Properties

Label 368.3.k.a.229.2
Level $368$
Weight $3$
Character 368.229
Analytic conductor $10.027$
Analytic rank $0$
Dimension $12$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,3,Mod(45,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.45");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 368.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0272737285\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.322241908269256704.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{6} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 229.2
Root \(-0.467979 + 1.33454i\) of defining polynomial
Character \(\chi\) \(=\) 368.229
Dual form 368.3.k.a.45.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24907 - 1.56199i) q^{2} +(-3.67762 + 3.67762i) q^{3} +(-0.879635 + 3.90208i) q^{4} +(10.3380 + 1.15080i) q^{6} +(7.19375 - 3.50000i) q^{8} -18.0498i q^{9} +(-11.1154 - 17.5854i) q^{12} +(14.0322 - 14.0322i) q^{13} +(-14.4525 - 6.86482i) q^{16} +(-28.1937 + 22.5456i) q^{18} +23.0000i q^{23} +(-13.5842 + 39.3276i) q^{24} +25.0000i q^{25} +(-39.4455 - 4.39095i) q^{26} +(33.2819 + 33.2819i) q^{27} +(34.7897 - 34.7897i) q^{29} -3.44765 q^{31} +(7.32941 + 31.1493i) q^{32} +(70.4320 + 15.8773i) q^{36} +103.211i q^{39} +66.2117i q^{41} +(35.9258 - 28.7287i) q^{46} +50.9864 q^{47} +(78.3970 - 27.9046i) q^{48} -49.0000 q^{49} +(39.0498 - 31.2268i) q^{50} +(42.4117 + 67.0982i) q^{52} +(10.4146 - 93.5577i) q^{54} +(-97.7960 - 10.8864i) q^{58} +(44.5500 + 44.5500i) q^{59} +(4.30637 + 5.38520i) q^{62} +(39.5000 - 50.3562i) q^{64} +(-84.5854 - 84.5854i) q^{69} +130.792i q^{71} +(-63.1745 - 129.846i) q^{72} -88.0471i q^{73} +(-91.9406 - 91.9406i) q^{75} +(161.214 - 128.917i) q^{78} -82.3484 q^{81} +(103.422 - 82.7033i) q^{82} +255.887i q^{87} +(-89.7479 - 20.2316i) q^{92} +(12.6792 - 12.6792i) q^{93} +(-63.6857 - 79.6403i) q^{94} +(-141.510 - 87.6007i) q^{96} +(61.2046 + 76.5376i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 66 q^{6} - 6 q^{12} - 228 q^{27} + 294 q^{36} - 588 q^{49} - 546 q^{58} - 156 q^{59} + 606 q^{62} + 474 q^{64} - 378 q^{72} + 798 q^{78} - 972 q^{81} + 258 q^{82} + 1092 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24907 1.56199i −0.624536 0.780996i
\(3\) −3.67762 + 3.67762i −1.22587 + 1.22587i −0.260365 + 0.965510i \(0.583843\pi\)
−0.965510 + 0.260365i \(0.916157\pi\)
\(4\) −0.879635 + 3.90208i −0.219909 + 0.975520i
\(5\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) 10.3380 + 1.15080i 1.72301 + 0.191800i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 7.19375 3.50000i 0.899218 0.437500i
\(9\) 18.0498i 2.00554i
\(10\) 0 0
\(11\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(12\) −11.1154 17.5854i −0.926285 1.46545i
\(13\) 14.0322 14.0322i 1.07940 1.07940i 0.0828396 0.996563i \(-0.473601\pi\)
0.996563 0.0828396i \(-0.0263989\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −14.4525 6.86482i −0.903280 0.429051i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −28.1937 + 22.5456i −1.56632 + 1.25253i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 23.0000i 1.00000i
\(24\) −13.5842 + 39.3276i −0.566009 + 1.63865i
\(25\) 25.0000i 1.00000i
\(26\) −39.4455 4.39095i −1.51713 0.168883i
\(27\) 33.2819 + 33.2819i 1.23266 + 1.23266i
\(28\) 0 0
\(29\) 34.7897 34.7897i 1.19964 1.19964i 0.225371 0.974273i \(-0.427641\pi\)
0.974273 0.225371i \(-0.0723595\pi\)
\(30\) 0 0
\(31\) −3.44765 −0.111215 −0.0556073 0.998453i \(-0.517709\pi\)
−0.0556073 + 0.998453i \(0.517709\pi\)
\(32\) 7.32941 + 31.1493i 0.229044 + 0.973416i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 70.4320 + 15.8773i 1.95644 + 0.441036i
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 103.211i 2.64642i
\(40\) 0 0
\(41\) 66.2117i 1.61492i 0.589922 + 0.807460i \(0.299158\pi\)
−0.589922 + 0.807460i \(0.700842\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 35.9258 28.7287i 0.780996 0.624536i
