Properties

Label 368.4.a.g
Level $368$
Weight $4$
Character orbit 368.a
Self dual yes
Analytic conductor $21.713$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,4,Mod(1,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.7127028821\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (3 \beta - 1) q^{3} + (2 \beta + 4) q^{5} + ( - 2 \beta - 2) q^{7} + (3 \beta + 64) q^{9} + (8 \beta - 40) q^{11} + (7 \beta - 59) q^{13} + (16 \beta + 56) q^{15} + (24 \beta + 50) q^{17} + ( - 18 \beta - 2) q^{19}+ \cdots + (416 \beta - 2320) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 10 q^{5} - 6 q^{7} + 131 q^{9} - 72 q^{11} - 111 q^{13} + 128 q^{15} + 124 q^{17} - 22 q^{19} - 126 q^{21} + 46 q^{23} - 118 q^{25} + 223 q^{27} + 15 q^{29} - 67 q^{31} + 456 q^{33} - 112 q^{35}+ \cdots - 4224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.70156
3.70156
0 −9.10469 0 −1.40312 0 3.40312 0 55.8953 0
1.2 0 10.1047 0 11.4031 0 −9.40312 0 75.1047 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 368.4.a.g 2
4.b odd 2 1 46.4.a.c 2
8.b even 2 1 1472.4.a.l 2
8.d odd 2 1 1472.4.a.m 2
12.b even 2 1 414.4.a.j 2
20.d odd 2 1 1150.4.a.k 2
20.e even 4 2 1150.4.b.i 4
28.d even 2 1 2254.4.a.d 2
92.b even 2 1 1058.4.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.4.a.c 2 4.b odd 2 1
368.4.a.g 2 1.a even 1 1 trivial
414.4.a.j 2 12.b even 2 1
1058.4.a.f 2 92.b even 2 1
1150.4.a.k 2 20.d odd 2 1
1150.4.b.i 4 20.e even 4 2
1472.4.a.l 2 8.b even 2 1
1472.4.a.m 2 8.d odd 2 1
2254.4.a.d 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} - 92 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(368))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 92 \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 16 \) Copy content Toggle raw display
$7$ \( T^{2} + 6T - 32 \) Copy content Toggle raw display
$11$ \( T^{2} + 72T + 640 \) Copy content Toggle raw display
$13$ \( T^{2} + 111T + 2578 \) Copy content Toggle raw display
$17$ \( T^{2} - 124T - 2060 \) Copy content Toggle raw display
$19$ \( T^{2} + 22T - 3200 \) Copy content Toggle raw display
$23$ \( (T - 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 15T - 43250 \) Copy content Toggle raw display
$31$ \( T^{2} + 67T - 1840 \) Copy content Toggle raw display
$37$ \( T^{2} - 18T - 50144 \) Copy content Toggle raw display
$41$ \( T^{2} - 485T + 54286 \) Copy content Toggle raw display
$43$ \( T^{2} - 440T + 16256 \) Copy content Toggle raw display
$47$ \( T^{2} + 215T - 77096 \) Copy content Toggle raw display
$53$ \( T^{2} - 240T - 143204 \) Copy content Toggle raw display
$59$ \( T^{2} + 792T + 146320 \) Copy content Toggle raw display
$61$ \( T^{2} - 456T - 408692 \) Copy content Toggle raw display
$67$ \( T^{2} + 240T - 9216 \) Copy content Toggle raw display
$71$ \( T^{2} - 705T + 39376 \) Copy content Toggle raw display
$73$ \( T^{2} - 27T - 8438 \) Copy content Toggle raw display
$79$ \( T^{2} + 594T + 32080 \) Copy content Toggle raw display
$83$ \( T^{2} + 394T - 285952 \) Copy content Toggle raw display
$89$ \( T^{2} + 486T - 31520 \) Copy content Toggle raw display
$97$ \( T^{2} - 2152 T + 882092 \) Copy content Toggle raw display
show more
show less