Properties

Label 3696.2.q.b.769.8
Level $3696$
Weight $2$
Character 3696.769
Analytic conductor $29.513$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3696,2,Mod(769,3696)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3696, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3696.769");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3696 = 2^{4} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3696.q (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.5127085871\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6679465984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 88x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 462)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.8
Root \(0.829319i\) of defining polynomial
Character \(\chi\) \(=\) 3696.769
Dual form 3696.2.q.b.769.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +4.14155i q^{5} +(-0.717333 + 2.54665i) q^{7} -1.00000 q^{9} +(0.170681 - 3.31223i) q^{11} +3.09330 q^{13} -4.14155 q^{15} +3.57621 q^{17} -3.91758 q^{19} +(-2.54665 - 0.717333i) q^{21} -7.71776 q^{23} -12.1524 q^{25} -1.00000i q^{27} -1.65864i q^{29} -9.23485i q^{31} +(3.31223 + 0.170681i) q^{33} +(-10.5471 - 2.97087i) q^{35} -0.869330 q^{37} +3.09330i q^{39} -5.91758 q^{41} +10.2831i q^{43} -4.14155i q^{45} -6.76601i q^{47} +(-5.97087 - 3.65359i) q^{49} +3.57621i q^{51} -1.88261 q^{53} +(13.7178 + 0.706884i) q^{55} -3.91758i q^{57} +10.1866i q^{59} -3.37640 q^{61} +(0.717333 - 2.54665i) q^{63} +12.8111i q^{65} -9.84524 q^{67} -7.71776i q^{69} -1.33817 q^{71} -5.57621 q^{73} -12.1524i q^{75} +(8.31266 + 2.81064i) q^{77} -10.8484i q^{79} +1.00000 q^{81} +5.67271 q^{83} +14.8111i q^{85} +1.65864 q^{87} +10.6245i q^{89} +(-2.21893 + 7.87756i) q^{91} +9.23485 q^{93} -16.2248i q^{95} +4.52797i q^{97} +(-0.170681 + 3.31223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 8 q^{11} - 4 q^{15} - 12 q^{17} - 4 q^{19} - 8 q^{21} + 8 q^{23} - 16 q^{25} + 4 q^{33} - 8 q^{35} + 16 q^{37} - 20 q^{41} - 12 q^{49} + 40 q^{55} + 56 q^{61} - 16 q^{67} - 8 q^{71} - 4 q^{73}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3696\mathbb{Z}\right)^\times\).

\(n\) \(463\) \(673\) \(1585\) \(2465\) \(2773\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 4.14155i 1.85216i 0.377331 + 0.926079i \(0.376842\pi\)
−0.377331 + 0.926079i \(0.623158\pi\)
\(6\) 0 0
\(7\) −0.717333 + 2.54665i −0.271126 + 0.962544i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.170681 3.31223i 0.0514623 0.998675i
\(12\) 0 0
\(13\) 3.09330 0.857928 0.428964 0.903322i \(-0.358879\pi\)
0.428964 + 0.903322i \(0.358879\pi\)
\(14\) 0 0
\(15\) −4.14155 −1.06934
\(16\) 0 0
\(17\) 3.57621 0.867359 0.433680 0.901067i \(-0.357215\pi\)
0.433680 + 0.901067i \(0.357215\pi\)
\(18\) 0 0
\(19\) −3.91758 −0.898754 −0.449377 0.893342i \(-0.648354\pi\)
−0.449377 + 0.893342i \(0.648354\pi\)
\(20\) 0 0
\(21\) −2.54665 0.717333i −0.555725 0.156535i
\(22\) 0 0
\(23\) −7.71776 −1.60926 −0.804632 0.593773i \(-0.797638\pi\)
−0.804632 + 0.593773i \(0.797638\pi\)
\(24\) 0 0
\(25\) −12.1524 −2.43049
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.65864i 0.308001i −0.988071 0.154001i \(-0.950784\pi\)
0.988071 0.154001i \(-0.0492158\pi\)
\(30\) 0 0
\(31\) 9.23485i 1.65863i −0.558783 0.829314i \(-0.688731\pi\)
0.558783 0.829314i \(-0.311269\pi\)
\(32\) 0 0
\(33\) 3.31223 + 0.170681i 0.576585 + 0.0297118i
\(34\) 0 0
\(35\) −10.5471 2.97087i −1.78278 0.502168i
\(36\) 0 0
\(37\) −0.869330 −0.142917 −0.0714585 0.997444i \(-0.522765\pi\)
−0.0714585 + 0.997444i \(0.522765\pi\)
\(38\) 0 0
\(39\) 3.09330i 0.495325i
\(40\) 0 0
\(41\) −5.91758 −0.924170 −0.462085 0.886836i \(-0.652899\pi\)
−0.462085 + 0.886836i \(0.652899\pi\)
\(42\) 0 0
\(43\) 10.2831i 1.56816i 0.620661 + 0.784079i \(0.286864\pi\)
−0.620661 + 0.784079i \(0.713136\pi\)
\(44\) 0 0
\(45\) 4.14155i 0.617386i
\(46\) 0 0
\(47\) 6.76601i 0.986924i −0.869767 0.493462i \(-0.835731\pi\)
0.869767 0.493462i \(-0.164269\pi\)
\(48\) 0 0
\(49\) −5.97087 3.65359i −0.852981 0.521942i
\(50\) 0 0
\(51\) 3.57621i 0.500770i
\(52\) 0 0
\(53\) −1.88261 −0.258596 −0.129298 0.991606i \(-0.541272\pi\)
−0.129298 + 0.991606i \(0.541272\pi\)
\(54\) 0 0
\(55\) 13.7178 + 0.706884i 1.84970 + 0.0953162i
\(56\) 0 0
\(57\) 3.91758i 0.518896i
\(58\) 0 0
\(59\) 10.1866i 1.32618i 0.748538 + 0.663092i \(0.230756\pi\)
−0.748538 + 0.663092i \(0.769244\pi\)
\(60\) 0 0
\(61\) −3.37640 −0.432304 −0.216152 0.976360i \(-0.569351\pi\)
−0.216152 + 0.976360i \(0.569351\pi\)
\(62\) 0 0
\(63\) 0.717333 2.54665i 0.0903754 0.320848i
\(64\) 0 0
\(65\) 12.8111i 1.58902i
\(66\) 0 0