\(47\) 50.9864 1.08482 0.542408 0.840115i \(-0.317513\pi\)
0.542408 + 0.840115i \(0.317513\pi\)
\(48\) 78.3970 27.9046i 1.63327 0.581345i
\(49\) −49.0000 −1.00000
\(50\) 39.0498 31.2268i 0.780996 0.624536i
\(51\) 0 0
\(52\) 42.4117 + 67.0982i 0.815609 + 1.29035i
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 10.4146 93.5577i 0.192862 1.73255i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −97.7960 10.8864i −1.68614 0.187696i
\(59\) 44.5500 + 44.5500i 0.755084 + 0.755084i 0.975423 0.220339i \(-0.0707164\pi\)
−0.220339 + 0.975423i \(0.570716\pi\)
\(60\) 0 0
\(61\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(62\) 4.30637 + 5.38520i 0.0694575 + 0.0868581i
\(63\) 0 0
\(64\) 39.5000 50.3562i 0.617188 0.786816i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) −84.5854 84.5854i −1.22587 1.22587i
\(70\) 0 0
\(71\) 130.792i 1.84214i 0.389395 + 0.921071i \(0.372684\pi\)
−0.389395 + 0.921071i \(0.627316\pi\)
\(72\) −63.1745 129.846i −0.877423 1.80342i
\(73\) 88.0471i 1.20612i −0.797694 0.603062i \(-0.793947\pi\)
0.797694 0.603062i \(-0.206053\pi\)
\(74\) 0 0
\(75\) −91.9406 91.9406i −1.22587 1.22587i
\(76\) 0 0
\(77\) 0 0
\(78\) 161.214 128.917i 2.06685 1.65279i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −82.3484 −1.01665
\(82\) 103.422 82.7033i 1.26125 1.00858i
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 255.887i 2.94123i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −89.7479 20.2316i −0.975520 0.219909i
\(93\) 12.6792 12.6792i 0.136335 0.136335i
\(94\) −63.6857 79.6403i −0.677507 0.847237i
\(95\) 0 0
\(96\) −141.510 87.6007i −1.47407 0.912507i
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 61.2046 + 76.5376i 0.624536 + 0.780996i
\(99\) 0 0
\(100\) −97.5520 21.9909i −0.975520 0.219909i
\(101\) 140.550 + 140.550i 1.39158 + 1.39158i 0.821782 + 0.569802i \(0.192980\pi\)
0.569802 + 0.821782i \(0.307020\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 51.8315 150.057i 0.498380 1.44286i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) −159.145 + 100.593i −1.47356 + 0.931416i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 105.150 + 166.354i 0.906465 + 1.43409i
\(117\) −253.280 253.280i −2.16478 2.16478i
\(118\) 13.9405 125.233i 0.118140 1.06130i
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000i 1.00000i
\(122\) 0 0
\(123\) −243.502 243.502i −1.97969 1.97969i
\(124\) 3.03268 13.4530i 0.0244571 0.108492i
\(125\) 0 0
\(126\) 0 0
\(127\) 183.410 1.44417 0.722086 0.691803i \(-0.243184\pi\)
0.722086 + 0.691803i \(0.243184\pi\)
\(128\) −127.994 + 1.19992i −0.999956 + 0.00937437i
\(129\) 0 0
\(130\) 0 0
\(131\) −159.010 + 159.010i −1.21381 + 1.21381i −0.244051 + 0.969762i \(0.578476\pi\)
−0.969762 + 0.244051i \(0.921524\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −26.4684 + 237.775i −0.191800 + 1.72301i
\(139\) 34.7625 + 34.7625i 0.250090 + 0.250090i 0.821007 0.570917i \(-0.193412\pi\)
−0.570917 + 0.821007i \(0.693412\pi\)
\(140\) 0 0
\(141\) −187.509 + 187.509i −1.32985 + 1.32985i
\(142\) 204.296 163.369i 1.43871 1.15048i
\(143\) 0 0
\(144\) −123.909 + 260.865i −0.860479 + 1.81156i
\(145\) 0 0
\(146\) −137.529 + 109.977i −0.941979 + 0.753269i
\(147\) 180.204 180.204i 1.22587 1.22587i
\(148\) 0 0
\(149\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(150\) −28.7700 + 258.451i −0.191800 + 1.72301i
\(151\) 109.883i 0.727699i 0.931458 + 0.363849i \(0.118538\pi\)
−0.931458 + 0.363849i \(0.881462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −402.736 90.7877i −2.58164 0.581972i
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 102.859 + 128.628i 0.634933 + 0.793997i
\(163\) 230.510 230.510i 1.41417 1.41417i 0.701774 0.712400i \(-0.252392\pi\)
0.712400 0.701774i \(-0.247608\pi\)
\(164\) −258.364 58.2422i −1.57539 0.355135i
\(165\) 0 0
\(166\) 0 0
\(167\) 230.200i 1.37844i −0.724551 0.689221i \(-0.757953\pi\)
0.724551 0.689221i \(-0.242047\pi\)
