Properties

Label 370.2.e.d.121.2
Level $370$
Weight $2$
Character 370.121
Analytic conductor $2.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(121,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 370.121
Dual form 370.2.e.d.211.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{6} +(1.73205 + 3.00000i) q^{7} +1.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +1.00000 q^{10} +1.46410 q^{11} +(0.500000 - 0.866025i) q^{12} +(1.23205 + 2.13397i) q^{13} -3.46410 q^{14} +(0.500000 - 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.73205 + 4.73205i) q^{17} +(1.00000 + 1.73205i) q^{18} +(1.00000 + 1.73205i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(-1.73205 + 3.00000i) q^{21} +(-0.732051 + 1.26795i) q^{22} +1.46410 q^{23} +(0.500000 + 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} -2.46410 q^{26} +5.00000 q^{27} +(1.73205 - 3.00000i) q^{28} -2.00000 q^{29} +(0.500000 + 0.866025i) q^{30} +1.53590 q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.732051 + 1.26795i) q^{33} +(-2.73205 - 4.73205i) q^{34} +(1.73205 - 3.00000i) q^{35} -2.00000 q^{36} +(-5.69615 + 2.13397i) q^{37} -2.00000 q^{38} +(-1.23205 + 2.13397i) q^{39} +(-0.500000 - 0.866025i) q^{40} +(-0.964102 - 1.66987i) q^{41} +(-1.73205 - 3.00000i) q^{42} +3.92820 q^{43} +(-0.732051 - 1.26795i) q^{44} -2.00000 q^{45} +(-0.732051 + 1.26795i) q^{46} -3.46410 q^{47} -1.00000 q^{48} +(-2.50000 + 4.33013i) q^{49} +(-0.500000 - 0.866025i) q^{50} -5.46410 q^{51} +(1.23205 - 2.13397i) q^{52} +(6.23205 - 10.7942i) q^{53} +(-2.50000 + 4.33013i) q^{54} +(-0.732051 - 1.26795i) q^{55} +(1.73205 + 3.00000i) q^{56} +(-1.00000 + 1.73205i) q^{57} +(1.00000 - 1.73205i) q^{58} +(-0.732051 + 1.26795i) q^{59} -1.00000 q^{60} +(2.46410 + 4.26795i) q^{61} +(-0.767949 + 1.33013i) q^{62} +6.92820 q^{63} +1.00000 q^{64} +(1.23205 - 2.13397i) q^{65} -1.46410 q^{66} +(-0.535898 - 0.928203i) q^{67} +5.46410 q^{68} +(0.732051 + 1.26795i) q^{69} +(1.73205 + 3.00000i) q^{70} +(-7.46410 - 12.9282i) q^{71} +(1.00000 - 1.73205i) q^{72} +9.46410 q^{73} +(1.00000 - 6.00000i) q^{74} -1.00000 q^{75} +(1.00000 - 1.73205i) q^{76} +(2.53590 + 4.39230i) q^{77} +(-1.23205 - 2.13397i) q^{78} +(0.535898 + 0.928203i) q^{79} +1.00000 q^{80} +(-0.500000 - 0.866025i) q^{81} +1.92820 q^{82} +(8.92820 - 15.4641i) q^{83} +3.46410 q^{84} +5.46410 q^{85} +(-1.96410 + 3.40192i) q^{86} +(-1.00000 - 1.73205i) q^{87} +1.46410 q^{88} +(1.00000 - 1.73205i) q^{89} +(1.00000 - 1.73205i) q^{90} +(-4.26795 + 7.39230i) q^{91} +(-0.732051 - 1.26795i) q^{92} +(0.767949 + 1.33013i) q^{93} +(1.73205 - 3.00000i) q^{94} +(1.00000 - 1.73205i) q^{95} +(0.500000 - 0.866025i) q^{96} -2.00000 q^{97} +(-2.50000 - 4.33013i) q^{98} +(1.46410 - 2.53590i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} - 4 q^{6} + 4 q^{8} + 4 q^{9} + 4 q^{10} - 8 q^{11} + 2 q^{12} - 2 q^{13} + 2 q^{15} - 2 q^{16} - 4 q^{17} + 4 q^{18} + 4 q^{19} - 2 q^{20} + 4 q^{22} - 8 q^{23}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.00000 −0.408248
\(7\) 1.73205 + 3.00000i 0.654654 + 1.13389i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 1.00000 0.316228
\(11\) 1.46410 0.441443 0.220722 0.975337i \(-0.429159\pi\)
0.220722 + 0.975337i \(0.429159\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 1.23205 + 2.13397i 0.341709 + 0.591858i 0.984750 0.173974i \(-0.0556608\pi\)
−0.643041 + 0.765832i \(0.722327\pi\)
\(14\) −3.46410 −0.925820
\(15\) 0.500000 0.866025i 0.129099 0.223607i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.73205 + 4.73205i −0.662620 + 1.14769i 0.317305 + 0.948323i \(0.397222\pi\)