\(67\) −9.84524 −1.20279 −0.601394 0.798953i \(-0.705388\pi\)
−0.601394 + 0.798953i \(0.705388\pi\)
\(68\) 0 0
\(69\) 7.71776i 0.929110i
\(70\) 0 0
\(71\) −1.33817 −0.158812 −0.0794060 0.996842i \(-0.525302\pi\)
−0.0794060 + 0.996842i \(0.525302\pi\)
\(72\) 0 0
\(73\) −5.57621 −0.652647 −0.326323 0.945258i \(-0.605810\pi\)
−0.326323 + 0.945258i \(0.605810\pi\)
\(74\) 0 0
\(75\) 12.1524i 1.40324i
\(76\) 0 0
\(77\) 8.31266 + 2.81064i 0.947316 + 0.320302i
\(78\) 0 0
\(79\) 10.8484i 1.22054i −0.792192 0.610272i \(-0.791060\pi\)
0.792192 0.610272i \(-0.208940\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.67271 0.622660 0.311330 0.950302i \(-0.399225\pi\)
0.311330 + 0.950302i \(0.399225\pi\)
\(84\) 0 0
\(85\) 14.8111i 1.60649i
\(86\) 0 0
\(87\) 1.65864 0.177825
\(88\) 0 0
\(89\) 10.6245i 1.12619i 0.826392 + 0.563095i \(0.190390\pi\)
−0.826392 + 0.563095i \(0.809610\pi\)
\(90\) 0 0
\(91\) −2.21893 + 7.87756i −0.232607 + 0.825793i
\(92\) 0 0
\(93\) 9.23485 0.957610
\(94\) 0 0
\(95\) 16.2248i 1.66463i
\(96\) 0 0
\(97\) 4.52797i 0.459746i 0.973221 + 0.229873i \(0.0738310\pi\)
−0.973221 + 0.229873i \(0.926169\pi\)
\(98\) 0 0
\(99\) −0.170681 + 3.31223i −0.0171541 + 0.332892i
\(100\) 0 0
\(101\) 1.37554 0.136871 0.0684357 0.997656i \(-0.478199\pi\)
0.0684357 + 0.997656i \(0.478199\pi\)
\(102\) 0 0
\(103\) 0.0140682i 0.00138618i −1.00000 0.000693089i \(-0.999779\pi\)
1.00000 0.000693089i \(-0.000220617\pi\)
\(104\) 0 0
\(105\) 2.97087 10.5471i 0.289927 1.02929i
\(106\) 0 0
\(107\) 1.37554i 0.132978i 0.997787 + 0.0664892i \(0.0211798\pi\)
−0.997787 + 0.0664892i \(0.978820\pi\)
\(108\) 0 0
\(109\) 13.1315i 1.25777i −0.777497 0.628886i \(-0.783511\pi\)
0.777497 0.628886i \(-0.216489\pi\)
\(110\) 0 0
\(111\) 0.869330i 0.0825132i
\(112\) 0 0
\(113\) −7.30718 −0.687402 −0.343701 0.939079i \(-0.611681\pi\)
−0.343701 + 0.939079i \(0.611681\pi\)
\(114\) 0 0
\(115\) 31.9635i 2.98061i
\(116\) 0 0
\(117\) −3.09330 −0.285976
\(118\) 0 0
\(119\) −2.56533 + 9.10737i −0.235164 + 0.834871i
\(120\) 0 0
\(121\) −10.9417 1.13067i −0.994703 0.102788i
\(122\) 0 0
\(123\) 5.91758i 0.533570i
\(124\) 0 0
\(125\) 29.6221i 2.64948i
\(126\) 0 0
\(127\) 19.4564i 1.72648i 0.504795 + 0.863239i \(0.331568\pi\)
−0.504795 + 0.863239i \(0.668432\pi\)
\(128\) 0 0
\(129\) −10.2831 −0.905376
\(130\) 0 0
\(131\) 14.2108 1.24160 0.620800 0.783969i \(-0.286808\pi\)
0.620800 + 0.783969i \(0.286808\pi\)
\(132\) 0 0
\(133\) 2.81021 9.97670i 0.243676 0.865090i
\(134\) 0 0
\(135\) 4.14155 0.356448
\(136\) 0 0
\(137\) 13.4938 1.15285 0.576426 0.817149i \(-0.304447\pi\)
0.576426 + 0.817149i \(0.304447\pi\)
\(138\) 0 0
\(139\) −14.5521 −1.23430 −0.617148 0.786847i \(-0.711712\pi\)
−0.617148 + 0.786847i \(0.711712\pi\)
\(140\) 0 0
\(141\) 6.76601 0.569801
\(142\) 0 0
\(143\) 0.527968 10.2457i 0.0441509 0.856791i
\(144\) 0 0
\(145\) 6.86933 0.570467
\(146\) 0 0
\(147\) 3.65359 5.97087i 0.301343 0.492469i
\(148\) 0 0
\(149\) 7.24892i 0.593855i −0.954900 0.296927i \(-0.904038\pi\)
0.954900 0.296927i \(-0.0959619\pi\)
\(150\) 0 0
\(151\) 10.3422i 0.841638i 0.907145 + 0.420819i \(0.138257\pi\)
−0.907145 + 0.420819i \(0.861743\pi\)
\(152\) 0 0
\(153\) −3.57621 −0.289120
\(154\) 0 0
\(155\) 38.2466 3.07204
\(156\) 0 0
\(157\) 13.0801i 1.04391i −0.852974 0.521953i \(-0.825204\pi\)
0.852974 0.521953i \(-0.174796\pi\)
\(158\) 0 0
\(159\) 1.88261i 0.149301i
\(160\) 0 0
\(161\) 5.53620 19.6545i 0.436314 1.54899i
\(162\) 0 0
\(163\) 3.75513 0.294124 0.147062 0.989127i \(-0.453018\pi\)
0.147062 + 0.989127i \(0.453018\pi\)
\(164\) 0 0
\(165\) −0.706884 + 13.7178i −0.0550308 + 1.06793i
\(166\) 0 0
\(167\) 16.9658 1.31285 0.656427 0.754389i \(-0.272067\pi\)
0.656427 + 0.754389i \(0.272067\pi\)
\(168\) 0 0
\(169\) −3.43148 −0.263960
\(170\) 0 0
\(171\) 3.91758 0.299585
\(172\) 0 0
\(173\) 3.75513 0.285497 0.142749 0.989759i \(-0.454406\pi\)
0.142749 + 0.989759i \(0.454406\pi\)
\(174\) 0 0
\(175\) 8.71733 30.9480i 0.658968 2.33945i
\(176\) 0 0
\(177\) −10.1866 −0.765672
\(178\) 0 0
\(179\) −18.6627 −1.39491 −0.697457 0.716626i \(-0.745685\pi\)
−0.697457 + 0.716626i \(0.745685\pi\)
\(180\) 0 0
\(181\) 14.9216i 1.10912i −0.832145 0.554558i \(-0.812887\pi\)
0.832145 0.554558i \(-0.187113\pi\)
\(182\) 0 0
\(183\) 3.37640i 0.249591i
\(184\) 0 0
\(185\) 3.60037i 0.264705i
\(186\) 0 0
\(187\) 0.610392 11.8452i 0.0446363 0.866210i
\(188\) 0 0
\(189\) 2.54665 + 0.717333i 0.185242 + 0.0521783i
\(190\) 0 0
\(191\) 10.5871 0.766055 0.383028 0.923737i \(-0.374881\pi\)
0.383028 + 0.923737i \(0.374881\pi\)
\(192\) 0 0
\(193\) 11.4355i 0.823147i 0.911377 + 0.411574i \(0.135021\pi\)