\(168\) 0 0
\(169\) 224.807i 1.33022i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 161.650 161.650i 0.934393 0.934393i −0.0635838 0.997977i \(-0.520253\pi\)
0.997977 + 0.0635838i \(0.0202530\pi\)
\(174\) 399.693 319.621i 2.29709 1.83690i
\(175\) 0 0
\(176\) 0 0
\(177\) −327.676 −1.85128
\(178\) 0 0
\(179\) 157.034 157.034i 0.877284 0.877284i −0.115969 0.993253i \(-0.536997\pi\)
0.993253 + 0.115969i \(0.0369974\pi\)
\(180\) 0 0
\(181\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 80.5000 + 165.456i 0.437500 + 0.899218i
\(185\) 0 0
\(186\) −35.6419 3.96755i −0.191623 0.0213309i
\(187\) 0 0
\(188\) −44.8494 + 198.953i −0.238561 + 1.05826i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 39.9251 + 330.458i 0.207943 + 1.72113i
\(193\) 350.889 1.81808 0.909038 0.416713i \(-0.136818\pi\)
0.909038 + 0.416713i \(0.136818\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 43.1021 191.202i 0.219909 0.975520i
\(197\) 209.780 + 209.780i 1.06487 + 1.06487i 0.997744 + 0.0671289i \(0.0213839\pi\)
0.0671289 + 0.997744i \(0.478616\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 87.5000 + 179.844i 0.437500 + 0.899218i
\(201\) 0 0
\(202\) 43.9808 395.095i 0.217727 1.95592i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 415.147 2.00554
\(208\) −299.129 + 106.472i −1.43812 + 0.511884i
\(209\) 0 0
\(210\) 0 0
\(211\) 260.550 260.550i 1.23483 1.23483i 0.272749 0.962085i \(-0.412067\pi\)
0.962085 0.272749i \(-0.0879328\pi\)
\(212\) 0 0
\(213\) −481.004 481.004i −2.25824 2.25824i
\(214\) 0 0
\(215\) 0 0
\(216\) 355.909 + 122.935i 1.64773 + 0.569144i
\(217\) 0 0
\(218\) 0 0
\(219\) 323.804 + 323.804i 1.47856 + 1.47856i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −230.200 −1.03229 −0.516143 0.856502i \(-0.672633\pi\)
−0.516143 + 0.856502i \(0.672633\pi\)
\(224\) 0 0
\(225\) 451.246 2.00554
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 128.504 372.032i 0.553898 1.60359i
\(233\) 273.867i 1.17539i 0.809081 + 0.587697i \(0.199965\pi\)
−0.809081 + 0.587697i \(0.800035\pi\)
\(234\) −79.2560 + 711.985i −0.338701 + 3.04267i
\(235\) 0 0
\(236\) −213.025 + 134.650i −0.902650 + 0.570550i
\(237\) 0 0
\(238\) 0 0
\(239\) −401.211 −1.67871 −0.839354 0.543585i \(-0.817066\pi\)
−0.839354 + 0.543585i \(0.817066\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 189.001 151.138i 0.780996 0.624536i
\(243\) 3.30901 3.30901i 0.0136173 0.0136173i
\(244\) 0 0
\(245\) 0 0
\(246\) −76.1964 + 684.499i −0.309741 + 2.78252i
\(247\) 0 0
\(248\) −24.8015 + 12.0668i −0.100006 + 0.0486564i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −229.092 286.485i −0.901938 1.12789i
\(255\) 0 0
\(256\) 161.749 + 198.427i 0.631830 + 0.775107i
\(257\) 497.958 1.93758 0.968791 0.247880i \(-0.0797338\pi\)
0.968791 + 0.247880i \(0.0797338\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −627.948 627.948i −2.40593 2.40593i
\(262\) 446.986 + 49.7571i 1.70605 + 0.189913i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −288.615 + 288.615i −1.07292 + 1.07292i −0.0757948 + 0.997123i \(0.524149\pi\)
−0.997123 + 0.0757948i \(0.975851\pi\)
\(270\) 0 0
\(271\) −286.000 −1.05535 −0.527675 0.849446i \(-0.676936\pi\)
−0.527675 + 0.849446i \(0.676936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 404.463 255.655i 1.46545 0.926285i
\(277\) −50.0092 50.0092i −0.180539 0.180539i 0.611052 0.791591i \(-0.290747\pi\)
−0.791591 + 0.611052i \(0.790747\pi\)
\(278\) 10.8778 97.7196i 0.0391290 0.351509i
\(279\) 62.2296i 0.223045i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 527.099 + 58.6751i 1.86915 + 0.208068i
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) −510.361 115.049i −1.79705 0.405103i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 562.240 132.295i 1.95222 0.459357i
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 343.567 + 77.4494i 1.17660 + 0.265238i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) −506.564 56.3891i −1.72301 0.191800i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 322.741 + 322.741i 1.07940 + 1.07940i