−0.979925 + 0.199367i \(0.936111\pi\)
\(18\) 1.00000 + 1.73205i 0.235702 + 0.408248i
\(19\) 1.00000 + 1.73205i 0.229416 + 0.397360i 0.957635 0.287984i \(-0.0929851\pi\)
−0.728219 + 0.685344i \(0.759652\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) −1.73205 + 3.00000i −0.377964 + 0.654654i
\(22\) −0.732051 + 1.26795i −0.156074 + 0.270328i
\(23\) 1.46410 0.305286 0.152643 0.988281i \(-0.451221\pi\)
0.152643 + 0.988281i \(0.451221\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.46410 −0.483250
\(27\) 5.00000 0.962250
\(28\) 1.73205 3.00000i 0.327327 0.566947i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0.500000 + 0.866025i 0.0912871 + 0.158114i
\(31\) 1.53590 0.275855 0.137928 0.990442i \(-0.455956\pi\)
0.137928 + 0.990442i \(0.455956\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.732051 + 1.26795i 0.127434 + 0.220722i
\(34\) −2.73205 4.73205i −0.468543 0.811540i
\(35\) 1.73205 3.00000i 0.292770 0.507093i
\(36\) −2.00000 −0.333333
\(37\) −5.69615 + 2.13397i −0.936442 + 0.350823i
\(38\) −2.00000 −0.324443
\(39\) −1.23205 + 2.13397i −0.197286 + 0.341709i
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) −0.964102 1.66987i −0.150567 0.260790i 0.780869 0.624695i \(-0.214777\pi\)
−0.931436 + 0.363905i \(0.881443\pi\)
\(42\) −1.73205 3.00000i −0.267261 0.462910i
\(43\) 3.92820 0.599045 0.299523 0.954089i \(-0.403173\pi\)
0.299523 + 0.954089i \(0.403173\pi\)
\(44\) −0.732051 1.26795i −0.110361 0.191151i
\(45\) −2.00000 −0.298142
\(46\) −0.732051 + 1.26795i −0.107935 + 0.186949i
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) −1.00000 −0.144338
\(49\) −2.50000 + 4.33013i −0.357143 + 0.618590i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) −5.46410 −0.765127
\(52\) 1.23205 2.13397i 0.170855 0.295929i
\(53\) 6.23205 10.7942i 0.856038 1.48270i −0.0196407 0.999807i \(-0.506252\pi\)
0.875679 0.482894i \(-0.160414\pi\)
\(54\) −2.50000 + 4.33013i −0.340207 + 0.589256i
\(55\) −0.732051 1.26795i −0.0987097 0.170970i
\(56\) 1.73205 + 3.00000i 0.231455 + 0.400892i
\(57\) −1.00000 + 1.73205i −0.132453 + 0.229416i
\(58\) 1.00000 1.73205i 0.131306 0.227429i
\(59\) −0.732051 + 1.26795i −0.0953049 + 0.165073i −0.909736 0.415188i \(-0.863716\pi\)
0.814431 + 0.580261i \(0.197049\pi\)
\(60\) −1.00000 −0.129099
\(61\) 2.46410 + 4.26795i 0.315496 + 0.546455i 0.979543 0.201236i \(-0.0644958\pi\)
−0.664047 + 0.747691i \(0.731162\pi\)
\(62\) −0.767949 + 1.33013i −0.0975296 + 0.168926i
\(63\) 6.92820 0.872872
\(64\) 1.00000 0.125000
\(65\) 1.23205 2.13397i 0.152817 0.264687i
\(66\) −1.46410 −0.180218
\(67\) −0.535898 0.928203i −0.0654704 0.113398i 0.831432 0.555626i \(-0.187521\pi\)
−0.896903 + 0.442228i \(0.854188\pi\)
\(68\) 5.46410 0.662620
\(69\) 0.732051 + 1.26795i 0.0881286 + 0.152643i
\(70\) 1.73205 + 3.00000i 0.207020 + 0.358569i
\(71\) −7.46410 12.9282i −0.885826 1.53430i −0.844764 0.535139i \(-0.820259\pi\)
−0.0410618 0.999157i \(-0.513074\pi\)
\(72\) 1.00000 1.73205i 0.117851 0.204124i
\(73\) 9.46410 1.10769 0.553845 0.832620i \(-0.313160\pi\)
0.553845 + 0.832620i \(0.313160\pi\)
\(74\) 1.00000 6.00000i 0.116248 0.697486i
\(75\) −1.00000 −0.115470
\(76\) 1.00000 1.73205i 0.114708 0.198680i
\(77\) 2.53590 + 4.39230i 0.288992 + 0.500550i
\(78\) −1.23205 2.13397i −0.139502 0.241625i
\(79\) 0.535898 + 0.928203i 0.0602933 + 0.104431i 0.894596 0.446875i \(-0.147463\pi\)
−0.834303 + 0.551306i \(0.814130\pi\)
\(80\) 1.00000 0.111803
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 1.92820 0.212934
\(83\) 8.92820 15.4641i 0.979998 1.69741i 0.317652 0.948207i \(-0.397106\pi\)
0.662346 0.749198i \(-0.269561\pi\)