−0.911377 + 0.411574i \(0.864979\pi\)
\(194\) 0 0
\(195\) −12.8111 −0.917420
\(196\) 0 0
\(197\) 13.2107i 0.941223i 0.882341 + 0.470611i \(0.155967\pi\)
−0.882341 + 0.470611i \(0.844033\pi\)
\(198\) 0 0
\(199\) 14.0077i 0.992979i 0.868043 + 0.496489i \(0.165378\pi\)
−0.868043 + 0.496489i \(0.834622\pi\)
\(200\) 0 0
\(201\) 9.84524i 0.694430i
\(202\) 0 0
\(203\) 4.22397 + 1.18979i 0.296465 + 0.0835072i
\(204\) 0 0
\(205\) 24.5079i 1.71171i
\(206\) 0 0
\(207\) 7.71776 0.536422
\(208\) 0 0
\(209\) −0.668656 + 12.9759i −0.0462519 + 0.897563i
\(210\) 0 0
\(211\) 7.33903i 0.505240i −0.967566 0.252620i \(-0.918708\pi\)
0.967566 0.252620i \(-0.0812922\pi\)
\(212\) 0 0
\(213\) 1.33817i 0.0916901i
\(214\) 0 0
\(215\) −42.5880 −2.90447
\(216\) 0 0
\(217\) 23.5180 + 6.62446i 1.59650 + 0.449698i
\(218\) 0 0
\(219\) 5.57621i 0.376806i
\(220\) 0 0
\(221\) 11.0623 0.744132
\(222\) 0 0
\(223\) 7.42146i 0.496978i 0.968635 + 0.248489i \(0.0799339\pi\)
−0.968635 + 0.248489i \(0.920066\pi\)
\(224\) 0 0
\(225\) 12.1524 0.810162
\(226\) 0 0
\(227\) 8.46201 0.561644 0.280822 0.959760i \(-0.409393\pi\)
0.280822 + 0.959760i \(0.409393\pi\)
\(228\) 0 0
\(229\) 1.03178i 0.0681817i −0.999419 0.0340909i \(-0.989146\pi\)
0.999419 0.0340909i \(-0.0108536\pi\)
\(230\) 0 0
\(231\) −2.81064 + 8.31266i −0.184926 + 0.546933i
\(232\) 0 0
\(233\) 0.944064i 0.0618477i 0.999522 + 0.0309238i \(0.00984493\pi\)
−0.999522 + 0.0309238i \(0.990155\pi\)
\(234\) 0 0
\(235\) 28.0218 1.82794
\(236\) 0 0
\(237\) 10.8484 0.704681
\(238\) 0 0
\(239\) 20.9394i 1.35446i 0.735772 + 0.677229i \(0.236819\pi\)
−0.735772 + 0.677229i \(0.763181\pi\)
\(240\) 0 0
\(241\) −17.8593 −1.15042 −0.575210 0.818006i \(-0.695080\pi\)
−0.575210 + 0.818006i \(0.695080\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 15.1315 24.7286i 0.966718 1.57986i
\(246\) 0 0
\(247\) −12.1183 −0.771066
\(248\) 0 0
\(249\) 5.67271i 0.359493i
\(250\) 0 0
\(251\) 8.96582i 0.565918i 0.959132 + 0.282959i \(0.0913160\pi\)
−0.959132 + 0.282959i \(0.908684\pi\)
\(252\) 0 0
\(253\) −1.31728 + 25.5630i −0.0828164 + 1.60713i
\(254\) 0 0
\(255\) −14.8111 −0.927505
\(256\) 0 0
\(257\) 8.52797i 0.531960i −0.963979 0.265980i \(-0.914304\pi\)
0.963979 0.265980i \(-0.0856955\pi\)
\(258\) 0 0
\(259\) 0.623599 2.21388i 0.0387486 0.137564i
\(260\) 0 0
\(261\) 1.65864i 0.102667i
\(262\) 0 0
\(263\) 31.2871i 1.92925i 0.263629 + 0.964624i \(0.415080\pi\)
−0.263629 + 0.964624i \(0.584920\pi\)
\(264\) 0 0
\(265\) 7.79692i 0.478961i
\(266\) 0 0
\(267\) −10.6245 −0.650206
\(268\) 0 0
\(269\) 7.57535i 0.461877i 0.972968 + 0.230939i \(0.0741797\pi\)
−0.972968 + 0.230939i \(0.925820\pi\)
\(270\) 0 0
\(271\) −14.9667 −0.909161 −0.454581 0.890706i \(-0.650211\pi\)
−0.454581 + 0.890706i \(0.650211\pi\)
\(272\) 0 0
\(273\) −7.87756 2.21893i −0.476772 0.134296i
\(274\) 0 0
\(275\) −2.07419 + 40.2516i −0.125078 + 2.42727i
\(276\) 0 0
\(277\) 29.2498i 1.75745i −0.477329 0.878725i \(-0.658395\pi\)
0.477329 0.878725i \(-0.341605\pi\)
\(278\) 0 0
\(279\) 9.23485i 0.552876i
\(280\) 0 0
\(281\) 15.4938i 0.924282i 0.886806 + 0.462141i \(0.152919\pi\)
−0.886806 + 0.462141i \(0.847081\pi\)
\(282\) 0 0
\(283\) −0.855262 −0.0508401 −0.0254200 0.999677i \(-0.508092\pi\)
−0.0254200 + 0.999677i \(0.508092\pi\)
\(284\) 0 0
\(285\) 16.2248 0.961076
\(286\) 0 0
\(287\) 4.24487 15.0700i 0.250567 0.889554i
\(288\) 0 0
\(289\) −4.21069 −0.247688
\(290\) 0 0
\(291\) −4.52797 −0.265434
\(292\) 0 0
\(293\) −10.0319 −0.586067 −0.293033 0.956102i \(-0.594665\pi\)
−0.293033 + 0.956102i \(0.594665\pi\)
\(294\) 0 0
\(295\) −42.1883 −2.45630
\(296\) 0 0
\(297\) −3.31223 0.170681i −0.192195 0.00990392i
\(298\) 0 0
\(299\) −23.8734 −1.38063
\(300\) 0 0
\(301\) −26.1875 7.37640i −1.50942 0.425169i
\(302\) 0 0
\(303\) 1.37554i 0.0790227i
\(304\) 0 0
\(305\) 13.9835i 0.800695i
\(306\) 0 0
\(307\) 2.55213 0.145658 0.0728288 0.997344i \(-0.476797\pi\)
0.0728288 + 0.997344i \(0.476797\pi\)
\(308\) 0 0
\(309\) 0.0140682 0.000800310
\(310\) 0 0
\(311\) 15.6136i 0.885365i −0.896678 0.442682i \(-0.854027\pi\)
0.896678 0.442682i \(-0.145973\pi\)
\(312\) 0 0
\(313\) 20.0435i 1.13293i 0.824087 + 0.566463i \(0.191689\pi\)
−0.824087 + 0.566463i \(0.808311\pi\)
\(314\) 0 0
\(315\) 10.5471 + 2.97087i 0.594261 + 0.167389i
\(316\) 0 0
\(317\) −2.56533 −0.144084 −0.0720418 0.997402i \(-0.522951\pi\)
−0.0720418 + 0.997402i \(0.522951\pi\)
\(318\) 0 0
\(319\) −5.49379 0.283098i −0.307593 0.0158504i
\(320\) 0 0
\(321\) −1.37554 −0.0767751
\(322\) 0 0
\(323\) −14.0101 −0.779542
\(324\) 0 0
\(325\) −37.5911 −2.08518
\(326\) 0 0
\(327\) 13.1315 0.726175
\(328\) 0 0
