Properties

Label 370.2.b.d.149.8
Level $370$
Weight $2$
Character 370.149
Analytic conductor $2.954$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(149,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.12837029094400.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} - 4x^{7} + 51x^{6} - 124x^{5} + 154x^{4} - 46x^{3} + x^{2} + 4x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.8
Root \(0.478560 + 0.478560i\) of defining polynomial
Character \(\chi\) \(=\) 370.149
Dual form 370.2.b.d.149.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +0.332924i q^{3} -1.00000 q^{4} +(-1.10390 - 1.94458i) q^{5} -0.332924 q^{6} +3.51336i q^{7} -1.00000i q^{8} +2.88916 q^{9} +(1.94458 - 1.10390i) q^{10} -0.290044 q^{11} -0.332924i q^{12} +7.12558i q^{13} -3.51336 q^{14} +(0.647398 - 0.367517i) q^{15} +1.00000 q^{16} +6.17921i q^{17} +2.88916i q^{18} -5.83553 q^{19} +(1.10390 + 1.94458i) q^{20} -1.16968 q^{21} -0.290044i q^{22} -6.45973i q^{23} +0.332924 q^{24} +(-2.56279 + 4.29326i) q^{25} -7.12558 q^{26} +1.96065i q^{27} -3.51336i q^{28} +1.18043 q^{29} +(0.367517 + 0.647398i) q^{30} +9.77838 q^{31} +1.00000i q^{32} -0.0965628i q^{33} -6.17921 q^{34} +(6.83201 - 3.87841i) q^{35} -2.88916 q^{36} +1.00000i q^{37} -5.83553i q^{38} -2.37228 q^{39} +(-1.94458 + 1.10390i) q^{40} +1.64077 q^{41} -1.16968i q^{42} -5.34889i q^{43} +0.290044 q^{44} +(-3.18936 - 5.61821i) q^{45} +6.45973 q^{46} -5.69256i q^{47} +0.332924i q^{48} -5.34367 q^{49} +(-4.29326 - 2.56279i) q^{50} -2.05721 q^{51} -7.12558i q^{52} +9.32034i q^{53} -1.96065 q^{54} +(0.320181 + 0.564014i) q^{55} +3.51336 q^{56} -1.94279i q^{57} +1.18043i q^{58} -5.94279 q^{59} +(-0.647398 + 0.367517i) q^{60} -1.27699 q^{61} +9.77838i q^{62} +10.1507i q^{63} -1.00000 q^{64} +(13.8563 - 7.86596i) q^{65} +0.0965628 q^{66} -6.04334i q^{67} -6.17921i q^{68} +2.15060 q^{69} +(3.87841 + 6.83201i) q^{70} +13.4995 q^{71} -2.88916i q^{72} +1.71348i q^{73} -1.00000 q^{74} +(-1.42933 - 0.853215i) q^{75} +5.83553 q^{76} -1.01903i q^{77} -2.37228i q^{78} -8.25422 q^{79} +(-1.10390 - 1.94458i) q^{80} +8.01474 q^{81} +1.64077i q^{82} +2.41807i q^{83} +1.16968 q^{84} +(12.0160 - 6.82126i) q^{85} +5.34889 q^{86} +0.392995i q^{87} +0.290044i q^{88} +10.2797 q^{89} +(5.61821 - 3.18936i) q^{90} -25.0347 q^{91} +6.45973i q^{92} +3.25546i q^{93} +5.69256 q^{94} +(6.44187 + 11.3477i) q^{95} -0.332924 q^{96} -15.1272i q^{97} -5.34367i q^{98} -0.837984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 6 q^{5} - 6 q^{9} + 2 q^{10} + 6 q^{11} + 2 q^{14} + 10 q^{16} - 8 q^{19} - 6 q^{20} + 32 q^{21} + 4 q^{25} - 12 q^{26} - 22 q^{29} + 20 q^{30} + 46 q^{31} - 18 q^{34} + 32 q^{35} + 6 q^{36}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.332924i 0.192214i 0.995371 + 0.0961070i \(0.0306391\pi\)
−0.995371 + 0.0961070i \(0.969361\pi\)
\(4\) −1.00000 −0.500000
\(5\) −1.10390 1.94458i −0.493681 0.869643i
\(6\) −0.332924 −0.135916
\(7\) 3.51336i 1.32792i 0.747766 + 0.663962i \(0.231126\pi\)
−0.747766 + 0.663962i \(0.768874\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.88916 0.963054
\(10\) 1.94458 1.10390i 0.614930 0.349085i
\(11\) −0.290044 −0.0874516 −0.0437258 0.999044i \(-0.513923\pi\)
−0.0437258 + 0.999044i \(0.513923\pi\)
\(12\) 0.332924i 0.0961070i
\(13\) 7.12558i 1.97628i 0.153559 + 0.988140i \(0.450927\pi\)
−0.153559 + 0.988140i \(0.549073\pi\)
\(14\) −3.51336 −0.938984
\(15\) 0.647398 0.367517i 0.167158 0.0948925i
\(16\) 1.00000 0.250000
\(17\) 6.17921i 1.49868i 0.662187 + 0.749339i \(0.269628\pi\)
−0.662187 + 0.749339i \(0.730372\pi\)
\(18\) 2.88916i 0.680982i
\(19\) −5.83553 −1.33876 −0.669381 0.742919i \(-0.733441\pi\)
−0.669381 + 0.742919i \(0.733441\pi\)
\(20\) 1.10390 + 1.94458i 0.246841 + 0.434821i
\(21\) −1.16968 −0.255246
\(22\) 0.290044i 0.0618376i
\(23\) 6.45973i 1.34695i −0.739212 0.673473i \(-0.764802\pi\)
0.739212 0.673473i \(-0.235198\pi\)
\(24\) 0.332924 0.0679579
\(25\) −2.56279 + 4.29326i −0.512558 + 0.858653i
\(26\) −7.12558 −1.39744
\(27\) 1.96065i 0.377326i
\(28\) 3.51336i 0.663962i
\(29\) 1.18043 0.219201 0.109600 0.993976i \(-0.465043\pi\)
0.109600 + 0.993976i \(0.465043\pi\)
\(30\) 0.367517 + 0.647398i 0.0670991 + 0.118198i
\(31\) 9.77838 1.75625 0.878124 0.478433i \(-0.158795\pi\)
0.878124 + 0.478433i \(0.158795\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.0965628i 0.0168094i
\(34\) −6.17921 −1.05972
\(35\) 6.83201 3.87841i 1.15482 0.655571i
\(36\) −2.88916 −0.481527
\(37\) 1.00000i 0.164399i
\(38\) 5.83553i 0.946648i
\(39\) −2.37228 −0.379869
\(40\) −1.94458 + 1.10390i −0.307465 + 0.174543i
\(41\) 1.64077 0.256245 0.128123 0.991758i \(-0.459105\pi\)
0.128123 + 0.991758i \(0.459105\pi\)
\(42\) 1.16968i 0.180486i
\(43\) 5.34889i 0.815698i −0.913049 0.407849i \(-0.866279\pi\)
0.913049 0.407849i \(-0.133721\pi\)
\(44\) 0.290044 0.0437258
\(45\) −3.18936 5.61821i −0.475442 0.837513i
\(46\) 6.45973 0.952435
\(47\) 5.69256i 0.830346i −0.909743 0.415173i \(-0.863721\pi\)
0.909743 0.415173i \(-0.136279\pi\)
\(48\) 0.332924i 0.0480535i
\(49\) −5.34367 −0.763382
\(50\) −4.29326 2.56279i −0.607159 0.362433i
\(51\) −2.05721 −0.288067
\(52\) 7.12558i 0.988140i
\(53\) 9.32034i 1.28025i 0.768272 + 0.640123i \(0.221117\pi\)
−0.768272 + 0.640123i \(0.778883\pi\)
\(54\) −1.96065 −0.266810
\(55\) 0.320181 + 0.564014i 0.0431732 + 0.0760517i
\(56\) 3.51336 0.469492
\(57\) 1.94279i 0.257329i
\(58\) 1.18043i 0.154998i
\(59\) −5.94279 −0.773686 −0.386843 0.922146i \(-0.626434\pi\)
−0.386843 + 0.922146i \(0.626434\pi\)
\(60\) −0.647398 + 0.367517i −0.0835788 + 0.0474462i
\(61\) −1.27699 −0.163502 −0.0817512 0.996653i \(-0.526051\pi\)
−0.0817512 + 0.996653i \(0.526051\pi\)
\(62\) 9.77838i 1.24185i
\(63\) 10.1507i 1.27886i
\(64\) −1.00000 −0.125000
\(65\) 13.8563 7.86596i 1.71866 0.975652i
\(66\) 0.0965628 0.0118861