\(84\) 3.46410 0.377964
\(85\) 5.46410 0.592665
\(86\) −1.96410 + 3.40192i −0.211795 + 0.366839i
\(87\) −1.00000 1.73205i −0.107211 0.185695i
\(88\) 1.46410 0.156074
\(89\) 1.00000 1.73205i 0.106000 0.183597i −0.808146 0.588982i \(-0.799529\pi\)
0.914146 + 0.405385i \(0.132862\pi\)
\(90\) 1.00000 1.73205i 0.105409 0.182574i
\(91\) −4.26795 + 7.39230i −0.447403 + 0.774924i
\(92\) −0.732051 1.26795i −0.0763216 0.132193i
\(93\) 0.767949 + 1.33013i 0.0796326 + 0.137928i
\(94\) 1.73205 3.00000i 0.178647 0.309426i
\(95\) 1.00000 1.73205i 0.102598 0.177705i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −2.50000 4.33013i −0.252538 0.437409i
\(99\) 1.46410 2.53590i 0.147148 0.254867i
\(100\) 1.00000 0.100000
\(101\) −2.53590 −0.252331 −0.126166 0.992009i \(-0.540267\pi\)
−0.126166 + 0.992009i \(0.540267\pi\)
\(102\) 2.73205 4.73205i 0.270513 0.468543i
\(103\) −6.53590 −0.644001 −0.322001 0.946739i \(-0.604355\pi\)
−0.322001 + 0.946739i \(0.604355\pi\)
\(104\) 1.23205 + 2.13397i 0.120813 + 0.209253i
\(105\) 3.46410 0.338062
\(106\) 6.23205 + 10.7942i 0.605310 + 1.04843i
\(107\) −9.42820 16.3301i −0.911459 1.57869i −0.812005 0.583651i \(-0.801624\pi\)
−0.0994540 0.995042i \(-0.531710\pi\)
\(108\) −2.50000 4.33013i −0.240563 0.416667i
\(109\) 5.00000 8.66025i 0.478913 0.829502i −0.520794 0.853682i \(-0.674364\pi\)
0.999708 + 0.0241802i \(0.00769755\pi\)
\(110\) 1.46410 0.139597
\(111\) −4.69615 3.86603i −0.445739 0.366947i
\(112\) −3.46410 −0.327327
\(113\) −5.46410 + 9.46410i −0.514019 + 0.890308i 0.485848 + 0.874043i \(0.338511\pi\)
−0.999868 + 0.0162646i \(0.994823\pi\)
\(114\) −1.00000 1.73205i −0.0936586 0.162221i
\(115\) −0.732051 1.26795i −0.0682641 0.118237i
\(116\) 1.00000 + 1.73205i 0.0928477 + 0.160817i
\(117\) 4.92820 0.455613
\(118\) −0.732051 1.26795i −0.0673907 0.116724i
\(119\) −18.9282 −1.73515
\(120\) 0.500000 0.866025i 0.0456435 0.0790569i
\(121\) −8.85641 −0.805128
\(122\) −4.92820 −0.446179
\(123\) 0.964102 1.66987i 0.0869301 0.150567i
\(124\) −0.767949 1.33013i −0.0689639 0.119449i
\(125\) 1.00000 0.0894427
\(126\) −3.46410 + 6.00000i −0.308607 + 0.534522i
\(127\) 0.535898 0.928203i 0.0475533 0.0823647i −0.841269 0.540617i \(-0.818191\pi\)
0.888822 + 0.458252i \(0.151524\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 1.96410 + 3.40192i 0.172930 + 0.299523i
\(130\) 1.23205 + 2.13397i 0.108058 + 0.187162i
\(131\) 6.46410 11.1962i 0.564771 0.978212i −0.432300 0.901730i \(-0.642298\pi\)
0.997071 0.0764824i \(-0.0243689\pi\)
\(132\) 0.732051 1.26795i 0.0637168 0.110361i
\(133\) −3.46410 + 6.00000i −0.300376 + 0.520266i
\(134\) 1.07180 0.0925891
\(135\) −2.50000 4.33013i −0.215166 0.372678i
\(136\) −2.73205 + 4.73205i −0.234271 + 0.405770i
\(137\) 5.46410 0.466830 0.233415 0.972377i \(-0.425010\pi\)
0.233415 + 0.972377i \(0.425010\pi\)
\(138\) −1.46410 −0.124633
\(139\) −2.19615 + 3.80385i −0.186275 + 0.322638i −0.944005 0.329930i \(-0.892975\pi\)
0.757730 + 0.652568i \(0.226308\pi\)
\(140\) −3.46410 −0.292770
\(141\) −1.73205 3.00000i −0.145865 0.252646i
\(142\) 14.9282 1.25275
\(143\) 1.80385 + 3.12436i 0.150845 + 0.261272i
\(144\) 1.00000 + 1.73205i 0.0833333 + 0.144338i
\(145\) 1.00000 + 1.73205i 0.0830455 + 0.143839i
\(146\) −4.73205 + 8.19615i −0.391627 + 0.678318i
\(147\) −5.00000 −0.412393
\(148\) 4.69615 + 3.86603i 0.386021 + 0.317785i
\(149\) −6.92820 −0.567581 −0.283790 0.958886i \(-0.591592\pi\)
−0.283790 + 0.958886i \(0.591592\pi\)
\(150\) 0.500000 0.866025i 0.0408248 0.0707107i
\(151\) 7.69615 + 13.3301i 0.626304 + 1.08479i 0.988287 + 0.152606i \(0.0487665\pi\)
−0.361983 + 0.932185i \(0.617900\pi\)