\(300\) 439.634 277.886i 1.46545 0.926285i
\(301\) 0 0
\(302\) 171.636 137.251i 0.568330 0.454474i
\(303\) −1033.78 −3.41182
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −394.750 + 394.750i −1.28583 + 1.28583i −0.348534 + 0.937296i \(0.613320\pi\)
−0.937296 + 0.348534i \(0.886680\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 578.675i 1.86069i 0.366684 + 0.930346i \(0.380493\pi\)
−0.366684 + 0.930346i \(0.619507\pi\)
\(312\) 361.237 + 742.471i 1.15781 + 2.37971i
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 154.750 154.750i 0.488170 0.488170i −0.419558 0.907728i \(-0.637815\pi\)
0.907728 + 0.419558i \(0.137815\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 72.4366 321.330i 0.223570 0.991760i
\(325\) 350.806 + 350.806i 1.07940 + 1.07940i
\(326\) −647.979 72.1311i −1.98767 0.221261i
\(327\) 0 0
\(328\) 231.741 + 476.310i 0.706528 + 1.45217i
\(329\) 0 0
\(330\) 0 0
\(331\) −452.347 452.347i −1.36661 1.36661i −0.865228 0.501379i \(-0.832826\pi\)
−0.501379 0.865228i \(-0.667174\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −359.570 + 287.536i −1.07656 + 0.860887i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −351.147 + 280.800i −1.03890 + 0.830770i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −454.408 50.5833i −1.31332 0.146195i
\(347\) 473.650 + 473.650i 1.36499 + 1.36499i 0.867435 + 0.497550i \(0.165767\pi\)
0.497550 + 0.867435i \(0.334233\pi\)
\(348\) −998.491 225.087i −2.86923 0.646802i
\(349\) −481.178 + 481.178i −1.37873 + 1.37873i −0.531970 + 0.846763i \(0.678548\pi\)
−0.846763 + 0.531970i \(0.821452\pi\)
\(350\) 0 0
\(351\) 934.040 2.66108
\(352\) 0 0
\(353\) −241.712 −0.684736 −0.342368 0.939566i \(-0.611229\pi\)
−0.342368 + 0.939566i \(0.611229\pi\)
\(354\) 409.291 + 511.827i 1.15619 + 1.44584i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −441.432 49.1389i −1.23305 0.137259i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 361.000i 1.00000i
\(362\) 0 0
\(363\) −444.993 444.993i −1.22587 1.22587i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 157.891 332.407i 0.429051 0.903280i
\(369\) 1195.11 3.23879
\(370\) 0 0
\(371\) 0 0
\(372\) 38.3221 + 60.6282i 0.103016 + 0.162979i
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 366.783 178.452i 0.975487 0.474607i
\(377\) 976.354i 2.58980i
\(378\) 0 0
\(379\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(380\) 0 0
\(381\) −674.513 + 674.513i −1.77037 + 1.77037i
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 466.302 475.128i 1.21433 1.23731i
\(385\) 0 0
\(386\) −438.286 548.085i −1.13545 1.41991i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −352.494 + 171.500i −0.899218 + 0.437500i
\(393\) 1169.55i 2.97597i
\(394\) 65.6442 589.705i 0.166610 1.49671i
\(395\) 0 0
\(396\) 0 0
\(397\) 308.116 308.116i 0.776111 0.776111i −0.203056 0.979167i \(-0.565087\pi\)
0.979167 + 0.203056i \(0.0650875\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 171.620 361.312i 0.429051 0.903280i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −48.3782 + 48.3782i −0.120045 + 0.120045i
\(404\) −672.070 + 424.805i −1.66354 + 1.05150i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 610.436i 1.49251i 0.665661 + 0.746254i \(0.268150\pi\)
−0.665661 + 0.746254i \(0.731850\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −518.548 648.455i −1.25253 1.56632i
\(415\) 0 0
\(416\) 539.942 + 334.246i 1.29794 + 0.803477i
\(417\) −255.687 −0.613158
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) −732.423 81.5310i −1.73560 0.193202i
\(423\) 920.296i 2.17564i
\(424\) 0 0
\(425\) 0 0
\(426\) −150.515 + 1352.13i −0.353322 + 3.17402i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −252.532 709.481i −0.584565 1.64232i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 101.325 910.235i 0.231335 2.07816i