\(67\) 6.04334i 0.738312i −0.929368 0.369156i \(-0.879647\pi\)
0.929368 0.369156i \(-0.120353\pi\)
\(68\) 6.17921i 0.749339i
\(69\) 2.15060 0.258902
\(70\) 3.87841 + 6.83201i 0.463559 + 0.816581i
\(71\) 13.4995 1.60210 0.801050 0.598597i \(-0.204275\pi\)
0.801050 + 0.598597i \(0.204275\pi\)
\(72\) 2.88916i 0.340491i
\(73\) 1.71348i 0.200548i 0.994960 + 0.100274i \(0.0319719\pi\)
−0.994960 + 0.100274i \(0.968028\pi\)
\(74\) −1.00000 −0.116248
\(75\) −1.42933 0.853215i −0.165045 0.0985208i
\(76\) 5.83553 0.669381
\(77\) 1.01903i 0.116129i
\(78\) 2.37228i 0.268608i
\(79\) −8.25422 −0.928672 −0.464336 0.885659i \(-0.653707\pi\)
−0.464336 + 0.885659i \(0.653707\pi\)
\(80\) −1.10390 1.94458i −0.123420 0.217411i
\(81\) 8.01474 0.890526
\(82\) 1.64077i 0.181193i
\(83\) 2.41807i 0.265418i 0.991155 + 0.132709i \(0.0423676\pi\)
−0.991155 + 0.132709i \(0.957632\pi\)
\(84\) 1.16968 0.127623
\(85\) 12.0160 6.82126i 1.30331 0.739869i
\(86\) 5.34889 0.576785
\(87\) 0.392995i 0.0421335i
\(88\) 0.290044i 0.0309188i
\(89\) 10.2797 1.08965 0.544823 0.838551i \(-0.316597\pi\)
0.544823 + 0.838551i \(0.316597\pi\)
\(90\) 5.61821 3.18936i 0.592211 0.336188i
\(91\) −25.0347 −2.62435
\(92\) 6.45973i 0.673473i
\(93\) 3.25546i 0.337576i
\(94\) 5.69256 0.587143
\(95\) 6.44187 + 11.3477i 0.660922 + 1.16425i
\(96\) −0.332924 −0.0339790
\(97\) 15.1272i 1.53594i −0.640489 0.767968i \(-0.721268\pi\)
0.640489 0.767968i \(-0.278732\pi\)
\(98\) 5.34367i 0.539793i
\(99\) −0.837984 −0.0842206
\(100\) 2.56279 4.29326i 0.256279 0.429326i
\(101\) 2.63730 0.262421 0.131210 0.991355i \(-0.458114\pi\)
0.131210 + 0.991355i \(0.458114\pi\)
\(102\) 2.05721i 0.203694i
\(103\) 1.72469i 0.169939i −0.996384 0.0849695i \(-0.972921\pi\)
0.996384 0.0849695i \(-0.0270793\pi\)
\(104\) 7.12558 0.698720
\(105\) 1.29122 + 2.27454i 0.126010 + 0.221973i
\(106\) −9.32034 −0.905271
\(107\) 10.0279i 0.969438i −0.874670 0.484719i \(-0.838922\pi\)
0.874670 0.484719i \(-0.161078\pi\)
\(108\) 1.96065i 0.188663i
\(109\) −4.87361 −0.466807 −0.233403 0.972380i \(-0.574986\pi\)
−0.233403 + 0.972380i \(0.574986\pi\)
\(110\) −0.564014 + 0.320181i −0.0537767 + 0.0305281i
\(111\) −0.332924 −0.0315998
\(112\) 3.51336i 0.331981i
\(113\) 15.9290i 1.49847i −0.662303 0.749236i \(-0.730421\pi\)
0.662303 0.749236i \(-0.269579\pi\)
\(114\) 1.94279 0.181959
\(115\) −12.5615 + 7.13092i −1.17136 + 0.664962i
\(116\) −1.18043 −0.109600
\(117\) 20.5869i 1.90326i
\(118\) 5.94279i 0.547078i
\(119\) −21.7098 −1.99013
\(120\) −0.367517 0.647398i −0.0335496 0.0590991i
\(121\) −10.9159 −0.992352
\(122\) 1.27699i 0.115614i
\(123\) 0.546253i 0.0492540i
\(124\) −9.77838 −0.878124
\(125\) 11.1777 + 0.244192i 0.999761 + 0.0218412i
\(126\) −10.1507 −0.904292
\(127\) 1.31265i 0.116479i −0.998303 0.0582395i \(-0.981451\pi\)
0.998303 0.0582395i \(-0.0185487\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 1.78078 0.156789
\(130\) 7.86596 + 13.8563i 0.689890 + 1.21527i
\(131\) 2.41562 0.211054 0.105527 0.994416i \(-0.466347\pi\)
0.105527 + 0.994416i \(0.466347\pi\)
\(132\) 0.0965628i 0.00840471i
\(133\) 20.5023i 1.77778i
\(134\) 6.04334 0.522065
\(135\) 3.81263 2.16437i 0.328139 0.186279i
\(136\) 6.17921 0.529862
\(137\) 6.87366i 0.587256i −0.955920 0.293628i \(-0.905137\pi\)
0.955920 0.293628i \(-0.0948627\pi\)
\(138\) 2.15060i 0.183071i
\(139\) 9.80616 0.831748 0.415874 0.909422i \(-0.363476\pi\)
0.415874 + 0.909422i \(0.363476\pi\)
\(140\) −6.83201 + 3.87841i −0.577410 + 0.327786i
\(141\) 1.89519 0.159604
\(142\) 13.4995i 1.13286i
\(143\) 2.06673i 0.172829i
\(144\) 2.88916 0.240763
\(145\) −1.30308 2.29545i −0.108215 0.190626i
\(146\) −1.71348 −0.141809
\(147\) 1.77904i 0.146733i
\(148\) 1.00000i 0.0821995i
\(149\) 9.07687 0.743606 0.371803 0.928312i \(-0.378740\pi\)
0.371803 + 0.928312i \(0.378740\pi\)
\(150\) 0.853215 1.42933i 0.0696647 0.116705i
\(151\) 20.1964 1.64356 0.821780 0.569805i \(-0.192981\pi\)
0.821780 + 0.569805i \(0.192981\pi\)
\(152\) 5.83553i 0.473324i
\(153\) 17.8527i 1.44331i
\(154\) 1.01903 0.0821157
\(155\) −10.7944 19.0148i −0.867027 1.52731i
\(156\) 2.37228 0.189934
\(157\) 17.2677i 1.37811i 0.724707 + 0.689057i \(0.241975\pi\)
−0.724707 + 0.689057i \(0.758025\pi\)
\(158\) 8.25422i 0.656670i
\(159\) −3.10297 −0.246081
\(160\) 1.94458 1.10390i 0.153733 0.0872713i
\(161\) 22.6953 1.78864
\(162\) 8.01474i 0.629697i
\(163\) 16.6901i 1.30727i 0.756810 + 0.653634i \(0.226757\pi\)
−0.756810 + 0.653634i \(0.773243\pi\)
\(164\) −1.64077 −0.128123
\(165\) −0.187774 + 0.106596i −0.0146182 + 0.00829850i
\(166\) −2.41807 −0.187679
\(167\) 1.47354i 0.114026i −0.998373 0.0570130i \(-0.981842\pi\)
0.998373 0.0570130i \(-0.0181577\pi\)
\(168\) 1.16968i 0.0902430i
\(169\) −37.7738 −2.90568
\(170\) 6.82126 + 12.0160i 0.523166 + 0.921582i
\(171\) −16.8598 −1.28930
\(172\) 5.34889i 0.407849i
\(173\) 13.8432i 1.05248i 0.850336 + 0.526240i \(0.176399\pi\)
−0.850336 + 0.526240i \(0.823601\pi\)
\(174\) −0.392995 −0.0297929
\(175\) −15.0838 9.00399i −1.14023 0.680637i
\(176\) −0.290044 −0.0218629
\(177\) 1.97850i 0.148713i
\(178\) 10.2797i 0.770496i
\(179\) −21.7817 −1.62804 −0.814020 0.580836i \(-0.802726\pi\)
−0.814020 + 0.580836i \(0.802726\pi\)
\(180\) 3.18936 + 5.61821i 0.237721 + 0.418756i
\(181\) 2.03100 0.150963 0.0754817 0.997147i \(-0.475951\pi\)
0.0754817 + 0.997147i \(0.475951\pi\)
\(182\) 25.0347i 1.85569i
\(183\) 0.425143i 0.0314275i
\(184\) −6.45973 −0.476217
\(185\) 1.94458 1.10390i 0.142968 0.0811607i
\(186\) −3.25546 −0.238702
\(187\) 1.79224i 0.131062i
\(188\) 5.69256i 0.415173i
\(189\) −6.88845 −0.501061
\(190\) −11.3477 + 6.44187i −0.823246 + 0.467343i
\(191\) −8.44668 −0.611180 −0.305590 0.952163i \(-0.598854\pi\)
−0.305590 + 0.952163i \(0.598854\pi\)
\(192\) 0.332924i 0.0240268i
\(193\) 3.64159i 0.262127i 0.991374 + 0.131064i \(0.0418392\pi\)