\(152\) 1.00000 + 1.73205i 0.0811107 + 0.140488i
\(153\) 5.46410 + 9.46410i 0.441746 + 0.765127i
\(154\) −5.07180 −0.408697
\(155\) −0.767949 1.33013i −0.0616832 0.106838i
\(156\) 2.46410 0.197286
\(157\) −9.16025 + 15.8660i −0.731068 + 1.26625i 0.225359 + 0.974276i \(0.427644\pi\)
−0.956427 + 0.291971i \(0.905689\pi\)
\(158\) −1.07180 −0.0852676
\(159\) 12.4641 0.988468
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 2.53590 + 4.39230i 0.199857 + 0.346162i
\(162\) 1.00000 0.0785674
\(163\) 8.42820 14.5981i 0.660148 1.14341i −0.320429 0.947273i \(-0.603827\pi\)
0.980577 0.196137i \(-0.0628397\pi\)
\(164\) −0.964102 + 1.66987i −0.0752837 + 0.130395i
\(165\) 0.732051 1.26795i 0.0569901 0.0987097i
\(166\) 8.92820 + 15.4641i 0.692963 + 1.20025i
\(167\) 1.53590 + 2.66025i 0.118851 + 0.205857i 0.919313 0.393528i \(-0.128745\pi\)
−0.800461 + 0.599384i \(0.795412\pi\)
\(168\) −1.73205 + 3.00000i −0.133631 + 0.231455i
\(169\) 3.46410 6.00000i 0.266469 0.461538i
\(170\) −2.73205 + 4.73205i −0.209539 + 0.362932i
\(171\) 4.00000 0.305888
\(172\) −1.96410 3.40192i −0.149761 0.259394i
\(173\) −5.92820 + 10.2679i −0.450713 + 0.780658i −0.998430 0.0560056i \(-0.982164\pi\)
0.547718 + 0.836663i \(0.315497\pi\)
\(174\) 2.00000 0.151620
\(175\) −3.46410 −0.261861
\(176\) −0.732051 + 1.26795i −0.0551804 + 0.0955753i
\(177\) −1.46410 −0.110049
\(178\) 1.00000 + 1.73205i 0.0749532 + 0.129823i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 1.00000 + 1.73205i 0.0745356 + 0.129099i
\(181\) −8.26795 14.3205i −0.614552 1.06443i −0.990463 0.137779i \(-0.956004\pi\)
0.375911 0.926656i \(-0.377330\pi\)
\(182\) −4.26795 7.39230i −0.316361 0.547954i
\(183\) −2.46410 + 4.26795i −0.182152 + 0.315496i
\(184\) 1.46410 0.107935
\(185\) 4.69615 + 3.86603i 0.345268 + 0.284236i
\(186\) −1.53590 −0.112618
\(187\) −4.00000 + 6.92820i −0.292509 + 0.506640i
\(188\) 1.73205 + 3.00000i 0.126323 + 0.218797i
\(189\) 8.66025 + 15.0000i 0.629941 + 1.09109i
\(190\) 1.00000 + 1.73205i 0.0725476 + 0.125656i
\(191\) −24.3205 −1.75977 −0.879885 0.475186i \(-0.842381\pi\)
−0.879885 + 0.475186i \(0.842381\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −20.3923 −1.46787 −0.733935 0.679220i \(-0.762318\pi\)
−0.733935 + 0.679220i \(0.762318\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 2.46410 0.176458
\(196\) 5.00000 0.357143
\(197\) −9.16025 + 15.8660i −0.652641 + 1.13041i 0.329839 + 0.944037i \(0.393006\pi\)
−0.982480 + 0.186370i \(0.940328\pi\)
\(198\) 1.46410 + 2.53590i 0.104049 + 0.180218i
\(199\) −7.53590 −0.534206 −0.267103 0.963668i \(-0.586066\pi\)
−0.267103 + 0.963668i \(0.586066\pi\)
\(200\) −0.500000 + 0.866025i −0.0353553 + 0.0612372i
\(201\) 0.535898 0.928203i 0.0377994 0.0654704i
\(202\) 1.26795 2.19615i 0.0892126 0.154521i
\(203\) −3.46410 6.00000i −0.243132 0.421117i
\(204\) 2.73205 + 4.73205i 0.191282 + 0.331310i
\(205\) −0.964102 + 1.66987i −0.0673358 + 0.116629i
\(206\) 3.26795 5.66025i 0.227689 0.394369i
\(207\) 1.46410 2.53590i 0.101762 0.176257i
\(208\) −2.46410 −0.170855
\(209\) 1.46410 + 2.53590i 0.101274 + 0.175412i
\(210\) −1.73205 + 3.00000i −0.119523 + 0.207020i
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) −12.4641 −0.856038
\(213\) 7.46410 12.9282i 0.511432 0.885826i
\(214\) 18.8564 1.28900
\(215\) −1.96410 3.40192i −0.133951 0.232009i
\(216\) 5.00000 0.340207
\(217\) 2.66025 + 4.60770i 0.180590 + 0.312791i
\(218\) 5.00000 + 8.66025i 0.338643 + 0.586546i
\(219\) 4.73205 + 8.19615i 0.319762 + 0.553845i
\(220\) −0.732051 + 1.26795i −0.0493549 + 0.0854851i
\(221\) −13.4641 −0.905693
\(222\) 5.69615 2.13397i 0.382301 0.143223i