\(329\) 17.2307 + 4.85348i 0.949957 + 0.267581i
\(330\) 0 0
\(331\) −8.35145 −0.459037 −0.229519 0.973304i \(-0.573715\pi\)
−0.229519 + 0.973304i \(0.573715\pi\)
\(332\) 0 0
\(333\) 0.869330 0.0476390
\(334\) 0 0
\(335\) 40.7746i 2.22775i
\(336\) 0 0
\(337\) 9.93164i 0.541011i 0.962718 + 0.270506i \(0.0871909\pi\)
−0.962718 + 0.270506i \(0.912809\pi\)
\(338\) 0 0
\(339\) 7.30718i 0.396872i
\(340\) 0 0
\(341\) −30.5880 1.57621i −1.65643 0.0853568i
\(342\) 0 0
\(343\) 13.5875 12.5849i 0.733657 0.679520i
\(344\) 0 0
\(345\) 31.9635 1.72086
\(346\) 0 0
\(347\) 31.2007i 1.67494i −0.546480 0.837472i \(-0.684033\pi\)
0.546480 0.837472i \(-0.315967\pi\)
\(348\) 0 0
\(349\) 28.7154 1.53710 0.768551 0.639789i \(-0.220978\pi\)
0.768551 + 0.639789i \(0.220978\pi\)
\(350\) 0 0
\(351\) 3.09330i 0.165108i
\(352\) 0 0
\(353\) 5.05065i 0.268819i −0.990926 0.134409i \(-0.957086\pi\)
0.990926 0.134409i \(-0.0429137\pi\)
\(354\) 0 0
\(355\) 5.54211i 0.294145i
\(356\) 0 0
\(357\) −9.10737 2.56533i −0.482013 0.135772i
\(358\) 0 0
\(359\) 21.3973i 1.12931i −0.825328 0.564653i \(-0.809010\pi\)
0.825328 0.564653i \(-0.190990\pi\)
\(360\) 0 0
\(361\) −3.65260 −0.192242
\(362\) 0 0
\(363\) 1.13067 10.9417i 0.0593448 0.574292i
\(364\) 0 0
\(365\) 23.0942i 1.20880i
\(366\) 0 0
\(367\) 36.3455i 1.89722i 0.316449 + 0.948609i \(0.397509\pi\)
−0.316449 + 0.948609i \(0.602491\pi\)
\(368\) 0 0
\(369\) 5.91758 0.308057
\(370\) 0 0
\(371\) 1.35046 4.79435i 0.0701123 0.248910i
\(372\) 0 0
\(373\) 18.1292i 0.938695i 0.883014 + 0.469347i \(0.155511\pi\)
−0.883014 + 0.469347i \(0.844489\pi\)
\(374\) 0 0
\(375\) 29.6221 1.52968
\(376\) 0 0
\(377\) 5.13067i 0.264243i
\(378\) 0 0
\(379\) 2.87942 0.147906 0.0739530 0.997262i \(-0.476439\pi\)
0.0739530 + 0.997262i \(0.476439\pi\)
\(380\) 0 0
\(381\) −19.4564 −0.996783
\(382\) 0 0
\(383\) 17.7255i 0.905728i −0.891580 0.452864i \(-0.850402\pi\)
0.891580 0.452864i \(-0.149598\pi\)
\(384\) 0 0
\(385\) −11.6404 + 34.4273i −0.593249 + 1.75458i
\(386\) 0 0
\(387\) 10.2831i 0.522719i
\(388\) 0 0
\(389\) −9.43467 −0.478357 −0.239178 0.970976i \(-0.576878\pi\)
−0.239178 + 0.970976i \(0.576878\pi\)
\(390\) 0 0
\(391\) −27.6004 −1.39581
\(392\) 0 0
\(393\) 14.2108i 0.716838i
\(394\) 0 0
\(395\) 44.9293 2.26064
\(396\) 0 0
\(397\) 16.4238i 0.824286i 0.911119 + 0.412143i \(0.135220\pi\)
−0.911119 + 0.412143i \(0.864780\pi\)
\(398\) 0 0
\(399\) 9.97670 + 2.81021i 0.499460 + 0.140686i
\(400\) 0 0
\(401\) −15.7551 −0.786774 −0.393387 0.919373i \(-0.628697\pi\)
−0.393387 + 0.919373i \(0.628697\pi\)
\(402\) 0 0
\(403\) 28.5662i 1.42298i
\(404\) 0 0
\(405\) 4.14155i 0.205795i
\(406\) 0 0
\(407\) −0.148378 + 2.87942i −0.00735483 + 0.142728i
\(408\) 0 0
\(409\) 7.19662 0.355850 0.177925 0.984044i \(-0.443062\pi\)
0.177925 + 0.984044i \(0.443062\pi\)
\(410\) 0 0
\(411\) 13.4938i 0.665600i
\(412\) 0 0
\(413\) −25.9417 7.30718i −1.27651 0.359563i
\(414\) 0 0
\(415\) 23.4938i 1.15326i
\(416\) 0 0
\(417\) 14.5521i 0.712621i
\(418\) 0 0
\(419\) 15.6004i 0.762128i 0.924549 + 0.381064i \(0.124442\pi\)
−0.924549 + 0.381064i \(0.875558\pi\)
\(420\) 0 0
\(421\) −16.0701 −0.783208 −0.391604 0.920134i \(-0.628080\pi\)
−0.391604 + 0.920134i \(0.628080\pi\)
\(422\) 0 0
\(423\) 6.76601i 0.328975i
\(424\) 0 0
\(425\) −43.4597 −2.10810
\(426\) 0 0
\(427\) 2.42200 8.59852i 0.117209 0.416111i
\(428\) 0 0
\(429\) 10.2457 + 0.527968i 0.494669 + 0.0254905i
\(430\) 0 0
\(431\) 17.3555i 0.835985i 0.908450 + 0.417993i \(0.137266\pi\)
−0.908450 + 0.417993i \(0.862734\pi\)
\(432\) 0 0
\(433\) 30.8711i 1.48357i 0.670639 + 0.741784i \(0.266020\pi\)
−0.670639 + 0.741784i \(0.733980\pi\)
\(434\) 0 0
\(435\) 6.86933i 0.329359i
\(436\) 0 0
\(437\) 30.2349 1.44633
\(438\) 0 0
\(439\) −19.3245 −0.922309 −0.461154 0.887320i \(-0.652565\pi\)
−0.461154 + 0.887320i \(0.652565\pi\)
\(440\) 0 0
\(441\) 5.97087 + 3.65359i 0.284327 + 0.173981i
\(442\) 0 0
\(443\) 7.71862 0.366723 0.183361 0.983046i \(-0.441302\pi\)
0.183361 + 0.983046i \(0.441302\pi\)
\(444\) 0 0
\(445\) −44.0017 −2.08588
\(446\) 0 0
\(447\) 7.24892 0.342862
\(448\) 0 0
\(449\) −10.1765 −0.480259 −0.240130 0.970741i \(-0.577190\pi\)
−0.240130 + 0.970741i \(0.577190\pi\)
\(450\) 0 0
\(451\) −1.01002 + 19.6004i −0.0475599 + 0.922946i
\(452\) 0 0
\(453\) −10.3422 −0.485920
\(454\) 0 0
\(455\) −32.6253 9.18979i −1.52950 0.430824i
\(456\) 0 0
\(457\) 4.80097i 0.224580i −0.993675 0.112290i \(-0.964181\pi\)
0.993675 0.112290i \(-0.0358186\pi\)
\(458\) 0 0
\(459\) 3.57621i 0.166923i
\(460\) 0 0
\(461\) 39.6386 1.84615 0.923077 0.384616i \(-0.125666\pi\)
0.923077 + 0.384616i \(0.125666\pi\)
\(462\) 0 0