−0.991374 + 0.131064i \(0.958161\pi\)
\(194\) 15.1272 1.08607
\(195\) 2.61877 + 4.61309i 0.187534 + 0.330350i
\(196\) 5.34367 0.381691
\(197\) 10.1939i 0.726288i −0.931733 0.363144i \(-0.881703\pi\)
0.931733 0.363144i \(-0.118297\pi\)
\(198\) 0.837984i 0.0595530i
\(199\) 5.25299 0.372375 0.186187 0.982514i \(-0.440387\pi\)
0.186187 + 0.982514i \(0.440387\pi\)
\(200\) 4.29326 + 2.56279i 0.303580 + 0.181216i
\(201\) 2.01198 0.141914
\(202\) 2.63730i 0.185560i
\(203\) 4.14728i 0.291082i
\(204\) 2.05721 0.144033
\(205\) −1.81125 3.19061i −0.126504 0.222842i
\(206\) 1.72469 0.120165
\(207\) 18.6632i 1.29718i
\(208\) 7.12558i 0.494070i
\(209\) 1.69256 0.117077
\(210\) −2.27454 + 1.29122i −0.156958 + 0.0891025i
\(211\) −4.81998 −0.331821 −0.165910 0.986141i \(-0.553056\pi\)
−0.165910 + 0.986141i \(0.553056\pi\)
\(212\) 9.32034i 0.640123i
\(213\) 4.49433i 0.307946i
\(214\) 10.0279 0.685496
\(215\) −10.4013 + 5.90466i −0.709366 + 0.402695i
\(216\) 1.96065 0.133405
\(217\) 34.3549i 2.33216i
\(218\) 4.87361i 0.330082i
\(219\) −0.570460 −0.0385481
\(220\) −0.320181 0.564014i −0.0215866 0.0380258i
\(221\) −44.0304 −2.96180
\(222\) 0.332924i 0.0223444i
\(223\) 3.70392i 0.248033i 0.992280 + 0.124017i \(0.0395776\pi\)
−0.992280 + 0.124017i \(0.960422\pi\)
\(224\) −3.51336 −0.234746
\(225\) −7.40431 + 12.4039i −0.493620 + 0.826929i
\(226\) 15.9290 1.05958
\(227\) 6.31512i 0.419149i −0.977793 0.209575i \(-0.932792\pi\)
0.977793 0.209575i \(-0.0672079\pi\)
\(228\) 1.94279i 0.128664i
\(229\) 20.5548 1.35830 0.679150 0.734000i \(-0.262349\pi\)
0.679150 + 0.734000i \(0.262349\pi\)
\(230\) −7.13092 12.5615i −0.470199 0.828278i
\(231\) 0.339260 0.0223216
\(232\) 1.18043i 0.0774992i
\(233\) 21.4393i 1.40453i 0.711914 + 0.702267i \(0.247829\pi\)
−0.711914 + 0.702267i \(0.752171\pi\)
\(234\) −20.5869 −1.34581
\(235\) −11.0696 + 6.28405i −0.722104 + 0.409926i
\(236\) 5.94279 0.386843
\(237\) 2.74803i 0.178504i
\(238\) 21.7098i 1.40723i
\(239\) 20.7479 1.34207 0.671034 0.741426i \(-0.265850\pi\)
0.671034 + 0.741426i \(0.265850\pi\)
\(240\) 0.647398 0.367517i 0.0417894 0.0237231i
\(241\) 10.7731 0.693957 0.346978 0.937873i \(-0.387208\pi\)
0.346978 + 0.937873i \(0.387208\pi\)
\(242\) 10.9159i 0.701699i
\(243\) 8.55024i 0.548498i
\(244\) 1.27699 0.0817512
\(245\) 5.89891 + 10.3912i 0.376867 + 0.663870i
\(246\) −0.546253 −0.0348278
\(247\) 41.5815i 2.64577i
\(248\) 9.77838i 0.620927i
\(249\) −0.805036 −0.0510171
\(250\) −0.244192 + 11.1777i −0.0154440 + 0.706938i
\(251\) −4.46812 −0.282025 −0.141013 0.990008i \(-0.545036\pi\)
−0.141013 + 0.990008i \(0.545036\pi\)
\(252\) 10.1507i 0.639431i
\(253\) 1.87361i 0.117793i
\(254\) 1.31265 0.0823631
\(255\) 2.27096 + 4.00041i 0.142213 + 0.250515i
\(256\) 1.00000 0.0625000
\(257\) 1.24594i 0.0777194i 0.999245 + 0.0388597i \(0.0123725\pi\)
−0.999245 + 0.0388597i \(0.987627\pi\)
\(258\) 1.78078i 0.110866i
\(259\) −3.51336 −0.218309
\(260\) −13.8563 + 7.86596i −0.859329 + 0.487826i
\(261\) 3.41046 0.211102
\(262\) 2.41562i 0.149237i
\(263\) 16.3230i 1.00652i 0.864135 + 0.503259i \(0.167866\pi\)
−0.864135 + 0.503259i \(0.832134\pi\)
\(264\) −0.0965628 −0.00594303
\(265\) 18.1241 10.2888i 1.11336 0.632034i
\(266\) 20.5023 1.25708
\(267\) 3.42236i 0.209445i
\(268\) 6.04334i 0.369156i
\(269\) 18.5763 1.13262 0.566309 0.824193i \(-0.308371\pi\)
0.566309 + 0.824193i \(0.308371\pi\)
\(270\) 2.16437 + 3.81263i 0.131719 + 0.232030i
\(271\) 16.4181 0.997327 0.498663 0.866796i \(-0.333824\pi\)
0.498663 + 0.866796i \(0.333824\pi\)
\(272\) 6.17921i 0.374669i
\(273\) 8.33466i 0.504437i
\(274\) 6.87366 0.415253
\(275\) 0.743322 1.24524i 0.0448240 0.0750906i
\(276\) −2.15060 −0.129451
\(277\) 15.6104i 0.937937i −0.883215 0.468968i \(-0.844626\pi\)
0.883215 0.468968i \(-0.155374\pi\)
\(278\) 9.80616i 0.588134i
\(279\) 28.2513 1.69136
\(280\) −3.87841 6.83201i −0.231779 0.408290i
\(281\) −21.8665 −1.30445 −0.652224 0.758026i \(-0.726164\pi\)
−0.652224 + 0.758026i \(0.726164\pi\)
\(282\) 1.89519i 0.112857i
\(283\) 2.24778i 0.133616i −0.997766 0.0668082i \(-0.978718\pi\)
0.997766 0.0668082i \(-0.0212816\pi\)
\(284\) −13.4995 −0.801050
\(285\) −3.77791 + 2.14466i −0.223784 + 0.127039i
\(286\) 2.06673 0.122208
\(287\) 5.76461i 0.340274i
\(288\) 2.88916i 0.170245i
\(289\) −21.1826 −1.24603
\(290\) 2.29545 1.30308i 0.134793 0.0765198i
\(291\) 5.03622 0.295228
\(292\) 1.71348i 0.100274i
\(293\) 26.8794i 1.57031i −0.619297 0.785157i \(-0.712582\pi\)
0.619297 0.785157i \(-0.287418\pi\)
\(294\) 1.77904 0.103756
\(295\) 6.56028 + 11.5562i 0.381954 + 0.672830i
\(296\) 1.00000 0.0581238
\(297\) 0.568674i 0.0329978i
\(298\) 9.07687i 0.525809i
\(299\) 46.0293 2.66194
\(300\) 1.42933 + 0.853215i 0.0825226 + 0.0492604i
\(301\) 18.7926 1.08318
\(302\) 20.1964i 1.16217i
\(303\) 0.878021i 0.0504410i
\(304\) −5.83553 −0.334691
\(305\) 1.40968 + 2.48322i 0.0807181 + 0.142189i
\(306\) −17.8527 −1.02057
\(307\) 23.9979i 1.36963i 0.728717 + 0.684815i \(0.240117\pi\)
−0.728717 + 0.684815i \(0.759883\pi\)
\(308\) 1.01903i 0.0580645i
\(309\) 0.574192 0.0326647
\(310\) 19.0148 10.7944i 1.07997 0.613081i
\(311\) −5.07563 −0.287812 −0.143906 0.989591i \(-0.545966\pi\)
−0.143906 + 0.989591i \(0.545966\pi\)
\(312\) 2.37228i 0.134304i
\(313\) 8.96950i 0.506986i 0.967337 + 0.253493i \(0.0815795\pi\)
−0.967337 + 0.253493i \(0.918420\pi\)
\(314\) −17.2677 −0.974474
\(315\) 19.7388 11.2054i 1.11215 0.631350i
\(316\) 8.25422 0.464336
\(317\) 22.0181i 1.23666i −0.785918 0.618330i \(-0.787809\pi\)
0.785918 0.618330i \(-0.212191\pi\)
\(318\) 3.10297i 0.174006i
\(319\) −0.342377 −0.0191695
\(320\) 1.10390 + 1.94458i 0.0617102 + 0.108705i
\(321\) 3.33855 0.186339
\(322\) 22.6953i 1.26476i
\(323\) 36.0589i 2.00637i
\(324\) −8.01474 −0.445263
\(325\) −30.5920 18.2613i −1.69694 1.01296i