\(223\) −11.3205 −0.758077 −0.379039 0.925381i \(-0.623745\pi\)
−0.379039 + 0.925381i \(0.623745\pi\)
\(224\) 1.73205 3.00000i 0.115728 0.200446i
\(225\) 1.00000 + 1.73205i 0.0666667 + 0.115470i
\(226\) −5.46410 9.46410i −0.363467 0.629543i
\(227\) 6.96410 + 12.0622i 0.462224 + 0.800595i 0.999071 0.0430843i \(-0.0137184\pi\)
−0.536848 + 0.843679i \(0.680385\pi\)
\(228\) 2.00000 0.132453
\(229\) 2.80385 + 4.85641i 0.185283 + 0.320920i 0.943672 0.330882i \(-0.107346\pi\)
−0.758389 + 0.651803i \(0.774013\pi\)
\(230\) 1.46410 0.0965400
\(231\) −2.53590 + 4.39230i −0.166850 + 0.288992i
\(232\) −2.00000 −0.131306
\(233\) −30.3923 −1.99107 −0.995533 0.0944137i \(-0.969902\pi\)
−0.995533 + 0.0944137i \(0.969902\pi\)
\(234\) −2.46410 + 4.26795i −0.161083 + 0.279005i
\(235\) 1.73205 + 3.00000i 0.112987 + 0.195698i
\(236\) 1.46410 0.0953049
\(237\) −0.535898 + 0.928203i −0.0348103 + 0.0602933i
\(238\) 9.46410 16.3923i 0.613467 1.06256i
\(239\) −13.4641 + 23.3205i −0.870920 + 1.50848i −0.00987430 + 0.999951i \(0.503143\pi\)
−0.861046 + 0.508527i \(0.830190\pi\)
\(240\) 0.500000 + 0.866025i 0.0322749 + 0.0559017i
\(241\) 1.00000 + 1.73205i 0.0644157 + 0.111571i 0.896435 0.443176i \(-0.146148\pi\)
−0.832019 + 0.554747i \(0.812815\pi\)
\(242\) 4.42820 7.66987i 0.284656 0.493038i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 2.46410 4.26795i 0.157748 0.273227i
\(245\) 5.00000 0.319438
\(246\) 0.964102 + 1.66987i 0.0614689 + 0.106467i
\(247\) −2.46410 + 4.26795i −0.156787 + 0.271563i
\(248\) 1.53590 0.0975296
\(249\) 17.8564 1.13160
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 0.928203 0.0585877 0.0292938 0.999571i \(-0.490674\pi\)
0.0292938 + 0.999571i \(0.490674\pi\)
\(252\) −3.46410 6.00000i −0.218218 0.377964i
\(253\) 2.14359 0.134767
\(254\) 0.535898 + 0.928203i 0.0336253 + 0.0582407i
\(255\) 2.73205 + 4.73205i 0.171088 + 0.296333i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.73205 16.8564i 0.607069 1.05147i −0.384652 0.923062i \(-0.625679\pi\)
0.991721 0.128412i \(-0.0409880\pi\)
\(258\) −3.92820 −0.244559
\(259\) −16.2679 13.3923i −1.01084 0.832157i
\(260\) −2.46410 −0.152817
\(261\) −2.00000 + 3.46410i −0.123797 + 0.214423i
\(262\) 6.46410 + 11.1962i 0.399354 + 0.691701i
\(263\) 7.19615 + 12.4641i 0.443734 + 0.768569i 0.997963 0.0637946i \(-0.0203203\pi\)
−0.554229 + 0.832364i \(0.686987\pi\)
\(264\) 0.732051 + 1.26795i 0.0450546 + 0.0780369i
\(265\) −12.4641 −0.765664
\(266\) −3.46410 6.00000i −0.212398 0.367884i
\(267\) 2.00000 0.122398
\(268\) −0.535898 + 0.928203i −0.0327352 + 0.0566990i
\(269\) 8.39230 0.511688 0.255844 0.966718i \(-0.417647\pi\)
0.255844 + 0.966718i \(0.417647\pi\)
\(270\) 5.00000 0.304290
\(271\) 15.6244 27.0622i 0.949112 1.64391i 0.201811 0.979424i \(-0.435317\pi\)
0.747301 0.664486i \(-0.231349\pi\)
\(272\) −2.73205 4.73205i −0.165655 0.286923i
\(273\) −8.53590 −0.516616
\(274\) −2.73205 + 4.73205i −0.165049 + 0.285874i
\(275\) −0.732051 + 1.26795i −0.0441443 + 0.0764602i
\(276\) 0.732051 1.26795i 0.0440643 0.0763216i
\(277\) 12.7679 + 22.1147i 0.767152 + 1.32875i 0.939101 + 0.343640i \(0.111660\pi\)
−0.171950 + 0.985106i \(0.555007\pi\)
\(278\) −2.19615 3.80385i −0.131716 0.228140i
\(279\) 1.53590 2.66025i 0.0919518 0.159265i
\(280\) 1.73205 3.00000i 0.103510 0.179284i
\(281\) 13.3564 23.1340i 0.796776 1.38006i −0.124929 0.992166i \(-0.539870\pi\)
0.921705 0.387891i \(-0.126796\pi\)
\(282\) 3.46410 0.206284
\(283\) −10.9641 18.9904i −0.651748 1.12886i −0.982698 0.185213i \(-0.940703\pi\)
0.330950 0.943648i \(-0.392631\pi\)
\(284\) −7.46410 + 12.9282i −0.442913 + 0.767148i
\(285\) 2.00000 0.118470
