.1 4 35.24 odd 6
735.2.i.j.361.1 4 35.19 odd 6
1680.2.bg.p.961.1 4 140.39 odd 6
1680.2.bg.p.1201.1 4 140.79 odd 6
2205.2.a.s.1.1 2 105.104 even 2
2205.2.a.u.1.1 2 15.14 odd 2
3675.2.a.x.1.1 2 7.6 odd 2
3675.2.a.z.1.1 2 1.1 even 1 trivial