\(326\) −16.6901 −0.924379
\(327\) 1.62254i 0.0897268i
\(328\) 1.64077i 0.0905964i
\(329\) 20.0000 1.10264
\(330\) −0.106596 0.187774i −0.00586793 0.0103366i
\(331\) −10.7134 −0.588864 −0.294432 0.955672i \(-0.595130\pi\)
−0.294432 + 0.955672i \(0.595130\pi\)
\(332\) 2.41807i 0.132709i
\(333\) 2.88916i 0.158325i
\(334\) 1.47354 0.0806286
\(335\) −11.7518 + 6.67127i −0.642067 + 0.364491i
\(336\) −1.16968 −0.0638114
\(337\) 1.34097i 0.0730471i 0.999333 + 0.0365235i \(0.0116284\pi\)
−0.999333 + 0.0365235i \(0.988372\pi\)
\(338\) 37.7738i 2.05463i
\(339\) 5.30315 0.288027
\(340\) −12.0160 + 6.82126i −0.651657 + 0.369935i
\(341\) −2.83616 −0.153587
\(342\) 16.8598i 0.911673i
\(343\) 5.81926i 0.314211i
\(344\) −5.34889 −0.288393
\(345\) −2.37406 4.18202i −0.127815 0.225152i
\(346\) −13.8432 −0.744216
\(347\) 0.883744i 0.0474419i 0.999719 + 0.0237209i \(0.00755131\pi\)
−0.999719 + 0.0237209i \(0.992449\pi\)
\(348\) 0.392995i 0.0210667i
\(349\) 9.00521 0.482038 0.241019 0.970520i \(-0.422518\pi\)
0.241019 + 0.970520i \(0.422518\pi\)
\(350\) 9.00399 15.0838i 0.481283 0.806261i
\(351\) −13.9707 −0.745702
\(352\) 0.290044i 0.0154594i
\(353\) 6.79030i 0.361411i −0.983537 0.180706i \(-0.942162\pi\)
0.983537 0.180706i \(-0.0578381\pi\)
\(354\) 1.97850 0.105156
\(355\) −14.9022 26.2509i −0.790927 1.39326i
\(356\) −10.2797 −0.544823
\(357\) 7.22771i 0.382531i
\(358\) 21.7817i 1.15120i
\(359\) 10.2263 0.539722 0.269861 0.962899i \(-0.413022\pi\)
0.269861 + 0.962899i \(0.413022\pi\)
\(360\) −5.61821 + 3.18936i −0.296106 + 0.168094i
\(361\) 15.0534 0.792286
\(362\) 2.03100i 0.106747i
\(363\) 3.63416i 0.190744i
\(364\) 25.0347 1.31217
\(365\) 3.33200 1.89152i 0.174405 0.0990067i
\(366\) 0.425143 0.0222226
\(367\) 17.1583i 0.895657i 0.894119 + 0.447829i \(0.147802\pi\)
−0.894119 + 0.447829i \(0.852198\pi\)
\(368\) 6.45973i 0.336737i
\(369\) 4.74045 0.246778
\(370\) 1.10390 + 1.94458i 0.0573893 + 0.101094i
\(371\) −32.7457 −1.70007
\(372\) 3.25546i 0.168788i
\(373\) 17.1601i 0.888515i −0.895899 0.444257i \(-0.853468\pi\)
0.895899 0.444257i \(-0.146532\pi\)
\(374\) 1.79224 0.0926747
\(375\) −0.0812974 + 3.72132i −0.00419818 + 0.192168i
\(376\) −5.69256 −0.293571
\(377\) 8.41126i 0.433202i
\(378\) 6.88845i 0.354304i
\(379\) 27.5435 1.41482 0.707408 0.706805i \(-0.249864\pi\)
0.707408 + 0.706805i \(0.249864\pi\)
\(380\) −6.44187 11.3477i −0.330461 0.582123i
\(381\) 0.437014 0.0223889
\(382\) 8.44668i 0.432170i
\(383\) 3.49954i 0.178818i 0.995995 + 0.0894091i \(0.0284979\pi\)
−0.995995 + 0.0894091i \(0.971502\pi\)
\(384\) 0.332924 0.0169895
\(385\) −1.98158 + 1.12491i −0.100991 + 0.0573308i
\(386\) −3.64159 −0.185352
\(387\) 15.4538i 0.785561i
\(388\) 15.1272i 0.767968i
\(389\) 13.0015 0.659203 0.329602 0.944120i \(-0.393086\pi\)
0.329602 + 0.944120i \(0.393086\pi\)
\(390\) −4.61309 + 2.61877i −0.233593 + 0.132607i
\(391\) 39.9160 2.01864
\(392\) 5.34367i 0.269896i
\(393\) 0.804219i 0.0405675i
\(394\) 10.1939 0.513563
\(395\) 9.11187 + 16.0510i 0.458468 + 0.807613i
\(396\) 0.837984 0.0421103
\(397\) 26.6658i 1.33832i 0.743118 + 0.669160i \(0.233346\pi\)
−0.743118 + 0.669160i \(0.766654\pi\)
\(398\) 5.25299i 0.263309i
\(399\) 6.82572 0.341713
\(400\) −2.56279 + 4.29326i −0.128139 + 0.214663i
\(401\) 20.3546 1.01646 0.508231 0.861221i \(-0.330300\pi\)
0.508231 + 0.861221i \(0.330300\pi\)
\(402\) 2.01198i 0.100348i
\(403\) 69.6766i 3.47084i
\(404\) −2.63730 −0.131210
\(405\) −8.84751 15.5853i −0.439636 0.774440i
\(406\) −4.14728 −0.205826
\(407\) 0.290044i 0.0143770i
\(408\) 2.05721i 0.101847i
\(409\) −29.9603 −1.48144 −0.740720 0.671814i \(-0.765515\pi\)
−0.740720 + 0.671814i \(0.765515\pi\)
\(410\) 3.19061 1.81125i 0.157573 0.0894515i
\(411\) 2.28841 0.112879
\(412\) 1.72469i 0.0849695i
\(413\) 20.8791i 1.02740i
\(414\) 18.6632 0.917246
\(415\) 4.70214 2.66932i 0.230819 0.131032i
\(416\) −7.12558 −0.349360
\(417\) 3.26471i 0.159874i
\(418\) 1.69256i 0.0827859i
\(419\) −23.3149 −1.13901 −0.569504 0.821988i \(-0.692865\pi\)
−0.569504 + 0.821988i \(0.692865\pi\)
\(420\) −1.29122 2.27454i −0.0630050 0.110986i
\(421\) 24.0289 1.17110 0.585548 0.810638i \(-0.300880\pi\)
0.585548 + 0.810638i \(0.300880\pi\)
\(422\) 4.81998i 0.234633i
\(423\) 16.4467i 0.799667i
\(424\) 9.32034 0.452636
\(425\) −26.5290 15.8360i −1.28684 0.768158i
\(426\) −4.49433 −0.217751
\(427\) 4.48654i 0.217119i
\(428\) 10.0279i 0.484719i
\(429\) 0.688066 0.0332201
\(430\) −5.90466 10.4013i −0.284748 0.501597i
\(431\) −19.2917 −0.929247 −0.464624 0.885508i \(-0.653810\pi\)
−0.464624 + 0.885508i \(0.653810\pi\)
\(432\) 1.96065i 0.0943316i
\(433\) 12.5816i 0.604634i −0.953207 0.302317i \(-0.902240\pi\)
0.953207 0.302317i \(-0.0977601\pi\)
\(434\) −34.3549 −1.64909
\(435\) 0.764210 0.433829i 0.0366411 0.0208005i
\(436\) 4.87361 0.233403
\(437\) 37.6959i 1.80324i
\(438\) 0.570460i 0.0272576i
\(439\) −14.0428 −0.670225 −0.335113 0.942178i \(-0.608774\pi\)
−0.335113 + 0.942178i \(0.608774\pi\)
\(440\) 0.564014 0.320181i 0.0268883 0.0152640i
\(441\) −15.4387 −0.735178
\(442\) 44.0304i 2.09431i
\(443\) 24.5696i 1.16734i −0.811992 0.583668i \(-0.801617\pi\)
0.811992 0.583668i \(-0.198383\pi\)
\(444\) 0.332924 0.0157999
\(445\) −11.3478 19.9897i −0.537938 0.947603i
\(446\) −3.70392 −0.175386
\(447\) 3.02191i 0.142932i
\(448\) 3.51336i 0.165990i
\(449\) 12.7574 0.602061 0.301030 0.953615i \(-0.402669\pi\)
0.301030 + 0.953615i \(0.402669\pi\)
\(450\) −12.4039 7.40431i −0.584727 0.349042i
\(451\) −0.475896 −0.0224091
\(452\) 15.9290i 0.749236i
\(453\) 6.72387i 0.315915i
\(454\) 6.31512 0.296383
\(455\) 27.6359 + 48.6820i 1.29559 + 2.28225i
\(456\) −1.94279 −0.0909795
\(457\) 3.34889i 0.156654i −0.996928 0.0783272i \(-0.975042\pi\)
0.996928 0.0783272i \(-0.0249579\pi\)
\(458\) 20.5548i 0.960463i
\(459\) −12.1152 −0.565491
\(460\) 12.5615 7.13092i 0.585681 0.332481i