\(439\) 235.511i 0.536471i −0.963353 0.268236i \(-0.913559\pi\)
0.963353 0.268236i \(-0.0864406\pi\)
\(440\) 0 0
\(441\) 884.443i 2.00554i
\(442\) 0 0
\(443\) −625.389 625.389i −1.41171 1.41171i −0.747893 0.663820i \(-0.768934\pi\)
−0.663820 0.747893i \(-0.731066\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 287.536 + 359.570i 0.644700 + 0.806211i
\(447\) 0 0
\(448\) 0 0
\(449\) 690.600 1.53808 0.769042 0.639198i \(-0.220734\pi\)
0.769042 + 0.639198i \(0.220734\pi\)
\(450\) −563.639 704.843i −1.25253 1.56632i
\(451\) 0 0
\(452\) 0 0
\(453\) −404.107 404.107i −0.892068 0.892068i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −608.417 + 608.417i −1.31978 + 1.31978i −0.405827 + 0.913950i \(0.633016\pi\)
−0.913950 + 0.405827i \(0.866984\pi\)
\(462\) 0 0
\(463\) −98.0000 −0.211663 −0.105832 0.994384i \(-0.533750\pi\)
−0.105832 + 0.994384i \(0.533750\pi\)
\(464\) −741.622 + 263.972i −1.59832 + 0.568906i
\(465\) 0 0
\(466\) 427.778 342.079i 0.917978 0.734076i
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 1211.11 765.524i 2.58785 1.63574i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 476.406 + 164.556i 1.00934 + 0.348636i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 501.142 + 626.689i 1.04841 + 1.31106i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −472.152 106.436i −0.975520 0.219909i
\(485\) 0 0
\(486\) −9.30183 1.03545i −0.0191396 0.00213056i
\(487\) 678.526i 1.39328i −0.717423 0.696638i \(-0.754678\pi\)
0.717423 0.696638i \(-0.245322\pi\)
\(488\) 0 0
\(489\) 1695.46i 3.46720i
\(490\) 0 0
\(491\) −583.051 583.051i −1.18748 1.18748i −0.977763 0.209715i \(-0.932747\pi\)
−0.209715 0.977763i \(-0.567253\pi\)
\(492\) 1164.36 735.971i 2.36658 1.49588i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 49.8271 + 23.6675i 0.100458 + 0.0477167i
\(497\) 0 0
\(498\) 0 0
\(499\) 681.461 681.461i 1.36565 1.36565i 0.499119 0.866533i \(-0.333657\pi\)
0.866533 0.499119i \(-0.166343\pi\)
\(500\) 0 0
\(501\) 846.589 + 846.589i 1.68980 + 1.68980i
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 826.756 + 826.756i 1.63068 + 1.63068i
\(508\) −161.334 + 715.680i −0.317586 + 1.40882i
\(509\) 719.595 719.595i 1.41374 1.41374i 0.688639 0.725104i \(-0.258208\pi\)
0.725104 0.688639i \(-0.241792\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 107.906 500.500i 0.210754 0.977539i
\(513\) 0 0
\(514\) −621.986 777.807i −1.21009 1.51324i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1188.98i 2.29090i
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −196.497 + 1765.20i −0.376431 + 3.38162i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) −480.598 760.339i −0.917171 1.45103i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) 804.120 804.120i 1.51435 1.51435i
\(532\) 0 0
\(533\) 929.098 + 929.098i 1.74315 + 1.74315i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1155.02i 2.15088i
\(538\) 811.315 + 90.3131i 1.50802 + 0.167868i
\(539\) 0 0
\(540\) 0 0
\(541\) 554.221 554.221i 1.02444 1.02444i 0.0247449 0.999694i \(-0.492123\pi\)
0.999694 0.0247449i \(-0.00787734\pi\)
\(542\) 357.235 + 446.730i 0.659105 + 0.824224i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −297.970 + 297.970i −0.544734 + 0.544734i −0.924913 0.380179i \(-0.875862\pi\)
0.380179 + 0.924913i \(0.375862\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −904.535 312.437i −1.63865 0.566009i
\(553\) 0 0
\(554\) −15.6488 + 140.579i −0.0282470 + 0.253753i
\(555\) 0 0
\(556\) −166.224 + 105.068i −0.298965 + 0.188971i
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 97.2021 77.7292i 0.174197 0.139300i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) −566.735 896.614i −1.00485 1.58974i
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 457.772 + 940.885i 0.805937 + 1.65649i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −575.000 −1.00000
\(576\) −908.922 712.969i −1.57799 1.23779i