\(463\) −37.5474 −1.74498 −0.872488 0.488636i \(-0.837495\pi\)
−0.872488 + 0.488636i \(0.837495\pi\)
\(464\) 0 0
\(465\) 38.2466i 1.77364i
\(466\) 0 0
\(467\) 24.5179i 1.13455i 0.823528 + 0.567276i \(0.192003\pi\)
−0.823528 + 0.567276i \(0.807997\pi\)
\(468\) 0 0
\(469\) 7.06231 25.0724i 0.326107 1.15774i
\(470\) 0 0
\(471\) 13.0801 0.602699
\(472\) 0 0
\(473\) 34.0600 + 1.75513i 1.56608 + 0.0807010i
\(474\) 0 0
\(475\) 47.6081 2.18441
\(476\) 0 0
\(477\) 1.88261 0.0861988
\(478\) 0 0
\(479\) 11.2272 0.512982 0.256491 0.966547i \(-0.417434\pi\)
0.256491 + 0.966547i \(0.417434\pi\)
\(480\) 0 0
\(481\) −2.68910 −0.122612
\(482\) 0 0
\(483\) 19.6545 + 5.53620i 0.894309 + 0.251906i
\(484\) 0 0
\(485\) −18.7528 −0.851521
\(486\) 0 0
\(487\) −24.9394 −1.13011 −0.565056 0.825052i \(-0.691146\pi\)
−0.565056 + 0.825052i \(0.691146\pi\)
\(488\) 0 0
\(489\) 3.75513i 0.169813i
\(490\) 0 0
\(491\) 14.9977i 0.676835i −0.940996 0.338418i \(-0.890108\pi\)
0.940996 0.338418i \(-0.109892\pi\)
\(492\) 0 0
\(493\) 5.93164i 0.267148i
\(494\) 0 0
\(495\) −13.7178 0.706884i −0.616568 0.0317721i
\(496\) 0 0
\(497\) 0.959915 3.40786i 0.0430581 0.152863i
\(498\) 0 0
\(499\) −12.2147 −0.546807 −0.273403 0.961899i \(-0.588149\pi\)
−0.273403 + 0.961899i \(0.588149\pi\)
\(500\) 0 0
\(501\) 16.9658i 0.757977i
\(502\) 0 0
\(503\) 40.7328 1.81618 0.908092 0.418770i \(-0.137539\pi\)
0.908092 + 0.418770i \(0.137539\pi\)
\(504\) 0 0
\(505\) 5.69687i 0.253507i
\(506\) 0 0
\(507\) 3.43148i 0.152397i
\(508\) 0 0
\(509\) 35.5771i 1.57693i −0.615082 0.788463i \(-0.710877\pi\)
0.615082 0.788463i \(-0.289123\pi\)
\(510\) 0 0
\(511\) 4.00000 14.2007i 0.176950 0.628201i
\(512\) 0 0
\(513\) 3.91758i 0.172965i
\(514\) 0 0
\(515\) 0.0582640 0.00256742
\(516\) 0 0
\(517\) −22.4106 1.15483i −0.985616 0.0507893i
\(518\) 0 0
\(519\) 3.75513i 0.164832i
\(520\) 0 0
\(521\) 24.1565i 1.05831i 0.848524 + 0.529157i \(0.177492\pi\)
−0.848524 + 0.529157i \(0.822508\pi\)
\(522\) 0 0
\(523\) −8.53037 −0.373007 −0.186504 0.982454i \(-0.559716\pi\)
−0.186504 + 0.982454i \(0.559716\pi\)
\(524\) 0 0
\(525\) 30.9480 + 8.71733i 1.35068 + 0.380456i
\(526\) 0 0
\(527\) 33.0258i 1.43863i
\(528\) 0 0
\(529\) 36.5639 1.58973
\(530\) 0 0
\(531\) 10.1866i 0.442061i
\(532\) 0 0
\(533\) −18.3049 −0.792871
\(534\) 0 0
\(535\) −5.69687 −0.246297
\(536\) 0 0
\(537\) 18.6627i 0.805354i
\(538\) 0 0
\(539\) −13.1207 + 19.1533i −0.565146 + 0.824991i
\(540\) 0 0
\(541\) 7.49293i 0.322146i 0.986942 + 0.161073i \(0.0514955\pi\)
−0.986942 + 0.161073i \(0.948505\pi\)
\(542\) 0 0
\(543\) 14.9216 0.640348
\(544\) 0 0
\(545\) 54.3849 2.32959
\(546\) 0 0
\(547\) 3.57381i 0.152805i 0.997077 + 0.0764026i \(0.0243434\pi\)
−0.997077 + 0.0764026i \(0.975657\pi\)
\(548\) 0 0
\(549\) 3.37640 0.144101
\(550\) 0 0
\(551\) 6.49784i 0.276817i
\(552\) 0 0
\(553\) 27.6272 + 7.78193i 1.17483 + 0.330922i
\(554\) 0 0
\(555\) 3.60037 0.152827
\(556\) 0 0
\(557\) 29.0194i 1.22959i 0.788686 + 0.614796i \(0.210762\pi\)
−0.788686 + 0.614796i \(0.789238\pi\)
\(558\) 0 0
\(559\) 31.8087i 1.34537i
\(560\) 0 0
\(561\) 11.8452 + 0.610392i 0.500107 + 0.0257708i
\(562\) 0 0
\(563\) 15.2566 0.642989 0.321495 0.946911i \(-0.395815\pi\)
0.321495 + 0.946911i \(0.395815\pi\)
\(564\) 0 0
\(565\) 30.2631i 1.27318i
\(566\) 0 0
\(567\) −0.717333 + 2.54665i −0.0301251 + 0.106949i
\(568\) 0 0
\(569\) 27.6740i 1.16016i −0.814561 0.580078i \(-0.803022\pi\)
0.814561 0.580078i \(-0.196978\pi\)
\(570\) 0 0
\(571\) 3.97996i 0.166556i 0.996526 + 0.0832782i \(0.0265390\pi\)
−0.996526 + 0.0832782i \(0.973461\pi\)
\(572\) 0 0
\(573\) 10.5871i 0.442282i
\(574\) 0 0
\(575\) 93.7896 3.91130
\(576\) 0 0
\(577\) 20.0382i 0.834202i 0.908860 + 0.417101i \(0.136954\pi\)
−0.908860 + 0.417101i \(0.863046\pi\)
\(578\) 0 0
\(579\) −11.4355 −0.475244
\(580\) 0 0
\(581\) −4.06922 + 14.4464i −0.168820 + 0.599338i
\(582\) 0 0
\(583\) −0.321326 + 6.23564i −0.0133080 + 0.258254i
\(584\) 0 0
\(585\) 12.8111i 0.529672i
\(586\) 0 0
\(587\) 22.3796i 0.923705i −0.886957 0.461852i \(-0.847185\pi\)
0.886957 0.461852i \(-0.152815\pi\)
\(588\) 0 0
\(589\) 36.1782i 1.49070i
\(590\) 0 0
\(591\) −13.2107 −0.543415
\(592\) 0 0
\(593\) −29.7492 −1.22165 −0.610826 0.791765i \(-0.709162\pi\)
−0.610826 + 0.791765i \(0.709162\pi\)
\(594\) 0 0
\(595\) −37.7186 10.6245i −1.54631 0.435560i
\(596\) 0 0
\(597\) −14.0077 −0.573297
\(598\) 0 0
\(599\) −24.8484 −1.01528 −0.507640 0.861569i \(-0.669482\pi\)
−0.507640 + 0.861569i \(0.669482\pi\)
\(600\) 0 0
\(601\) −22.6805 −0.925156 −0.462578 0.886579i \(-0.653075\pi\)
−0.462578 + 0.886579i \(0.653075\pi\)
\(602\) 0 0
\(603\) 9.84524 0.400929
