Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [368,3,Mod(45,368)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(368, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("368.45");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 368 = 2^{4} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 368.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.0272737285\) |
Analytic rank: | \(0\) |
Dimension: | \(176\) |
Relative dimension: | \(88\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | −1.99091 | − | 0.190503i | −3.82125 | − | 3.82125i | 3.92742 | + | 0.758546i | −5.18968 | − | 5.18968i | 6.87979 | + | 8.33570i | 6.04746 | −7.67462 | − | 2.25838i | 20.2039i | 9.34352 | + | 11.3208i | ||||
45.2 | −1.99091 | − | 0.190503i | −3.82125 | − | 3.82125i | 3.92742 | + | 0.758546i | 5.18968 | + | 5.18968i | 6.87979 | + | 8.33570i | −6.04746 | −7.67462 | − | 2.25838i | 20.2039i | −9.34352 | − | 11.3208i | ||||
45.3 | −1.98630 | + | 0.233722i | −0.369206 | − | 0.369206i | 3.89075 | − | 0.928481i | −1.12325 | − | 1.12325i | 0.819645 | + | 0.647062i | 9.16844 | −7.51117 | + | 2.75359i | − | 8.72737i | 2.49363 | + | 1.96858i | |||
45.4 | −1.98630 | + | 0.233722i | −0.369206 | − | 0.369206i | 3.89075 | − | 0.928481i | 1.12325 | + | 1.12325i | 0.819645 | + | 0.647062i | −9.16844 | −7.51117 | + | 2.75359i | − | 8.72737i | −2.49363 | − | 1.96858i | |||
45.5 | −1.94739 | − | 0.455721i | 2.84929 | + | 2.84929i | 3.58464 | + | 1.77493i | −4.50863 | − | 4.50863i | −4.25019 | − | 6.84716i | 6.89373 | −6.17180 | − | 5.09007i | 7.23694i | 6.72537 | + | 10.8347i | ||||
45.6 | −1.94739 | − | 0.455721i | 2.84929 | + | 2.84929i | 3.58464 | + | 1.77493i | 4.50863 | + | 4.50863i | −4.25019 | − | 6.84716i | −6.89373 | −6.17180 | − | 5.09007i | 7.23694i | −6.72537 | − | 10.8347i | ||||
45.7 | −1.92151 | − | 0.554793i | 0.957217 | + | 0.957217i | 3.38441 | + | 2.13208i | −3.52863 | − | 3.52863i | −1.30825 | − | 2.37036i | −0.532746 | −5.32032 | − | 5.97447i | − | 7.16747i | 4.82265 | + | 8.73797i | |||
45.8 | −1.92151 | − | 0.554793i | 0.957217 | + | 0.957217i | 3.38441 | + | 2.13208i | 3.52863 | + | 3.52863i | −1.30825 | − | 2.37036i | 0.532746 | −5.32032 | − | 5.97447i | − | 7.16747i | −4.82265 | − | 8.73797i | |||
45.9 | −1.89910 | + | 0.627220i | 3.04556 | + | 3.04556i | 3.21319 | − | 2.38231i | −2.97493 | − | 2.97493i | −7.69407 | − | 3.87360i | −6.61236 | −4.60795 | + | 6.53964i | 9.55085i | 7.51564 | + | 3.78377i | ||||
45.10 | −1.89910 | + | 0.627220i | 3.04556 | + | 3.04556i | 3.21319 | − | 2.38231i | 2.97493 | + | 2.97493i | −7.69407 | − | 3.87360i | 6.61236 | −4.60795 | + | 6.53964i | 9.55085i | −7.51564 | − | 3.78377i | ||||
45.11 | −1.88889 | − | 0.657339i | −0.875057 | − | 0.875057i | 3.13581 | + | 2.48328i | −6.27246 | − | 6.27246i | 1.07768 | + | 2.22809i | −13.5040 | −4.29085 | − | 6.75194i | − | 7.46855i | 7.72485 | + | 15.9711i | |||