\(577\) −1150.41 −1.99378 −0.996890 0.0788074i \(-0.974889\pi\)
−0.996890 + 0.0788074i \(0.974889\pi\)
\(578\) −360.982 451.416i −0.624536 0.780996i
\(579\) −1290.44 + 1290.44i −2.22873 + 2.22873i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −308.165 633.389i −0.527680 1.08457i
\(585\) 0 0
\(586\) 0 0
\(587\) −790.016 790.016i −1.34585 1.34585i −0.890112 0.455742i \(-0.849374\pi\)
−0.455742 0.890112i \(-0.650626\pi\)
\(588\) 544.656 + 861.683i 0.926285 + 1.46545i
\(589\) 0 0
\(590\) 0 0
\(591\) −1542.98 −2.61080
\(592\) 0 0
\(593\) 1151.00 1.94098 0.970489 0.241147i \(-0.0775235\pi\)
0.970489 + 0.241147i \(0.0775235\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 100.992 907.247i 0.168883 1.51713i
\(599\) 1106.00i 1.84641i 0.384307 + 0.923205i \(0.374440\pi\)
−0.384307 + 0.923205i \(0.625560\pi\)
\(600\) −983.190 339.605i −1.63865 0.566009i
\(601\) 593.306i 0.987198i 0.869690 + 0.493599i \(0.164319\pi\)
−0.869690 + 0.493599i \(0.835681\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −428.771 96.6566i −0.709885 0.160027i
\(605\) 0 0
\(606\) 1291.27 + 1614.76i 2.13080 + 2.66461i
\(607\) −1151.00 −1.89621 −0.948105 0.317957i \(-0.897003\pi\)
−0.948105 + 0.317957i \(0.897003\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 715.453 715.453i 1.17095 1.17095i
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 1109.67 + 123.525i 1.80728 + 0.201180i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 0 0
\(621\) −765.485 + 765.485i −1.23266 + 1.23266i
\(622\) 903.885 722.807i 1.45319 1.16207i
\(623\) 0 0
\(624\) 708.522 1491.65i 1.13545 2.39046i
\(625\) −625.000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 1916.41i 3.02750i
\(634\) −435.012 48.4242i −0.686139 0.0763788i
\(635\) 0 0
\(636\) 0 0
\(637\) −687.579 + 687.579i −1.07940 + 1.07940i
\(638\) 0 0
\(639\) 2360.78 3.69449
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 987.754i 1.52667i −0.646004 0.763334i \(-0.723561\pi\)
0.646004 0.763334i \(-0.276439\pi\)
\(648\) −592.394 + 288.219i −0.914188 + 0.444783i
\(649\) 0 0
\(650\) 109.774 986.138i 0.168883 1.51713i
\(651\) 0 0
\(652\) 696.705 + 1102.24i 1.06857 + 1.69054i
\(653\) 277.195 277.195i 0.424494 0.424494i −0.462254 0.886748i \(-0.652959\pi\)
0.886748 + 0.462254i \(0.152959\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 454.532 956.924i 0.692883 1.45873i
\(657\) −1589.24 −2.41893
\(658\) 0 0
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) −141.548 + 1271.58i −0.213819 + 1.92081i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 800.163 + 800.163i 1.19964 + 1.19964i
\(668\) 898.259 + 202.492i 1.34470 + 0.303132i
\(669\) 846.589 846.589i 1.26545 1.26545i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1022.20 −1.51888 −0.759438 0.650580i \(-0.774526\pi\)
−0.759438 + 0.650580i \(0.774526\pi\)
\(674\) 0 0
\(675\) −832.049 + 832.049i −1.23266 + 1.23266i
\(676\) 877.216 + 197.748i 1.29766 + 0.292527i
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −334.162 334.162i −0.489256 0.489256i 0.418816 0.908071i \(-0.362445\pi\)
−0.908071 + 0.418816i \(0.862445\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 910.050 910.050i 1.31700 1.31700i 0.400868 0.916136i \(-0.368708\pi\)
0.916136 0.400868i \(-0.131292\pi\)
\(692\) 488.578 + 772.964i 0.706038 + 1.11700i
\(693\) 0 0
\(694\) 148.214 1331.46i 0.213565 1.91853i
\(695\) 0 0
\(696\) 895.604 + 1840.78i 1.28679 + 2.64481i
\(697\) 0 0
\(698\) 1352.62 + 150.570i 1.93785 + 0.215716i
\(699\) −1007.18 1007.18i −1.44089 1.44089i
\(700\) 0 0
\(701\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(702\) −1166.68 1458.96i −1.66194 2.07829i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 301.916 + 377.552i 0.427642 + 0.534776i
\(707\) 0 0
\(708\) 288.236 1278.62i 0.407112 1.80596i
\(709\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 79.2960i 0.111215i
\(714\) 0 0
\(715\) 0 0
\(716\) 474.626 + 750.891i 0.662886 + 1.04873i