\(604\) 0 0
\(605\) 4.68272 45.3157i 0.190380 1.84235i
\(606\) 0 0
\(607\) 26.2075 1.06373 0.531865 0.846829i \(-0.321491\pi\)
0.531865 + 0.846829i \(0.321491\pi\)
\(608\) 0 0
\(609\) −1.18979 + 4.22397i −0.0482129 + 0.171164i
\(610\) 0 0
\(611\) 20.9293i 0.846710i
\(612\) 0 0
\(613\) 1.56301i 0.0631293i −0.999502 0.0315646i \(-0.989951\pi\)
0.999502 0.0315646i \(-0.0100490\pi\)
\(614\) 0 0
\(615\) 24.5079 0.988255
\(616\) 0 0
\(617\) −6.87571 −0.276806 −0.138403 0.990376i \(-0.544197\pi\)
−0.138403 + 0.990376i \(0.544197\pi\)
\(618\) 0 0
\(619\) 5.37726i 0.216130i 0.994144 + 0.108065i \(0.0344655\pi\)
−0.994144 + 0.108065i \(0.965534\pi\)
\(620\) 0 0
\(621\) 7.71776i 0.309703i
\(622\) 0 0
\(623\) −27.0568 7.62127i −1.08401 0.305340i
\(624\) 0 0
\(625\) 61.9194 2.47677
\(626\) 0 0
\(627\) −12.9759 0.668656i −0.518208 0.0267035i
\(628\) 0 0
\(629\) −3.10891 −0.123960
\(630\) 0 0
\(631\) −4.31123 −0.171628 −0.0858138 0.996311i \(-0.527349\pi\)
−0.0858138 + 0.996311i \(0.527349\pi\)
\(632\) 0 0
\(633\) 7.33903 0.291700
\(634\) 0 0
\(635\) −80.5797 −3.19771
\(636\) 0 0
\(637\) −18.4697 11.3017i −0.731796 0.447788i
\(638\) 0 0
\(639\) 1.33817 0.0529373
\(640\) 0 0
\(641\) 0.869330 0.0343365 0.0171682 0.999853i \(-0.494535\pi\)
0.0171682 + 0.999853i \(0.494535\pi\)
\(642\) 0 0
\(643\) 0.955731i 0.0376903i −0.999822 0.0188452i \(-0.994001\pi\)
0.999822 0.0188452i \(-0.00599896\pi\)
\(644\) 0 0
\(645\) 42.5880i 1.67690i
\(646\) 0 0
\(647\) 25.9668i 1.02086i −0.859920 0.510429i \(-0.829487\pi\)
0.859920 0.510429i \(-0.170513\pi\)
\(648\) 0 0
\(649\) 33.7404 + 1.73866i 1.32443 + 0.0682484i
\(650\) 0 0
\(651\) −6.62446 + 23.5180i −0.259633 + 0.921741i
\(652\) 0 0
\(653\) 2.93855 0.114994 0.0574971 0.998346i \(-0.481688\pi\)
0.0574971 + 0.998346i \(0.481688\pi\)
\(654\) 0 0
\(655\) 58.8546i 2.29964i
\(656\) 0 0
\(657\) 5.57621 0.217549
\(658\) 0 0
\(659\) 16.5763i 0.645720i 0.946447 + 0.322860i \(0.104644\pi\)
−0.946447 + 0.322860i \(0.895356\pi\)
\(660\) 0 0
\(661\) 1.87935i 0.0730982i −0.999332 0.0365491i \(-0.988363\pi\)
0.999332 0.0365491i \(-0.0116365\pi\)
\(662\) 0 0
\(663\) 11.0623i 0.429625i
\(664\) 0 0
\(665\) 41.3190 + 11.6386i 1.60228 + 0.451326i
\(666\) 0 0
\(667\) 12.8010i 0.495656i
\(668\) 0 0
\(669\) −7.42146 −0.286930
\(670\) 0 0
\(671\) −0.576288 + 11.1834i −0.0222473 + 0.431731i
\(672\) 0 0
\(673\) 51.6158i 1.98964i −0.101647 0.994821i \(-0.532411\pi\)
0.101647 0.994821i \(-0.467589\pi\)
\(674\) 0 0
\(675\) 12.1524i 0.467747i
\(676\) 0 0
\(677\) 38.3633 1.47442 0.737210 0.675664i \(-0.236143\pi\)
0.737210 + 0.675664i \(0.236143\pi\)
\(678\) 0 0
\(679\) −11.5312 3.24806i −0.442525 0.124649i
\(680\) 0 0
\(681\) 8.46201i 0.324265i
\(682\) 0 0
\(683\) 14.4697 0.553668 0.276834 0.960918i \(-0.410715\pi\)
0.276834 + 0.960918i \(0.410715\pi\)
\(684\) 0 0
\(685\) 55.8852i 2.13526i
\(686\) 0 0
\(687\) 1.03178 0.0393647
\(688\) 0 0
\(689\) −5.82349 −0.221857
\(690\) 0 0
\(691\) 8.64622i 0.328918i 0.986384 + 0.164459i \(0.0525878\pi\)
−0.986384 + 0.164459i \(0.947412\pi\)
\(692\) 0 0
\(693\) −8.31266 2.81064i −0.315772 0.106767i
\(694\) 0 0
\(695\) 60.2684i 2.28611i
\(696\) 0 0
\(697\) −21.1625 −0.801588
\(698\) 0 0
\(699\) −0.944064 −0.0357078
\(700\) 0 0
\(701\) 4.37959i 0.165415i 0.996574 + 0.0827074i \(0.0263567\pi\)
−0.996574 + 0.0827074i \(0.973643\pi\)
\(702\) 0 0
\(703\) 3.40567 0.128447
\(704\) 0 0
\(705\) 28.0218i 1.05536i
\(706\) 0 0
\(707\) −0.986720 + 3.50302i −0.0371094 + 0.131745i
\(708\) 0 0
\(709\) −12.4214 −0.466495 −0.233247 0.972417i \(-0.574935\pi\)
−0.233247 + 0.972417i \(0.574935\pi\)
\(710\) 0 0
\(711\) 10.8484i 0.406848i
\(712\) 0 0
\(713\) 71.2724i 2.66917i
\(714\) 0 0
\(715\) 42.4332 + 2.18661i 1.58691 + 0.0817744i
\(716\) 0 0
\(717\) −20.9394 −0.781997
\(718\) 0 0
\(719\) 10.7862i 0.402257i −0.979565 0.201129i \(-0.935539\pi\)
0.979565 0.201129i \(-0.0644609\pi\)
\(720\) 0 0
\(721\) 0.0358267 + 0.0100916i 0.00133426 + 0.000375829i
\(722\) 0 0
\(723\) 17.8593i 0.664195i
\(724\) 0 0
\(725\) 20.1565i 0.748593i
\(726\) 0 0
\(727\) 15.4215i 0.571950i 0.958237 + 0.285975i \(0.0923175\pi\)
−0.958237 + 0.285975i \(0.907683\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 36.7746i 1.36016i
\(732\) 0 0
\(733\) −44.1026 −1.62897 −0.814484 0.580186i \(-0.802980\pi\)
−0.814484 + 0.580186i \(0.802980\pi\)
\(734\) 0 0
\(735\) 24.7286 + 15.1315i 0.912130 + 0.558135i
\(736\) 0 0
\(737\) −1.68040 + 32.6097i −0.0618982 + 1.20119i
\(738\) 0 0
\(739\) 12.8975i 0.474441i −0.971456 0.237220i \(-0.923764\pi\)
0.971456 0.237220i \(-0.0762364\pi\)
\(740\) 0 0
\(741\) 12.1183i 0.445175i