\(286\) −3.60770 −0.213327
\(287\) 3.33975 5.78461i 0.197139 0.341455i
\(288\) −2.00000 −0.117851
\(289\) −6.42820 11.1340i −0.378130 0.654940i
\(290\) −2.00000 −0.117444
\(291\) −1.00000 1.73205i −0.0586210 0.101535i
\(292\) −4.73205 8.19615i −0.276922 0.479644i
\(293\) 3.23205 + 5.59808i 0.188818 + 0.327043i 0.944857 0.327484i \(-0.106201\pi\)
−0.756038 + 0.654528i \(0.772868\pi\)
\(294\) 2.50000 4.33013i 0.145803 0.252538i
\(295\) 1.46410 0.0852433
\(296\) −5.69615 + 2.13397i −0.331082 + 0.124035i
\(297\) 7.32051 0.424779
\(298\) 3.46410 6.00000i 0.200670 0.347571i
\(299\) 1.80385 + 3.12436i 0.104319 + 0.180686i
\(300\) 0.500000 + 0.866025i 0.0288675 + 0.0500000i
\(301\) 6.80385 + 11.7846i 0.392167 + 0.679254i
\(302\) −15.3923 −0.885728
\(303\) −1.26795 2.19615i −0.0728418 0.126166i
\(304\) −2.00000 −0.114708
\(305\) 2.46410 4.26795i 0.141094 0.244382i
\(306\) −10.9282 −0.624724
\(307\) 16.8564 0.962046 0.481023 0.876708i \(-0.340265\pi\)
0.481023 + 0.876708i \(0.340265\pi\)
\(308\) 2.53590 4.39230i 0.144496 0.250275i
\(309\) −3.26795 5.66025i −0.185907 0.322001i
\(310\) 1.53590 0.0872332
\(311\) 2.76795 4.79423i 0.156956 0.271856i −0.776814 0.629731i \(-0.783165\pi\)
0.933770 + 0.357875i \(0.116499\pi\)
\(312\) −1.23205 + 2.13397i −0.0697511 + 0.120813i
\(313\) 2.46410 4.26795i 0.139279 0.241239i −0.787945 0.615746i \(-0.788855\pi\)
0.927224 + 0.374507i \(0.122188\pi\)
\(314\) −9.16025 15.8660i −0.516943 0.895372i
\(315\) −3.46410 6.00000i −0.195180 0.338062i
\(316\) 0.535898 0.928203i 0.0301466 0.0522155i
\(317\) 12.2321 21.1865i 0.687020 1.18995i −0.285777 0.958296i \(-0.592252\pi\)
0.972797 0.231658i \(-0.0744151\pi\)
\(318\) −6.23205 + 10.7942i −0.349476 + 0.605310i
\(319\) −2.92820 −0.163948
\(320\) −0.500000 0.866025i −0.0279508 0.0484123i
\(321\) 9.42820 16.3301i 0.526231 0.911459i
\(322\) −5.07180 −0.282640
\(323\) −10.9282 −0.608061
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −2.46410 −0.136684
\(326\) 8.42820 + 14.5981i 0.466795 + 0.808513i
\(327\) 10.0000 0.553001
\(328\) −0.964102 1.66987i −0.0532336 0.0922033i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0.732051 + 1.26795i 0.0402981 + 0.0697983i
\(331\) 6.12436 10.6077i 0.336625 0.583052i −0.647171 0.762345i \(-0.724048\pi\)
0.983796 + 0.179294i \(0.0573812\pi\)
\(332\) −17.8564 −0.979998
\(333\) −2.00000 + 12.0000i −0.109599 + 0.657596i
\(334\) −3.07180 −0.168081
\(335\) −0.535898 + 0.928203i −0.0292793 + 0.0507132i
\(336\) −1.73205 3.00000i −0.0944911 0.163663i
\(337\) 2.46410 + 4.26795i 0.134228 + 0.232490i 0.925302 0.379230i \(-0.123811\pi\)
−0.791074 + 0.611720i \(0.790478\pi\)
\(338\) 3.46410 + 6.00000i 0.188422 + 0.326357i
\(339\) −10.9282 −0.593539
\(340\) −2.73205 4.73205i −0.148166 0.256631i
\(341\) 2.24871 0.121775
\(342\) −2.00000 + 3.46410i −0.108148 + 0.187317i
\(343\) 6.92820 0.374088
\(344\) 3.92820 0.211795
\(345\) 0.732051 1.26795i 0.0394123 0.0682641i
\(346\) −5.92820 10.2679i −0.318702 0.552008i
\(347\) −17.0718 −0.916462 −0.458231 0.888833i \(-0.651517\pi\)
−0.458231 + 0.888833i \(0.651517\pi\)
\(348\) −1.00000 + 1.73205i −0.0536056 + 0.0928477i
\(349\) 15.3923 26.6603i 0.823931 1.42709i −0.0788022 0.996890i \(-0.525110\pi\)
0.902733 0.430200i \(-0.141557\pi\)
\(350\) 1.73205 3.00000i 0.0925820 0.160357i
\(351\) 6.16025 + 10.6699i 0.328810 + 0.569516i
\(352\) −0.732051 1.26795i −0.0390184 0.0675819i
\(353\) −18.6603 + 32.3205i −0.993185 + 1.72025i −0.395659 + 0.918397i \(0.629484\pi\)
−0.597526 + 0.801850i \(0.703849\pi\)
\(354\) 0.732051 1.26795i 0.0389081 0.0673907i
\(355\) −7.46410 + 12.9282i −0.396153 + 0.686158i