\(717\) 1475.50 1475.50i 2.05789 2.05789i
\(718\) 0 0
\(719\) 1151.00 1.60083 0.800417 0.599444i \(-0.204611\pi\)
0.800417 + 0.599444i \(0.204611\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −563.879 + 450.915i −0.780996 + 0.624536i
\(723\) 0 0
\(724\) 0 0
\(725\) 869.742 + 869.742i 1.19964 + 1.19964i
\(726\) −139.247 + 1250.90i −0.191800 + 1.72301i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 716.797i 0.983261i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −716.434 + 168.576i −0.973416 + 0.229044i
\(737\) 0 0
\(738\) −1492.78 1866.75i −2.02274 2.52948i
\(739\) 1022.24 1022.24i 1.38328 1.38328i 0.544550 0.838729i \(-0.316701\pi\)
0.838729 0.544550i \(-0.183299\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 46.8336 135.588i 0.0629484 0.182242i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −736.880 350.012i −0.979893 0.465442i
\(753\) 0 0
\(754\) −1525.06 + 1219.54i −2.02262 + 1.61742i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1464.35i 1.92425i −0.272608 0.962125i \(-0.587886\pi\)
0.272608 0.962125i \(-0.412114\pi\)
\(762\) 1896.10 + 211.068i 2.48832 + 0.276992i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1250.27 1.63008
\(768\) −1324.59 134.891i −1.72473 0.175639i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −1831.30 + 1831.30i −2.37523 + 2.37523i
\(772\) −308.654 + 1369.20i −0.399811 + 1.77357i
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 86.1913i 0.111215i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2315.74 2.95752
\(784\) 708.172 + 336.376i 0.903280 + 0.429051i
\(785\) 0 0
\(786\) −1826.83 + 1460.86i −2.32422 + 1.85860i
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −1003.11 + 634.049i −1.27298 + 0.804631i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −866.134 96.4153i −1.09085 0.121430i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −778.733 + 183.235i −0.973416 + 0.229044i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 135.994 + 15.1385i 0.168727 + 0.0187822i
\(807\) 2122.84i 2.63053i
\(808\) 1503.01 + 519.156i 1.86016 + 0.642520i
\(809\) 1611.40i 1.99184i −0.0902349 0.995921i \(-0.528762\pi\)
0.0902349 0.995921i \(-0.471238\pi\)
\(810\) 0 0
\(811\) 350.310 + 350.310i 0.431949 + 0.431949i 0.889291 0.457342i \(-0.151199\pi\)
−0.457342 + 0.889291i \(0.651199\pi\)
\(812\) 0 0
\(813\) 1051.80 1051.80i 1.29373 1.29373i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 953.496 762.479i 1.16564 0.932126i
\(819\) 0 0
\(820\) 0 0
\(821\) 119.050 + 119.050i 0.145006 + 0.145006i 0.775883 0.630877i \(-0.217305\pi\)
−0.630877 + 0.775883i \(0.717305\pi\)
\(822\) 0 0
\(823\) 1155.23i 1.40369i 0.712332 + 0.701843i \(0.247639\pi\)
−0.712332 + 0.701843i \(0.752361\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) −365.178 + 1619.94i −0.441036 + 1.95644i
\(829\) −884.550 + 884.550i −1.06701 + 1.06701i −0.0694210 + 0.997587i \(0.522115\pi\)
−0.997587 + 0.0694210i \(0.977885\pi\)
\(830\) 0 0
\(831\) 367.830 0.442635
\(832\) −152.337 1260.88i −0.183098 1.51548i
\(833\) 0 0
\(834\) 319.371 + 399.381i 0.382939 + 0.478874i
\(835\) 0 0
\(836\) 0 0
\(837\) −114.745 114.745i −0.137090 0.137090i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 1579.64i 1.87829i
\(842\) 0 0
\(843\) 0 0
\(844\) 787.498 + 1245.88i 0.933055 + 1.47616i
\(845\) 0 0
\(846\) −1437.50 + 1149.52i −1.69917 + 1.35877i
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 2300.03 1453.81i 2.69956 1.70635i
\(853\) 1090.75 + 1090.75i 1.27872 + 1.27872i 0.941383 + 0.337339i \(0.109527\pi\)
0.337339 + 0.941383i \(0.390473\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1697.28i 1.98049i −0.139332 0.990246i \(-0.544496\pi\)
0.139332 0.990246i \(-0.455504\pi\)
\(858\) 0 0
\(859\) −304.121 304.121i −0.354041 0.354041i 0.507570 0.861611i \(-0.330544\pi\)
−0.861611 + 0.507570i \(0.830544\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −700.501 −0.811704 −0.405852 0.913939i \(-0.633025\pi\)