\(742\) 0 0
\(743\) 8.11825i 0.297830i 0.988850 + 0.148915i \(0.0475780\pi\)
−0.988850 + 0.148915i \(0.952422\pi\)
\(744\) 0 0
\(745\) 30.0218 1.09991
\(746\) 0 0
\(747\) −5.67271 −0.207553
\(748\) 0 0
\(749\) −3.50302 0.986720i −0.127998 0.0360539i
\(750\) 0 0
\(751\) −12.4915 −0.455820 −0.227910 0.973682i \(-0.573189\pi\)
−0.227910 + 0.973682i \(0.573189\pi\)
\(752\) 0 0
\(753\) −8.96582 −0.326733
\(754\) 0 0
\(755\) −42.8328 −1.55885
\(756\) 0 0
\(757\) 19.4837 0.708147 0.354074 0.935218i \(-0.384796\pi\)
0.354074 + 0.935218i \(0.384796\pi\)
\(758\) 0 0
\(759\) −25.5630 1.31728i −0.927878 0.0478141i
\(760\) 0 0
\(761\) −31.6044 −1.14566 −0.572828 0.819675i \(-0.694154\pi\)
−0.572828 + 0.819675i \(0.694154\pi\)
\(762\) 0 0
\(763\) 33.4414 + 9.41967i 1.21066 + 0.341015i
\(764\) 0 0
\(765\) 14.8111i 0.535495i
\(766\) 0 0
\(767\) 31.5103i 1.13777i
\(768\) 0 0
\(769\) 30.3491 1.09441 0.547207 0.836997i \(-0.315691\pi\)
0.547207 + 0.836997i \(0.315691\pi\)
\(770\) 0 0
\(771\) 8.52797 0.307127
\(772\) 0 0
\(773\) 31.1010i 1.11862i 0.828957 + 0.559312i \(0.188935\pi\)
−0.828957 + 0.559312i \(0.811065\pi\)
\(774\) 0 0
\(775\) 112.226i 4.03127i
\(776\) 0 0
\(777\) 2.21388 + 0.623599i 0.0794225 + 0.0223715i
\(778\) 0 0
\(779\) 23.1826 0.830601
\(780\) 0 0
\(781\) −0.228401 + 4.43234i −0.00817282 + 0.158602i
\(782\) 0 0
\(783\) −1.65864 −0.0592749
\(784\) 0 0
\(785\) 54.1719 1.93348
\(786\) 0 0
\(787\) −32.6503 −1.16386 −0.581930 0.813239i \(-0.697702\pi\)
−0.581930 + 0.813239i \(0.697702\pi\)
\(788\) 0 0
\(789\) −31.2871 −1.11385
\(790\) 0 0
\(791\) 5.24168 18.6089i 0.186373 0.661655i
\(792\) 0 0
\(793\) −10.4442 −0.370886
\(794\) 0 0
\(795\) 7.79692 0.276528
\(796\) 0 0
\(797\) 24.4400i 0.865710i −0.901464 0.432855i \(-0.857506\pi\)
0.901464 0.432855i \(-0.142494\pi\)
\(798\) 0 0
\(799\) 24.1967i 0.856018i
\(800\) 0 0
\(801\) 10.6245i 0.375397i
\(802\) 0 0
\(803\) −0.951754 + 18.4697i −0.0335867 + 0.651782i
\(804\) 0 0
\(805\) 81.3999 + 22.9285i 2.86897 + 0.808122i
\(806\) 0 0
\(807\) −7.57535 −0.266665
\(808\) 0 0
\(809\) 23.7387i 0.834607i 0.908767 + 0.417303i \(0.137025\pi\)
−0.908767 + 0.417303i \(0.862975\pi\)
\(810\) 0 0
\(811\) 9.56612 0.335912 0.167956 0.985794i \(-0.446283\pi\)
0.167956 + 0.985794i \(0.446283\pi\)
\(812\) 0 0
\(813\) 14.9667i 0.524905i
\(814\) 0 0
\(815\) 15.5521i 0.544765i
\(816\) 0 0
\(817\) 40.2848i 1.40939i
\(818\) 0 0
\(819\) 2.21893 7.87756i 0.0775356 0.275264i
\(820\) 0 0
\(821\) 27.7387i 0.968086i 0.875044 + 0.484043i \(0.160832\pi\)
−0.875044 + 0.484043i \(0.839168\pi\)
\(822\) 0 0
\(823\) −11.1041 −0.387065 −0.193532 0.981094i \(-0.561994\pi\)
−0.193532 + 0.981094i \(0.561994\pi\)
\(824\) 0 0
\(825\) −40.2516 2.07419i −1.40138 0.0722140i
\(826\) 0 0
\(827\) 49.0995i 1.70736i −0.520802 0.853678i \(-0.674367\pi\)
0.520802 0.853678i \(-0.325633\pi\)
\(828\) 0 0
\(829\) 44.4409i 1.54350i 0.635929 + 0.771748i \(0.280617\pi\)
−0.635929 + 0.771748i \(0.719383\pi\)
\(830\) 0 0
\(831\) 29.2498 1.01466
\(832\) 0 0
\(833\) −21.3531 13.0660i −0.739841 0.452711i
\(834\) 0 0
\(835\) 70.2648i 2.43161i
\(836\) 0 0
\(837\) −9.23485 −0.319203
\(838\) 0 0
\(839\) 0.412833i 0.0142526i −0.999975 0.00712629i \(-0.997732\pi\)
0.999975 0.00712629i \(-0.00226839\pi\)
\(840\) 0 0
\(841\) 26.2489 0.905135
\(842\) 0 0
\(843\) −15.4938 −0.533634
\(844\) 0 0
\(845\) 14.2116i 0.488895i
\(846\) 0 0
\(847\) 10.7283 27.0537i 0.368628 0.929577i
\(848\) 0 0
\(849\) 0.855262i 0.0293525i
\(850\) 0 0
\(851\) 6.70929 0.229991
\(852\) 0 0
\(853\) 19.4028 0.664340 0.332170 0.943220i \(-0.392219\pi\)
0.332170 + 0.943220i \(0.392219\pi\)
\(854\) 0 0
\(855\) 16.2248i 0.554878i
\(856\) 0 0
\(857\) −8.86164 −0.302708 −0.151354 0.988480i \(-0.548363\pi\)
−0.151354 + 0.988480i \(0.548363\pi\)
\(858\) 0 0
\(859\) 9.40897i 0.321030i 0.987033 + 0.160515i \(0.0513155\pi\)
−0.987033 + 0.160515i \(0.948685\pi\)
\(860\) 0 0
\(861\) 15.0700 + 4.24487i 0.513584 + 0.144665i
\(862\) 0 0
\(863\) 39.2715 1.33682 0.668409 0.743794i \(-0.266975\pi\)
0.668409 + 0.743794i \(0.266975\pi\)
\(864\) 0 0
\(865\) 15.5521i 0.528786i
\(866\) 0 0
\(867\) 4.21069i 0.143003i
\(868\) 0 0
\(869\) −35.9325 1.85162i −1.21893 0.0628120i
\(870\) 0 0
\(871\) −30.4543 −1.03191
\(872\) 0 0
\(873\) 4.52797i 0.153249i
\(874\) 0 0
\(875\) 75.4372 + 21.2489i 2.55024 + 0.718345i
\(876\) 0 0
\(877\) 29.1113i 0.983020i −0.870872 0.491510i \(-0.836445\pi\)
0.870872 0.491510i \(-0.163555\pi\)
\(878\) 0 0
\(879\) 10.0319i 0.338366i
\(880\) 0 0
\(881\) 36.7210i 1.23716i −0.785722 0.618580i \(-0.787708\pi\)
0.785722 0.618580i \(-0.212292\pi\)
\(882\) 0 0