\(356\) −2.00000 −0.106000
\(357\) −9.46410 16.3923i −0.500893 0.867573i
\(358\) −6.00000 + 10.3923i −0.317110 + 0.549250i
\(359\) −2.46410 −0.130050 −0.0650252 0.997884i \(-0.520713\pi\)
−0.0650252 + 0.997884i \(0.520713\pi\)
\(360\) −2.00000 −0.105409
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 16.5359 0.869108
\(363\) −4.42820 7.66987i −0.232420 0.402564i
\(364\) 8.53590 0.447403
\(365\) −4.73205 8.19615i −0.247687 0.429006i
\(366\) −2.46410 4.26795i −0.128801 0.223089i
\(367\) 15.3923 + 26.6603i 0.803472 + 1.39165i 0.917318 + 0.398156i \(0.130350\pi\)
−0.113846 + 0.993498i \(0.536317\pi\)
\(368\) −0.732051 + 1.26795i −0.0381608 + 0.0660964i
\(369\) −3.85641 −0.200757
\(370\) −5.69615 + 2.13397i −0.296129 + 0.110940i
\(371\) 43.1769 2.24163
\(372\) 0.767949 1.33013i 0.0398163 0.0689639i
\(373\) 15.7679 + 27.3109i 0.816433 + 1.41410i 0.908294 + 0.418332i \(0.137385\pi\)
−0.0918606 + 0.995772i \(0.529281\pi\)
\(374\) −4.00000 6.92820i −0.206835 0.358249i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) −3.46410 −0.178647
\(377\) −2.46410 4.26795i −0.126908 0.219811i
\(378\) −17.3205 −0.890871
\(379\) 1.80385 3.12436i 0.0926574 0.160487i −0.815971 0.578093i \(-0.803797\pi\)
0.908629 + 0.417605i \(0.137131\pi\)
\(380\) −2.00000 −0.102598
\(381\) 1.07180 0.0549098
\(382\) 12.1603 21.0622i 0.622173 1.07763i
\(383\) −3.73205 6.46410i −0.190699 0.330300i 0.754783 0.655974i \(-0.227742\pi\)
−0.945482 + 0.325674i \(0.894409\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 2.53590 4.39230i 0.129241 0.223853i
\(386\) 10.1962 17.6603i 0.518970 0.898883i
\(387\) 3.92820 6.80385i 0.199682 0.345859i
\(388\) 1.00000 + 1.73205i 0.0507673 + 0.0879316i
\(389\) 15.8564 + 27.4641i 0.803952 + 1.39249i 0.916996 + 0.398895i \(0.130606\pi\)
−0.113045 + 0.993590i \(0.536060\pi\)
\(390\) −1.23205 + 2.13397i −0.0623873 + 0.108058i
\(391\) −4.00000 + 6.92820i −0.202289 + 0.350374i
\(392\) −2.50000 + 4.33013i −0.126269 + 0.218704i
\(393\) 12.9282 0.652142
\(394\) −9.16025 15.8660i −0.461487 0.799319i
\(395\) 0.535898 0.928203i 0.0269640 0.0467030i
\(396\) −2.92820 −0.147148
\(397\) 2.46410 0.123670 0.0618349 0.998086i \(-0.480305\pi\)
0.0618349 + 0.998086i \(0.480305\pi\)
\(398\) 3.76795 6.52628i 0.188870 0.327133i
\(399\) −6.92820 −0.346844
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0.535898 + 0.928203i 0.0267282 + 0.0462946i
\(403\) 1.89230 + 3.27757i 0.0942624 + 0.163267i
\(404\) 1.26795 + 2.19615i 0.0630828 + 0.109263i
\(405\) −0.500000 + 0.866025i −0.0248452 + 0.0430331i
\(406\) 6.92820 0.343841
\(407\) −8.33975 + 3.12436i −0.413386 + 0.154869i
\(408\) −5.46410 −0.270513
\(409\) 5.50000 9.52628i 0.271957 0.471044i −0.697406 0.716677i \(-0.745662\pi\)
0.969363 + 0.245633i \(0.0789957\pi\)
\(410\) −0.964102 1.66987i −0.0476136 0.0824691i
\(411\) 2.73205 + 4.73205i 0.134762 + 0.233415i
\(412\) 3.26795 + 5.66025i 0.161000 + 0.278861i
\(413\) −5.07180 −0.249567
\(414\) 1.46410 + 2.53590i 0.0719567 + 0.124633i
\(415\) −17.8564 −0.876537
\(416\) 1.23205 2.13397i 0.0604063 0.104627i
\(417\) −4.39230 −0.215092
\(418\) −2.92820 −0.143223
\(419\) 0.732051 1.26795i 0.0357630 0.0619434i −0.847590 0.530652i \(-0.821947\pi\)
0.883353 + 0.468708i \(0.155281\pi\)
\(420\) −1.73205 3.00000i −0.0845154 0.146385i
\(421\) −37.3205 −1.81889 −0.909445 0.415824i \(-0.863493\pi\)
−0.909445 + 0.415824i \(0.863493\pi\)
\(422\) −7.00000 + 12.1244i −0.340755 + 0.590204i
\(423\) −3.46410 + 6.00000i −0.168430 + 0.291730i
\(424\) 6.23205 10.7942i 0.302655 0.524214i
\(425\) −2.73205 4.73205i −0.132524 0.229538i
\(426\) 7.46410 + 12.9282i 0.361637 + 0.626373i