\(461\) −0.859501 −0.0400310 −0.0200155 0.999800i \(-0.506372\pi\)
−0.0200155 + 0.999800i \(0.506372\pi\)
\(462\) 0.339260i 0.0157838i
\(463\) 13.8711i 0.644643i 0.946630 + 0.322321i \(0.104463\pi\)
−0.946630 + 0.322321i \(0.895537\pi\)
\(464\) 1.18043 0.0548002
\(465\) 6.33051 3.59372i 0.293570 0.166655i
\(466\) −21.4393 −0.993155
\(467\) 40.9281i 1.89392i −0.321344 0.946962i \(-0.604135\pi\)
0.321344 0.946962i \(-0.395865\pi\)
\(468\) 20.5869i 0.951632i
\(469\) 21.2324 0.980422
\(470\) −6.28405 11.0696i −0.289861 0.510605i
\(471\) −5.74885 −0.264893
\(472\) 5.94279i 0.273539i
\(473\) 1.55141i 0.0713341i
\(474\) 2.74803 0.126221
\(475\) 14.9552 25.0535i 0.686193 1.14953i
\(476\) 21.7098 0.995065
\(477\) 26.9280i 1.23295i
\(478\) 20.7479i 0.948986i
\(479\) −8.58990 −0.392483 −0.196241 0.980556i \(-0.562874\pi\)
−0.196241 + 0.980556i \(0.562874\pi\)
\(480\) 0.367517 + 0.647398i 0.0167748 + 0.0295496i
\(481\) −7.12558 −0.324898
\(482\) 10.7731i 0.490702i
\(483\) 7.55583i 0.343802i
\(484\) 10.9159 0.496176
\(485\) −29.4161 + 16.6990i −1.33572 + 0.758263i
\(486\) −8.55024 −0.387847
\(487\) 25.8389i 1.17087i −0.810718 0.585436i \(-0.800923\pi\)
0.810718 0.585436i \(-0.199077\pi\)
\(488\) 1.27699i 0.0578068i
\(489\) −5.55654 −0.251275
\(490\) −10.3912 + 5.89891i −0.469427 + 0.266486i
\(491\) 11.4864 0.518376 0.259188 0.965827i \(-0.416545\pi\)
0.259188 + 0.965827i \(0.416545\pi\)
\(492\) 0.546253i 0.0246270i
\(493\) 7.29413i 0.328511i
\(494\) 41.5815 1.87084
\(495\) 0.925055 + 1.62953i 0.0415781 + 0.0732419i
\(496\) 9.77838 0.439062
\(497\) 47.4287i 2.12747i
\(498\) 0.805036i 0.0360745i
\(499\) 9.74599 0.436290 0.218145 0.975916i \(-0.429999\pi\)
0.218145 + 0.975916i \(0.429999\pi\)
\(500\) −11.1777 0.244192i −0.499881 0.0109206i
\(501\) 0.490578 0.0219174
\(502\) 4.46812i 0.199422i
\(503\) 17.4803i 0.779408i 0.920940 + 0.389704i \(0.127423\pi\)
−0.920940 + 0.389704i \(0.872577\pi\)
\(504\) 10.1507 0.452146
\(505\) −2.91133 5.12844i −0.129552 0.228212i
\(506\) −1.87361 −0.0832920
\(507\) 12.5758i 0.558512i
\(508\) 1.31265i 0.0582395i
\(509\) 16.3273 0.723695 0.361847 0.932237i \(-0.382146\pi\)
0.361847 + 0.932237i \(0.382146\pi\)
\(510\) −4.00041 + 2.27096i −0.177141 + 0.100560i
\(511\) −6.02007 −0.266312
\(512\) 1.00000i 0.0441942i
\(513\) 11.4414i 0.505151i
\(514\) −1.24594 −0.0549559
\(515\) −3.35380 + 1.90390i −0.147786 + 0.0838957i
\(516\) −1.78078 −0.0783943
\(517\) 1.65109i 0.0726151i
\(518\) 3.51336i 0.154368i
\(519\) −4.60875 −0.202301
\(520\) −7.86596 13.8563i −0.344945 0.607637i
\(521\) −4.78335 −0.209562 −0.104781 0.994495i \(-0.533414\pi\)
−0.104781 + 0.994495i \(0.533414\pi\)
\(522\) 3.41046i 0.149272i
\(523\) 24.1224i 1.05480i −0.849618 0.527399i \(-0.823167\pi\)
0.849618 0.527399i \(-0.176833\pi\)
\(524\) −2.41562 −0.105527
\(525\) 2.99765 5.02176i 0.130828 0.219167i
\(526\) −16.3230 −0.711716
\(527\) 60.4226i 2.63205i
\(528\) 0.0965628i 0.00420236i
\(529\) −18.7281 −0.814264
\(530\) 10.2888 + 18.1241i 0.446915 + 0.787263i
\(531\) −17.1697 −0.745101
\(532\) 20.5023i 0.888888i
\(533\) 11.6914i 0.506412i
\(534\) −3.42236 −0.148100
\(535\) −19.5001 + 11.0699i −0.843064 + 0.478593i
\(536\) −6.04334 −0.261033
\(537\) 7.25166i 0.312932i
\(538\) 18.5763i 0.800881i
\(539\) 1.54990 0.0667590
\(540\) −3.81263 + 2.16437i −0.164070 + 0.0931395i
\(541\) 4.11745 0.177023 0.0885115 0.996075i \(-0.471789\pi\)
0.0885115 + 0.996075i \(0.471789\pi\)
\(542\) 16.4181i 0.705217i
\(543\) 0.676171i 0.0290173i
\(544\) −6.17921 −0.264931
\(545\) 5.38000 + 9.47712i 0.230454 + 0.405955i
\(546\) 8.33466 0.356691
\(547\) 9.22742i 0.394536i −0.980350 0.197268i \(-0.936793\pi\)
0.980350 0.197268i \(-0.0632069\pi\)
\(548\) 6.87366i 0.293628i
\(549\) −3.68944 −0.157462
\(550\) 1.24524 + 0.743322i 0.0530971 + 0.0316953i
\(551\) −6.88845 −0.293458
\(552\) 2.15060i 0.0915357i
\(553\) 29.0000i 1.23321i
\(554\) 15.6104 0.663222
\(555\) 0.367517 + 0.647398i 0.0156002 + 0.0274805i
\(556\) −9.80616 −0.415874
\(557\) 2.25125i 0.0953885i 0.998862 + 0.0476943i \(0.0151873\pi\)
−0.998862 + 0.0476943i \(0.984813\pi\)
\(558\) 28.2513i 1.19597i
\(559\) 38.1139 1.61205
\(560\) 6.83201 3.87841i 0.288705 0.163893i
\(561\) 0.596681 0.0251919
\(562\) 21.8665i 0.922384i
\(563\) 5.79316i 0.244153i −0.992521 0.122076i \(-0.961045\pi\)
0.992521 0.122076i \(-0.0389553\pi\)
\(564\) −1.89519 −0.0798020
\(565\) −30.9752 + 17.5841i −1.30314 + 0.739768i
\(566\) 2.24778 0.0944811
\(567\) 28.1586i 1.18255i
\(568\) 13.4995i 0.566428i
\(569\) 34.4807 1.44551 0.722753 0.691106i \(-0.242876\pi\)
0.722753 + 0.691106i \(0.242876\pi\)
\(570\) −2.14466 3.77791i −0.0898298 0.158239i
\(571\) −19.2152 −0.804133 −0.402066 0.915611i \(-0.631708\pi\)
−0.402066 + 0.915611i \(0.631708\pi\)
\(572\) 2.06673i 0.0864144i
\(573\) 2.81211i 0.117477i
\(574\) −5.76461 −0.240610
\(575\) 27.7333 + 16.5549i 1.15656 + 0.690387i
\(576\) −2.88916 −0.120382
\(577\) 6.33354i 0.263669i 0.991272 + 0.131834i \(0.0420867\pi\)
−0.991272 + 0.131834i \(0.957913\pi\)
\(578\) 21.1826i 0.881079i
\(579\) −1.21237 −0.0503845
\(580\) 1.30308 + 2.29545i 0.0541077 + 0.0953132i
\(581\) −8.49555 −0.352455
\(582\) 5.03622i 0.208758i
\(583\) 2.70331i 0.111960i
\(584\) 1.71348 0.0709044
\(585\) 40.0330 22.7260i 1.65516 0.939605i
\(586\) 26.8794 1.11038
\(587\) 21.9099i 0.904320i −0.891937 0.452160i \(-0.850654\pi\)
0.891937 0.452160i \(-0.149346\pi\)
\(588\) 1.77904i 0.0733664i
\(589\) −57.0620 −2.35120
\(590\) −11.5562 + 6.56028i −0.475763 + 0.270082i
\(591\) 3.39381 0.139603
\(592\) 1.00000i 0.0410997i
\(593\) 9.40482i 0.386210i 0.981178 + 0.193105i \(0.0618557\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(594\) 0.568674 0.0233330
\(595\) 23.9655 + 42.2164i 0.982490 + 1.73070i
\(596\) −9.07687 −0.371803
\(597\) 1.74885i 0.0715756i