\(883\) −40.9394 −1.37772 −0.688860 0.724894i \(-0.741889\pi\)
−0.688860 + 0.724894i \(0.741889\pi\)
\(884\) 0 0
\(885\) 42.1883i 1.41815i
\(886\) 0 0
\(887\) 9.08407 0.305013 0.152507 0.988302i \(-0.451265\pi\)
0.152507 + 0.988302i \(0.451265\pi\)
\(888\) 0 0
\(889\) −49.5487 13.9567i −1.66181 0.468094i
\(890\) 0 0
\(891\) 0.170681 3.31223i 0.00571803 0.110964i
\(892\) 0 0
\(893\) 26.5064i 0.887001i
\(894\) 0 0
\(895\) 77.2924i 2.58360i
\(896\) 0 0
\(897\) 23.8734i 0.797109i
\(898\) 0 0
\(899\) −15.3173 −0.510860
\(900\) 0 0
\(901\) −6.73262 −0.224296
\(902\) 0 0
\(903\) 7.37640 26.1875i 0.245471 0.871464i
\(904\) 0 0
\(905\) 61.7986 2.05426
\(906\) 0 0
\(907\) −38.6044 −1.28184 −0.640919 0.767608i \(-0.721447\pi\)
−0.640919 + 0.767608i \(0.721447\pi\)
\(908\) 0 0
\(909\) −1.37554 −0.0456238
\(910\) 0 0
\(911\) −22.6618 −0.750820 −0.375410 0.926859i \(-0.622498\pi\)
−0.375410 + 0.926859i \(0.622498\pi\)
\(912\) 0 0
\(913\) 0.968223 18.7893i 0.0320435 0.621835i
\(914\) 0 0
\(915\) 13.9835 0.462281
\(916\) 0 0
\(917\) −10.1938 + 36.1899i −0.336630 + 1.19509i
\(918\) 0 0
\(919\) 0.294051i 0.00969984i 0.999988 + 0.00484992i \(0.00154378\pi\)
−0.999988 + 0.00484992i \(0.998456\pi\)
\(920\) 0 0
\(921\) 2.55213i 0.0840955i
\(922\) 0 0
\(923\) −4.13938 −0.136249
\(924\) 0 0
\(925\) 10.5645 0.347358
\(926\) 0 0
\(927\) 0.0140682i 0.000462059i
\(928\) 0 0
\(929\) 7.42543i 0.243621i 0.992553 + 0.121810i \(0.0388700\pi\)
−0.992553 + 0.121810i \(0.961130\pi\)
\(930\) 0 0
\(931\) 23.3913 + 14.3132i 0.766620 + 0.469097i
\(932\) 0 0
\(933\) 15.6136 0.511166
\(934\) 0 0
\(935\) 49.0577 + 2.52797i 1.60436 + 0.0826734i
\(936\) 0 0
\(937\) −31.9976 −1.04532 −0.522658 0.852542i \(-0.675060\pi\)
−0.522658 + 0.852542i \(0.675060\pi\)
\(938\) 0 0
\(939\) −20.0435 −0.654095
\(940\) 0 0
\(941\) −10.4033 −0.339139 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(942\) 0 0
\(943\) 45.6705 1.48723
\(944\) 0 0
\(945\) −2.97087 + 10.5471i −0.0966423 + 0.343097i
\(946\) 0 0
\(947\) −20.6944 −0.672477 −0.336239 0.941777i \(-0.609155\pi\)
−0.336239 + 0.941777i \(0.609155\pi\)
\(948\) 0 0
\(949\) −17.2489 −0.559924
\(950\) 0 0
\(951\) 2.56533i 0.0831867i
\(952\) 0 0
\(953\) 43.1324i 1.39720i −0.715515 0.698598i \(-0.753808\pi\)
0.715515 0.698598i \(-0.246192\pi\)
\(954\) 0 0
\(955\) 43.8470i 1.41885i
\(956\) 0 0
\(957\) 0.283098 5.49379i 0.00915126 0.177589i
\(958\) 0 0
\(959\) −9.67954 + 34.3640i −0.312568 + 1.10967i
\(960\) 0 0
\(961\) −54.2825 −1.75105
\(962\) 0 0
\(963\) 1.37554i 0.0443262i
\(964\) 0 0
\(965\) −47.3608 −1.52460
\(966\) 0 0
\(967\) 32.0062i 1.02925i −0.857416 0.514624i \(-0.827931\pi\)
0.857416 0.514624i \(-0.172069\pi\)
\(968\) 0 0
\(969\) 14.0101i 0.450069i
\(970\) 0 0
\(971\) 38.4560i 1.23411i 0.786919 + 0.617057i \(0.211675\pi\)
−0.786919 + 0.617057i \(0.788325\pi\)
\(972\) 0 0
\(973\) 10.4387 37.0592i 0.334650 1.18806i
\(974\) 0 0
\(975\) 37.5911i 1.20388i
\(976\) 0 0
\(977\) −39.8771 −1.27578 −0.637891 0.770127i \(-0.720193\pi\)
−0.637891 + 0.770127i \(0.720193\pi\)
\(978\) 0 0
\(979\) 35.1907 + 1.81339i 1.12470 + 0.0579563i
\(980\) 0 0
\(981\) 13.1315i 0.419258i
\(982\) 0 0
\(983\) 46.8641i 1.49473i 0.664413 + 0.747366i \(0.268682\pi\)
−0.664413 + 0.747366i \(0.731318\pi\)
\(984\) 0 0
\(985\) −54.7127 −1.74329
\(986\) 0 0
\(987\) −4.85348 + 17.2307i −0.154488 + 0.548458i
\(988\) 0 0
\(989\) 79.3625i 2.52358i
\(990\) 0 0
\(991\) 26.2631 0.834274 0.417137 0.908844i \(-0.363034\pi\)
0.417137 + 0.908844i \(0.363034\pi\)
\(992\) 0 0
\(993\) 8.35145i 0.265025i
\(994\) 0 0
\(995\) −58.0135 −1.83915
\(996\) 0 0
\(997\) −33.5630 −1.06295 −0.531476 0.847074i \(-0.678362\pi\)
−0.531476 + 0.847074i \(0.678362\pi\)
\(998\) 0 0
\(999\) 0.869330i 0.0275044i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3696.2.q.b.769.8 8
4.3 odd 2 462.2.e.a.307.4 8
7.6 odd 2 3696.2.q.c.769.1 8
11.10 odd 2 3696.2.q.c.769.8 8
12.11 even 2 1386.2.e.e.307.5 8
28.27 even 2 462.2.e.b.307.1 yes 8
44.43 even 2 462.2.e.b.307.8 yes 8
77.76 even 2 inner 3696.2.q.b.769.1 8
84.83 odd 2 1386.2.e.a.307.8 8
132.131 odd 2 1386.2.e.a.307.1 8
308.307 odd 2 462.2.e.a.307.5 yes 8
924.923 even 2 1386.2.e.e.307.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.e.a.307.4 8 4.3 odd 2
462.2.e.a.307.5 yes 8 308.307 odd 2
462.2.e.b.307.1 yes 8 28.27 even 2
462.2.e.b.307.8 yes 8 44.43 even 2
1386.2.e.a.307.1 8 132.131 odd 2
1386.2.e.a.307.8 8 84.83 odd 2
1386.2.e.e.307.4 8 924.923 even 2
1386.2.e.e.307.5 8 12.11 even 2
3696.2.q.b.769.1 8 77.76 even 2 inner
3696.2.q.b.769.8 8 1.1 even 1 trivial
3696.2.q.c.769.1 8 7.6 odd 2
3696.2.q.c.769.8 8 11.10 odd 2