45.12 | −1.88889 | − | 0.657339i | −0.875057 | − | 0.875057i | 3.13581 | + | 2.48328i | 6.27246 | + | 6.27246i | 1.07768 | + | 2.22809i | 13.5040 | −4.29085 | − | 6.75194i | − | 7.46855i | −7.72485 | − | 15.9711i | |||
45.13 | −1.68730 | + | 1.07378i | −1.06385 | − | 1.06385i | 1.69399 | − | 3.62359i | −5.50618 | − | 5.50618i | 2.93739 | + | 0.652699i | 6.92562 | 1.03267 | + | 7.93307i | − | 6.73643i | 15.2030 | + | 3.37817i | |||
45.14 | −1.68730 | + | 1.07378i | −1.06385 | − | 1.06385i | 1.69399 | − | 3.62359i | 5.50618 | + | 5.50618i | 2.93739 | + | 0.652699i | −6.92562 | 1.03267 | + | 7.93307i | − | 6.73643i | −15.2030 | − | 3.37817i | |||
45.15 | −1.66928 | + | 1.10159i | −2.86022 | − | 2.86022i | 1.57301 | − | 3.67772i | −4.07644 | − | 4.07644i | 7.92530 | + | 1.62373i | −8.10417 | 1.42553 | + | 7.87197i | 7.36172i | 11.2953 | + | 2.31417i | ||||
45.16 | −1.66928 | + | 1.10159i | −2.86022 | − | 2.86022i | 1.57301 | − | 3.67772i | 4.07644 | + | 4.07644i | 7.92530 | + | 1.62373i | 8.10417 | 1.42553 | + | 7.87197i | 7.36172i | −11.2953 | − | 2.31417i | ||||
45.17 | −1.65101 | − | 1.12879i | −2.32244 | − | 2.32244i | 1.45165 | + | 3.72729i | −0.541772 | − | 0.541772i | 1.21281 | + | 6.45593i | 0.211665 | 1.81065 | − | 7.79240i | 1.78749i | 0.282921 | + | 1.50602i | ||||
45.18 | −1.65101 | − | 1.12879i | −2.32244 | − | 2.32244i | 1.45165 | + | 3.72729i | 0.541772 | + | 0.541772i | 1.21281 | + | 6.45593i | −0.211665 | 1.81065 | − | 7.79240i | 1.78749i | −0.282921 | − | 1.50602i | ||||
45.19 | −1.52002 | + | 1.29982i | 0.968686 | + | 0.968686i | 0.620917 | − | 3.95151i | −3.86184 | − | 3.86184i | −2.73154 | − | 0.213300i | −4.96433 | 4.19246 | + | 6.81346i | − | 7.12330i | 10.8898 | + | 0.850361i | |||
45.20 | −1.52002 | + | 1.29982i | 0.968686 | + | 0.968686i | 0.620917 | − | 3.95151i | 3.86184 | + | 3.86184i | −2.73154 | − | 0.213300i | 4.96433 | 4.19246 | + | 6.81346i | − | 7.12330i | −10.8898 | − | 0.850361i | |||
See next 80 embeddings (of 176 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
23.b | odd | 2 | 1 | inner |
368.k | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 368.3.k.b | ✓ | 176 |
16.e | even | 4 | 1 | inner | 368.3.k.b | ✓ | 176 |
23.b | odd | 2 | 1 | inner | 368.3.k.b | ✓ | 176 |
368.k | odd | 4 | 1 | inner | 368.3.k.b | ✓ | 176 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
368.3.k.b | ✓ | 176 | 1.a | even | 1 | 1 | trivial |
368.3.k.b | ✓ | 176 | 16.e | even | 4 | 1 | inner |
368.3.k.b | ✓ | 176 | 23.b | odd | 2 | 1 | inner |
368.3.k.b | ✓ | 176 | 368.k | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{88} + 2 T_{3}^{87} + 2 T_{3}^{86} - 46 T_{3}^{85} + 4983 T_{3}^{84} + 9104 T_{3}^{83} + \cdots + 13\!\cdots\!64 \) acting on \(S_{3}^{\mathrm{new}}(368, [\chi])\).