\(598\) 46.0293i 1.88228i
\(599\) −16.4095 −0.670474 −0.335237 0.942134i \(-0.608816\pi\)
−0.335237 + 0.942134i \(0.608816\pi\)
\(600\) −0.853215 + 1.42933i −0.0348323 + 0.0583523i
\(601\) −7.01392 −0.286104 −0.143052 0.989715i \(-0.545692\pi\)
−0.143052 + 0.989715i \(0.545692\pi\)
\(602\) 18.7926i 0.765927i
\(603\) 17.4602i 0.711034i
\(604\) −20.1964 −0.821780
\(605\) 12.0501 + 21.2268i 0.489906 + 0.862992i
\(606\) −0.878021 −0.0356672
\(607\) 16.5621i 0.672234i 0.941820 + 0.336117i \(0.109114\pi\)
−0.941820 + 0.336117i \(0.890886\pi\)
\(608\) 5.83553i 0.236662i
\(609\) −1.38073 −0.0559500
\(610\) −2.48322 + 1.40968i −0.100543 + 0.0570763i
\(611\) 40.5628 1.64099
\(612\) 17.8527i 0.721653i
\(613\) 23.9370i 0.966804i −0.875398 0.483402i \(-0.839401\pi\)
0.875398 0.483402i \(-0.160599\pi\)
\(614\) −23.9979 −0.968475
\(615\) 1.06223 0.603011i 0.0428334 0.0243158i
\(616\) −1.01903 −0.0410578
\(617\) 13.9489i 0.561563i −0.959772 0.280781i \(-0.909406\pi\)
0.959772 0.280781i \(-0.0905936\pi\)
\(618\) 0.574192i 0.0230974i
\(619\) −21.6942 −0.871964 −0.435982 0.899955i \(-0.643599\pi\)
−0.435982 + 0.899955i \(0.643599\pi\)
\(620\) 10.7944 + 19.0148i 0.433513 + 0.763654i
\(621\) 12.6652 0.508238
\(622\) 5.07563i 0.203514i
\(623\) 36.1163i 1.44697i
\(624\) −2.37228 −0.0949671
\(625\) −11.8642 22.0055i −0.474570 0.880218i
\(626\) −8.96950 −0.358493
\(627\) 0.563495i 0.0225038i
\(628\) 17.2677i 0.689057i
\(629\) −6.17921 −0.246381
\(630\) 11.2054 + 19.7388i 0.446432 + 0.786411i
\(631\) −32.4902 −1.29342 −0.646708 0.762738i \(-0.723855\pi\)
−0.646708 + 0.762738i \(0.723855\pi\)
\(632\) 8.25422i 0.328335i
\(633\) 1.60469i 0.0637806i
\(634\) 22.0181 0.874451
\(635\) −2.55256 + 1.44904i −0.101295 + 0.0575035i
\(636\) 3.10297 0.123041
\(637\) 38.0768i 1.50866i
\(638\) 0.342377i 0.0135549i
\(639\) 39.0024 1.54291
\(640\) −1.94458 + 1.10390i −0.0768663 + 0.0436357i
\(641\) −28.1621 −1.11234 −0.556168 0.831070i \(-0.687729\pi\)
−0.556168 + 0.831070i \(0.687729\pi\)
\(642\) 3.33855i 0.131762i
\(643\) 8.32452i 0.328287i −0.986436 0.164144i \(-0.947514\pi\)
0.986436 0.164144i \(-0.0524860\pi\)
\(644\) −22.6953 −0.894321
\(645\) −1.96581 3.46286i −0.0774036 0.136350i
\(646\) 36.0589 1.41872
\(647\) 1.75827i 0.0691249i 0.999403 + 0.0345624i \(0.0110038\pi\)
−0.999403 + 0.0345624i \(0.988996\pi\)
\(648\) 8.01474i 0.314849i
\(649\) 1.72367 0.0676600
\(650\) 18.2613 30.5920i 0.716269 1.19992i
\(651\) −11.4376 −0.448275
\(652\) 16.6901i 0.653634i
\(653\) 24.7416i 0.968213i −0.875009 0.484106i \(-0.839145\pi\)
0.875009 0.484106i \(-0.160855\pi\)
\(654\) 1.62254 0.0634464
\(655\) −2.66661 4.69737i −0.104193 0.183541i
\(656\) 1.64077 0.0640613
\(657\) 4.95053i 0.193138i
\(658\) 20.0000i 0.779681i
\(659\) −18.2640 −0.711466 −0.355733 0.934588i \(-0.615769\pi\)
−0.355733 + 0.934588i \(0.615769\pi\)
\(660\) 0.187774 0.106596i 0.00730910 0.00414925i
\(661\) 2.61857 0.101851 0.0509253 0.998702i \(-0.483783\pi\)
0.0509253 + 0.998702i \(0.483783\pi\)
\(662\) 10.7134i 0.416390i
\(663\) 14.6588i 0.569300i
\(664\) 2.41807 0.0938394
\(665\) −39.8684 + 22.6326i −1.54603 + 0.877654i
\(666\) −2.88916 −0.111953
\(667\) 7.62527i 0.295252i
\(668\) 1.47354i 0.0570130i
\(669\) −1.23313 −0.0476754
\(670\) −6.67127 11.7518i −0.257734 0.454010i
\(671\) 0.370385 0.0142986
\(672\) 1.16968i 0.0451215i
\(673\) 48.4181i 1.86638i 0.359384 + 0.933190i \(0.382987\pi\)
−0.359384 + 0.933190i \(0.617013\pi\)
\(674\) −1.34097 −0.0516521
\(675\) −8.41757 5.02472i −0.323992 0.193402i
\(676\) 37.7738 1.45284
\(677\) 7.49862i 0.288195i −0.989563 0.144098i \(-0.953972\pi\)
0.989563 0.144098i \(-0.0460280\pi\)
\(678\) 5.30315i 0.203666i
\(679\) 53.1473 2.03961
\(680\) −6.82126 12.0160i −0.261583 0.460791i
\(681\) 2.10246 0.0805664
\(682\) 2.83616i 0.108602i
\(683\) 33.2987i 1.27414i 0.770806 + 0.637070i \(0.219854\pi\)
−0.770806 + 0.637070i \(0.780146\pi\)
\(684\) 16.8598 0.644650
\(685\) −13.3664 + 7.58787i −0.510703 + 0.289917i
\(686\) −5.81926 −0.222181
\(687\) 6.84320i 0.261084i
\(688\) 5.34889i 0.203924i
\(689\) −66.4128 −2.53012
\(690\) 4.18202 2.37406i 0.159207 0.0903789i
\(691\) 38.3695 1.45964 0.729822 0.683638i \(-0.239603\pi\)
0.729822 + 0.683638i \(0.239603\pi\)
\(692\) 13.8432i 0.526240i
\(693\) 2.94414i 0.111839i
\(694\) −0.883744 −0.0335465
\(695\) −10.8251 19.0689i −0.410618 0.723324i
\(696\) 0.392995 0.0148964
\(697\) 10.1387i 0.384029i
\(698\) 9.00521i 0.340852i
\(699\) −7.13766 −0.269971
\(700\) 15.0838 + 9.00399i 0.570113 + 0.340319i
\(701\) −40.6339 −1.53472 −0.767360 0.641217i \(-0.778430\pi\)
−0.767360 + 0.641217i \(0.778430\pi\)
\(702\) 13.9707i 0.527291i
\(703\) 5.83553i 0.220091i
\(704\) 0.290044 0.0109315
\(705\) −2.09211 3.68536i −0.0787935 0.138799i
\(706\) 6.79030 0.255556
\(707\) 9.26577i 0.348475i
\(708\) 1.97850i 0.0743566i
\(709\) −11.1957 −0.420464 −0.210232 0.977651i \(-0.567422\pi\)
−0.210232 + 0.977651i \(0.567422\pi\)
\(710\) 26.2509 14.9022i 0.985180 0.559270i
\(711\) −23.8478 −0.894361
\(712\) 10.2797i 0.385248i
\(713\) 63.1656i 2.36557i
\(714\) 7.22771 0.270490
\(715\) −4.01893 + 2.28148i −0.150299 + 0.0853223i
\(716\) 21.7817 0.814020
\(717\) 6.90748i 0.257964i
\(718\) 10.2263i 0.381641i
\(719\) −30.2226 −1.12711 −0.563556 0.826078i \(-0.690567\pi\)
−0.563556 + 0.826078i \(0.690567\pi\)
\(720\) −3.18936 5.61821i −0.118860 0.209378i
\(721\) 6.05946 0.225666
\(722\) 15.0534i 0.560231i
\(723\) 3.58663i 0.133388i
\(724\) −2.03100 −0.0754817
\(725\) −3.02520 + 5.06791i −0.112353 + 0.188217i
\(726\) 3.63416 0.134876
\(727\) 19.1911i 0.711758i −0.934532 0.355879i \(-0.884182\pi\)
0.934532 0.355879i \(-0.115818\pi\)
\(728\) 25.0347i 0.927847i
\(729\) 21.1976 0.785097
\(730\) 1.89152 + 3.33200i 0.0700083 + 0.123323i
\(731\) 33.0519 1.22247
\(732\) 0.425143i 0.0157137i
\(733\) 5.39567i 0.199294i −0.995023 0.0996468i \(-0.968229\pi\)