−0.405852 + 0.913939i \(0.633025\pi\)
\(864\) −792.773 + 1280.65i −0.917561 + 1.48223i
\(865\) 0 0
\(866\) 0 0
\(867\) −1062.83 + 1062.83i −1.22587 + 1.22587i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −1548.34 + 978.681i −1.76751 + 1.11722i
\(877\) 376.150 376.150i 0.428906 0.428906i −0.459350 0.888255i \(-0.651918\pi\)
0.888255 + 0.459350i \(0.151918\pi\)
\(878\) −367.866 + 294.170i −0.418982 + 0.335046i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1381.49 1104.73i 1.56632 1.25253i
\(883\) −279.150 + 279.150i −0.316138 + 0.316138i −0.847282 0.531144i \(-0.821762\pi\)
0.531144 + 0.847282i \(0.321762\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −195.696 + 1758.01i −0.220876 + 1.98421i
\(887\) 1509.61i 1.70192i 0.525228 + 0.850961i \(0.323980\pi\)
−0.525228 + 0.850961i \(0.676020\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 202.492 898.259i 0.227009 1.00702i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −2373.84 −2.64642
\(898\) −862.609 1078.71i −0.960589 1.20124i
\(899\) −119.943 + 119.943i −0.133418 + 0.133418i
\(900\) −396.932 + 1760.80i −0.441036 + 1.95644i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −126.453 + 1135.97i −0.139572 + 1.25383i
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 2536.91 2536.91i 2.79088 2.79088i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 2903.48i 3.15253i
\(922\) 1710.30 + 190.385i 1.85499 + 0.206492i
\(923\) 1835.30 + 1835.30i 1.98841 + 1.98841i
\(924\) 0 0
\(925\) 0 0
\(926\) 122.409 + 153.075i 0.132191 + 0.165308i
\(927\) 0 0
\(928\) 1338.66 + 828.687i 1.44252 + 0.892981i
\(929\) 618.195 0.665441 0.332720 0.943026i \(-0.392033\pi\)
0.332720 + 0.943026i \(0.392033\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1068.65 240.903i −1.14662 0.258480i
\(933\) −2128.15 2128.15i −2.28097 2.28097i
\(934\) 0 0
\(935\) 0 0
\(936\) −2708.51 935.551i −2.89371 0.999520i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) −1522.87 −1.61492
\(944\) −338.030 949.685i −0.358083 1.00602i
\(945\) 0 0
\(946\) 0 0
\(947\) −625.246 + 625.246i −0.660238 + 0.660238i −0.955436 0.295198i \(-0.904614\pi\)
0.295198 + 0.955436i \(0.404614\pi\)
\(948\) 0 0
\(949\) −1235.50 1235.50i −1.30189 1.30189i
\(950\) 0 0
\(951\) 1138.22i 1.19687i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 352.920 1565.56i 0.369163 1.63761i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −949.114 −0.987631
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1925.34i 1.99104i −0.0945328 0.995522i \(-0.530136\pi\)
0.0945328 0.995522i \(-0.469864\pi\)
\(968\) 423.500 + 870.443i 0.437500 + 0.899218i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(972\) 10.0013 + 15.8227i 0.0102894 + 0.0162785i
\(973\) 0 0
\(974\) −1059.85 + 847.528i −1.08814 + 0.870152i
\(975\) −2580.26 −2.64642
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 2648.30 2117.75i 2.70787 2.16539i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −182.448 + 1638.99i −0.185792 + 1.66904i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) −2603.95 899.434i −2.64629 0.914059i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1611.40 1.62603 0.813017 0.582240i \(-0.197824\pi\)
0.813017 + 0.582240i \(0.197824\pi\)
\(992\) −25.2692 107.392i −0.0254730 0.108258i
\(993\) 3327.12 3.35058
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1407.15 1407.15i −1.41138 1.41138i −0.750401 0.660983i \(-0.770140\pi\)
−0.660983 0.750401i \(-0.729860\pi\)
\(998\) −1915.63 213.242i −1.91947 0.213669i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.3.k.a.229.2 yes 12
16.13 even 4 inner 368.3.k.a.45.2 12
23.22 odd 2 CM 368.3.k.a.229.2 yes 12
368.45 odd 4 inner 368.3.k.a.45.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.3.k.a.45.2 12 16.13 even 4 inner
368.3.k.a.45.2 12 368.45 odd 4 inner
368.3.k.a.229.2 yes 12 1.1 even 1 trivial
368.3.k.a.229.2 yes 12 23.22 odd 2 CM