0.995023 0.0996468i \(-0.0317713\pi\)
\(734\) −17.1583 −0.633325
\(735\) −3.45949 + 1.96389i −0.127605 + 0.0724392i
\(736\) 6.45973 0.238109
\(737\) 1.75284i 0.0645665i
\(738\) 4.74045i 0.174498i
\(739\) −24.7127 −0.909072 −0.454536 0.890728i \(-0.650195\pi\)
−0.454536 + 0.890728i \(0.650195\pi\)
\(740\) −1.94458 + 1.10390i −0.0714842 + 0.0405804i
\(741\) 13.8435 0.508554
\(742\) 32.7457i 1.20213i
\(743\) 45.4537i 1.66753i −0.552116 0.833767i \(-0.686180\pi\)
0.552116 0.833767i \(-0.313820\pi\)
\(744\) 3.25546 0.119351
\(745\) −10.0200 17.6507i −0.367104 0.646672i
\(746\) 17.1601 0.628275
\(747\) 6.98620i 0.255612i
\(748\) 1.79224i 0.0655309i
\(749\) 35.2317 1.28734
\(750\) −3.72132 0.0812974i −0.135883 0.00296856i
\(751\) 49.6360 1.81124 0.905621 0.424088i \(-0.139405\pi\)
0.905621 + 0.424088i \(0.139405\pi\)
\(752\) 5.69256i 0.207586i
\(753\) 1.48755i 0.0542093i
\(754\) −8.41126 −0.306320
\(755\) −22.2949 39.2735i −0.811395 1.42931i
\(756\) 6.88845 0.250530
\(757\) 27.9481i 1.01579i −0.861419 0.507896i \(-0.830424\pi\)
0.861419 0.507896i \(-0.169576\pi\)
\(758\) 27.5435i 1.00043i
\(759\) −0.623769 −0.0226414
\(760\) 11.3477 6.44187i 0.411623 0.233671i
\(761\) −53.4744 −1.93844 −0.969222 0.246188i \(-0.920822\pi\)
−0.969222 + 0.246188i \(0.920822\pi\)
\(762\) 0.437014i 0.0158313i
\(763\) 17.1227i 0.619884i
\(764\) 8.44668 0.305590
\(765\) 34.7161 19.7077i 1.25516 0.712534i
\(766\) −3.49954 −0.126444
\(767\) 42.3458i 1.52902i
\(768\) 0.332924i 0.0120134i
\(769\) 8.46659 0.305313 0.152657 0.988279i \(-0.451217\pi\)
0.152657 + 0.988279i \(0.451217\pi\)
\(770\) −1.12491 1.98158i −0.0405390 0.0714113i
\(771\) −0.414803 −0.0149388
\(772\) 3.64159i 0.131064i
\(773\) 0.530866i 0.0190939i 0.999954 + 0.00954697i \(0.00303894\pi\)
−0.999954 + 0.00954697i \(0.996961\pi\)
\(774\) 15.4538 0.555475
\(775\) −25.0599 + 41.9811i −0.900178 + 1.50801i
\(776\) −15.1272 −0.543035
\(777\) 1.16968i 0.0419621i
\(778\) 13.0015i 0.466127i
\(779\) −9.57477 −0.343052
\(780\) −2.61877 4.61309i −0.0937670 0.165175i
\(781\) −3.91546 −0.140106
\(782\) 39.9160i 1.42739i
\(783\) 2.31441i 0.0827102i
\(784\) −5.34367 −0.190846
\(785\) 33.5785 19.0619i 1.19847 0.680349i
\(786\) −0.804219 −0.0286855
\(787\) 2.16917i 0.0773227i −0.999252 0.0386613i \(-0.987691\pi\)
0.999252 0.0386613i \(-0.0123094\pi\)
\(788\) 10.1939i 0.363144i
\(789\) −5.43432 −0.193467
\(790\) −16.0510 + 9.11187i −0.571069 + 0.324186i
\(791\) 55.9642 1.98986
\(792\) 0.837984i 0.0297765i
\(793\) 9.09932i 0.323126i
\(794\) −26.6658 −0.946336
\(795\) 3.42538 + 6.03397i 0.121486 + 0.214003i
\(796\) −5.25299 −0.186187
\(797\) 26.2510i 0.929857i 0.885348 + 0.464928i \(0.153920\pi\)
−0.885348 + 0.464928i \(0.846080\pi\)
\(798\) 6.82572i 0.241628i
\(799\) 35.1755 1.24442
\(800\) −4.29326 2.56279i −0.151790 0.0906082i
\(801\) 29.6997 1.04939
\(802\) 20.3546i 0.718747i
\(803\) 0.496986i 0.0175382i
\(804\) −2.01198 −0.0709569
\(805\) −25.0535 44.1329i −0.883019 1.55548i
\(806\) −69.6766 −2.45425
\(807\) 6.18451i 0.217705i
\(808\) 2.63730i 0.0927798i
\(809\) −6.67443 −0.234661 −0.117330 0.993093i \(-0.537434\pi\)
−0.117330 + 0.993093i \(0.537434\pi\)
\(810\) 15.5853 8.84751i 0.547612 0.310870i
\(811\) −8.24768 −0.289615 −0.144808 0.989460i \(-0.546256\pi\)
−0.144808 + 0.989460i \(0.546256\pi\)
\(812\) 4.14728i 0.145541i
\(813\) 5.46598i 0.191700i
\(814\) 0.290044 0.0101660
\(815\) 32.4552 18.4243i 1.13686 0.645374i
\(816\) −2.05721 −0.0720167
\(817\) 31.2136i 1.09203i
\(818\) 29.9603i 1.04754i
\(819\) −72.3292 −2.52739
\(820\) 1.81125 + 3.19061i 0.0632518 + 0.111421i
\(821\) −9.61631 −0.335611 −0.167806 0.985820i \(-0.553668\pi\)
−0.167806 + 0.985820i \(0.553668\pi\)
\(822\) 2.28841i 0.0798174i
\(823\) 32.7309i 1.14093i −0.821322 0.570464i \(-0.806763\pi\)
0.821322 0.570464i \(-0.193237\pi\)
\(824\) −1.72469 −0.0600825
\(825\) 0.414570 + 0.247470i 0.0144335 + 0.00861580i
\(826\) 20.8791 0.726478
\(827\) 39.9956i 1.39078i −0.718631 0.695391i \(-0.755231\pi\)
0.718631 0.695391i \(-0.244769\pi\)
\(828\) 18.6632i 0.648591i
\(829\) −36.8620 −1.28027 −0.640134 0.768263i \(-0.721121\pi\)
−0.640134 + 0.768263i \(0.721121\pi\)
\(830\) 2.66932 + 4.70214i 0.0926535 + 0.163214i
\(831\) 5.19708 0.180285
\(832\) 7.12558i 0.247035i
\(833\) 33.0197i 1.14406i
\(834\) −3.26471 −0.113048
\(835\) −2.86542 + 1.62665i −0.0991620 + 0.0562925i
\(836\) −1.69256 −0.0585385
\(837\) 19.1719i 0.662679i
\(838\) 23.3149i 0.805400i
\(839\) −36.7629 −1.26919 −0.634597 0.772843i \(-0.718834\pi\)
−0.634597 + 0.772843i \(0.718834\pi\)
\(840\) 2.27454 1.29122i 0.0784791 0.0445513i
\(841\) −27.6066 −0.951951
\(842\) 24.0289i 0.828089i
\(843\) 7.27991i 0.250733i
\(844\) 4.81998 0.165910
\(845\) 41.6987 + 73.4543i 1.43448 + 2.52690i
\(846\) 16.4467 0.565450
\(847\) 38.3514i 1.31777i
\(848\) 9.32034i 0.320062i
\(849\) 0.748340 0.0256830
\(850\) 15.8360 26.5290i 0.543170 0.909936i
\(851\) 6.45973 0.221437
\(852\) 4.49433i 0.153973i
\(853\) 15.9547i 0.546278i −0.961975 0.273139i \(-0.911938\pi\)
0.961975 0.273139i \(-0.0880619\pi\)
\(854\) 4.48654 0.153526
\(855\) 18.6116 + 32.7852i 0.636504 + 1.12123i
\(856\) −10.0279 −0.342748
\(857\) 10.2157i 0.348963i −0.984660 0.174481i \(-0.944175\pi\)
0.984660 0.174481i \(-0.0558249\pi\)
\(858\) 0.688066i 0.0234902i
\(859\) −7.41899 −0.253133 −0.126566 0.991958i \(-0.540396\pi\)
−0.126566 + 0.991958i \(0.540396\pi\)
\(860\) 10.4013 5.90466i 0.354683 0.201347i
\(861\) −1.91918 −0.0654055
\(862\) 19.2917i 0.657077i
\(863\) 9.35839i 0.318563i −0.987233 0.159282i \(-0.949082\pi\)
0.987233 0.159282i \(-0.0509178\pi\)
\(864\) −1.96065 −0.0667025
\(865\) 26.9192 15.2816i 0.915282 0.519590i
\(866\) 12.5816 0.427541
\(867\) 7.05220i 0.239505i
\(868\) 34.3549i 1.16608i
\(869\) 2.39409 0.0812139
\(870\) 0.433829 + 0.764210i 0.0147082 + 0.0259091i
\(871\) 43.0623 1.45911
\(872\) 4.87361i 0.165041i
\(873\) 43.7050i 1.47919i
\(874\) −37.6959 −1.27508
\(875\) −0.857933 + 39.2711i −0.0290034 + 1.32761i
\(876\) 0.570460 0.0192741
\(877\) 13.1486i 0.443997i −0.975047 0.221998i \(-0.928742\pi\)
0.975047 0.221998i \(-0.0712580\pi\)
\(878\) 14.0428i 0.473921i
\(879\) 8.94882 0.301836
\(880\) 0.320181 + 0.564014i 0.0107933 + 0.0190129i
\(881\) 26.7781 0.902178 0.451089 0.892479i \(-0.351036\pi\)
0.451089 + 0.892479i \(0.351036\pi\)
\(882\) 15.4387i 0.519849i
\(883\) 16.7245i 0.562824i 0.959587 + 0.281412i \(0.0908028\pi\)
−0.959587 + 0.281412i \(0.909197\pi\)
\(884\) 44.0304 1.48090
\(885\) −3.84735 + 2.18408i −0.129327 + 0.0734169i
\(886\) 24.5696 0.825432
\(887\) 18.1469i 0.609312i 0.952462 + 0.304656i \(0.0985415\pi\)
−0.952462 + 0.304656i \(0.901458\pi\)
\(888\) 0.332924i 0.0111722i
\(889\) 4.61181 0.154675
\(890\) 19.9897 11.3478i 0.670057 0.380380i
\(891\) −2.32463 −0.0778780
\(892\) 3.70392i 0.124017i
\(893\) 33.2191i 1.11164i
\(894\) −3.02191 −0.101068
\(895\) 24.0449 + 42.3563i 0.803733 + 1.41581i
\(896\) 3.51336 0.117373
\(897\) 15.3243i 0.511663i
\(898\) 12.7574i 0.425721i
\(899\) 11.5427 0.384971
\(900\) 7.40431 12.4039i 0.246810 0.413464i
\(901\) −57.5923 −1.91868
\(902\) 0.475896i 0.0158456i
\(903\) 6.25650i 0.208203i
\(904\) −15.9290 −0.529790
\(905\) −2.24204 3.94945i −0.0745278 0.131284i
\(906\) −6.72387 −0.223386
\(907\) 50.1481i 1.66514i 0.553920 + 0.832570i \(0.313131\pi\)
−0.553920 + 0.832570i \(0.686869\pi\)
\(908\) 6.31512i 0.209575i
\(909\) 7.61958 0.252725
\(910\) −48.6820 + 27.6359i −1.61379 + 0.916122i
\(911\) 2.64691 0.0876960 0.0438480 0.999038i \(-0.486038\pi\)
0.0438480 + 0.999038i \(0.486038\pi\)
\(912\) 1.94279i 0.0643322i
\(913\) 0.701348i 0.0232112i
\(914\) 3.34889 0.110771
\(915\) −0.826725 + 0.469317i −0.0273307 + 0.0155152i
\(916\) −20.5548 −0.679150
\(917\) 8.48693i 0.280263i
\(918\) 12.1152i 0.399862i
\(919\) 39.5369 1.30420 0.652101 0.758132i \(-0.273888\pi\)
0.652101 + 0.758132i \(0.273888\pi\)
\(920\) 7.13092 + 12.5615i 0.235100 + 0.414139i
\(921\) −7.98947 −0.263262
\(922\) 0.859501i 0.0283062i
\(923\) 96.1920i 3.16620i
\(924\) −0.339260 −0.0111608
\(925\) −4.29326 2.56279i −0.141162 0.0842639i
\(926\) −13.8711 −0.455831
\(927\) 4.98292i 0.163660i
\(928\) 1.18043i 0.0387496i
\(929\) 39.2999 1.28939 0.644693 0.764441i \(-0.276985\pi\)
0.644693 + 0.764441i \(0.276985\pi\)
\(930\) 3.59372 + 6.33051i 0.117843 + 0.207585i
\(931\) 31.1832 1.02199
\(932\) 21.4393i 0.702267i
\(933\) 1.68980i 0.0553216i
\(934\) 40.9281 1.33921
\(935\) −3.48516 + 1.97847i −0.113977 + 0.0647027i
\(936\) 20.5869 0.672905
\(937\) 27.7584i 0.906826i −0.891301 0.453413i \(-0.850206\pi\)
0.891301 0.453413i \(-0.149794\pi\)
\(938\) 21.2324i 0.693263i
\(939\) −2.98617 −0.0974499
\(940\) 11.0696 6.28405i 0.361052 0.204963i
\(941\) 48.2212 1.57197 0.785983 0.618249i \(-0.212158\pi\)
0.785983 + 0.618249i \(0.212158\pi\)
\(942\) 5.74885i 0.187308i
\(943\) 10.5989i 0.345149i
\(944\) −5.94279 −0.193421
\(945\) 7.60419 + 13.3951i 0.247364 + 0.435744i
\(946\) −1.55141 −0.0504408
\(947\) 26.5111i 0.861495i −0.902472 0.430748i \(-0.858250\pi\)
0.902472 0.430748i \(-0.141750\pi\)
\(948\) 2.74803i 0.0892519i
\(949\) −12.2095 −0.396339
\(950\) 25.0535 + 14.9552i 0.812842 + 0.485212i
\(951\) 7.33037 0.237703
\(952\) 21.7098i 0.703617i
\(953\) 31.8487i 1.03168i 0.856685 + 0.515840i \(0.172520\pi\)
−0.856685 + 0.515840i \(0.827480\pi\)
\(954\) −26.9280 −0.871825
\(955\) 9.32433 + 16.4252i 0.301728 + 0.531508i
\(956\) −20.7479 −0.671034
\(957\) 0.113986i 0.00368464i
\(958\) 8.58990i 0.277527i
\(959\) 24.1496 0.779832
\(960\) −0.647398 + 0.367517i −0.0208947 + 0.0118616i
\(961\) 64.6166 2.08441
\(962\) 7.12558i 0.229738i
\(963\) 28.9723i 0.933620i
\(964\) −10.7731 −0.346978
\(965\) 7.08136 4.01997i 0.227957 0.129407i
\(966\) −7.55583 −0.243105
\(967\) 19.4699i 0.626109i 0.949735 + 0.313054i \(0.101352\pi\)
−0.949735 + 0.313054i \(0.898648\pi\)
\(968\) 10.9159i 0.350849i
\(969\) 12.0049 0.385653
\(970\) −16.6990 29.4161i −0.536173 0.944493i
\(971\) −21.8178 −0.700168 −0.350084 0.936718i \(-0.613847\pi\)
−0.350084 + 0.936718i \(0.613847\pi\)
\(972\) 8.55024i 0.274249i
\(973\) 34.4525i 1.10450i
\(974\) 25.8389 0.827932
\(975\) 6.07965 10.1848i 0.194705 0.326175i
\(976\) −1.27699 −0.0408756
\(977\) 41.8705i 1.33956i −0.742561 0.669779i \(-0.766389\pi\)
0.742561 0.669779i \(-0.233611\pi\)
\(978\) 5.55654i 0.177679i
\(979\) −2.98157 −0.0952913
\(980\) −5.89891 10.3912i −0.188434 0.331935i
\(981\) −14.0806 −0.449560
\(982\) 11.4864i 0.366547i
\(983\) 37.0175i 1.18067i 0.807157 + 0.590337i \(0.201005\pi\)
−0.807157 + 0.590337i \(0.798995\pi\)
\(984\) 0.546253 0.0174139
\(985\) −19.8229 + 11.2531i −0.631611 + 0.358555i
\(986\) −7.29413 −0.232292
\(987\) 6.65849i 0.211942i
\(988\) 41.5815i 1.32288i
\(989\) −34.5524 −1.09870
\(990\) −1.62953 + 0.925055i −0.0517898 + 0.0294002i
\(991\) −28.4749 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(992\) 9.77838i 0.310464i
\(993\) 3.56677i 0.113188i
\(994\) −47.4287 −1.50435
\(995\) −5.79880 10.2149i −0.183834 0.323833i
\(996\) 0.805036 0.0255085
\(997\) 14.2442i 0.451118i −0.974229 0.225559i \(-0.927579\pi\)
0.974229 0.225559i \(-0.0724209\pi\)
\(998\) 9.74599i 0.308504i
\(999\) −1.96065 −0.0620321
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.b.d.149.8 yes 10
3.2 odd 2 3330.2.d.p.1999.4 10
5.2 odd 4 1850.2.a.bd.1.3 5
5.3 odd 4 1850.2.a.be.1.3 5
5.4 even 2 inner 370.2.b.d.149.3 10
15.14 odd 2 3330.2.d.p.1999.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.b.d.149.3 10 5.4 even 2 inner
370.2.b.d.149.8 yes 10 1.1 even 1 trivial
1850.2.a.bd.1.3 5 5.2 odd 4
1850.2.a.be.1.3 5 5.3 odd 4
3330.2.d.p.1999.4 10 3.2 odd 2
3330.2.d.p.1999.9 10 15.14 odd 2