\(427\) −8.53590 + 14.7846i −0.413081 + 0.715477i
\(428\) −9.42820 + 16.3301i −0.455729 + 0.789346i
\(429\) −1.80385 + 3.12436i −0.0870906 + 0.150845i
\(430\) 3.92820 0.189435
\(431\) −6.23205 10.7942i −0.300187 0.519940i 0.675991 0.736910i \(-0.263716\pi\)
−0.976178 + 0.216970i \(0.930383\pi\)
\(432\) −2.50000 + 4.33013i −0.120281 + 0.208333i
\(433\) −31.7128 −1.52402 −0.762010 0.647565i \(-0.775787\pi\)
−0.762010 + 0.647565i \(0.775787\pi\)
\(434\) −5.32051 −0.255393
\(435\) −1.00000 + 1.73205i −0.0479463 + 0.0830455i
\(436\) −10.0000 −0.478913
\(437\) 1.46410 + 2.53590i 0.0700375 + 0.121308i
\(438\) −9.46410 −0.452212
\(439\) −9.23205 15.9904i −0.440622 0.763179i 0.557114 0.830436i \(-0.311909\pi\)
−0.997736 + 0.0672568i \(0.978575\pi\)
\(440\) −0.732051 1.26795i −0.0348992 0.0604471i
\(441\) 5.00000 + 8.66025i 0.238095 + 0.412393i
\(442\) 6.73205 11.6603i 0.320211 0.554622i
\(443\) 27.9282 1.32691 0.663454 0.748217i \(-0.269090\pi\)
0.663454 + 0.748217i \(0.269090\pi\)
\(444\) −1.00000 + 6.00000i −0.0474579 + 0.284747i
\(445\) −2.00000 −0.0948091
\(446\) 5.66025 9.80385i 0.268021 0.464226i
\(447\) −3.46410 6.00000i −0.163846 0.283790i
\(448\) 1.73205 + 3.00000i 0.0818317 + 0.141737i
\(449\) 7.50000 + 12.9904i 0.353947 + 0.613054i 0.986937 0.161106i \(-0.0515060\pi\)
−0.632990 + 0.774160i \(0.718173\pi\)
\(450\) −2.00000 −0.0942809
\(451\) −1.41154 2.44486i −0.0664670 0.115124i
\(452\) 10.9282 0.514019
\(453\) −7.69615 + 13.3301i −0.361597 + 0.626304i
\(454\) −13.9282 −0.653683
\(455\) 8.53590 0.400169
\(456\) −1.00000 + 1.73205i −0.0468293 + 0.0811107i
\(457\) −12.9282 22.3923i −0.604756 1.04747i −0.992090 0.125528i \(-0.959937\pi\)
0.387334 0.921939i \(-0.373396\pi\)
\(458\) −5.60770 −0.262030
\(459\) −13.6603 + 23.6603i −0.637606 + 1.10437i
\(460\) −0.732051 + 1.26795i −0.0341320 + 0.0591184i
\(461\) −0.464102 + 0.803848i −0.0216154 + 0.0374389i −0.876631 0.481164i \(-0.840214\pi\)
0.855015 + 0.518603i \(0.173548\pi\)
\(462\) −2.53590 4.39230i −0.117981 0.204349i
\(463\) 3.46410 + 6.00000i 0.160990 + 0.278844i 0.935224 0.354056i \(-0.115198\pi\)
−0.774234 + 0.632900i \(0.781864\pi\)
\(464\) 1.00000 1.73205i 0.0464238 0.0804084i
\(465\) 0.767949 1.33013i 0.0356128 0.0616832i
\(466\) 15.1962 26.3205i 0.703948 1.21927i
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) −2.46410 4.26795i −0.113903 0.197286i
\(469\) 1.85641 3.21539i 0.0857209 0.148473i
\(470\) −3.46410 −0.159787
\(471\) −18.3205 −0.844164
\(472\) −0.732051 + 1.26795i −0.0336954 + 0.0583621i
\(473\) 5.75129 0.264445
\(474\) −0.535898 0.928203i −0.0246146 0.0426338i
\(475\) −2.00000 −0.0917663
\(476\) 9.46410 + 16.3923i 0.433786 + 0.751340i
\(477\) −12.4641 21.5885i −0.570692 0.988468i
\(478\) −13.4641 23.3205i −0.615834 1.06666i
\(479\) 1.83975 3.18653i 0.0840601 0.145596i −0.820930 0.571029i \(-0.806545\pi\)
0.904990 + 0.425432i \(0.139878\pi\)
\(480\) −1.00000 −0.0456435
\(481\) −11.5718 9.52628i −0.527629 0.434361i
\(482\) −2.00000 −0.0910975
\(483\) −2.53590 + 4.39230i −0.115387 + 0.199857i
\(484\) 4.42820 + 7.66987i 0.201282 + 0.348631i
\(485\) 1.00000 + 1.73205i 0.0454077 + 0.0786484i
\(486\) 8.00000 + 13.8564i 0.362887 + 0.628539i
\(487\) −0.928203 −0.0420609 −0.0210305 0.999779i \(-0.506695\pi\)
−0.0210305 + 0.999779i \(0.506695\pi\)
\(488\) 2.46410 + 4.26795i 0.111545 + 0.193201i
\(489\) 16.8564 0.762273
\(490\) −2.50000 + 4.33013i −0.112938 + 0.195615i
\(491\) 34.2487 1.54562 0.772811 0.634636i \(-0.218850\pi\)
0.772811 + 0.634636i \(0.218850\pi\)
\(492\) −1.92820 −0.0869301
\(493\) 5.46410 9.46410i 0.246091 0.426242i
\(494\) −2.46410 4.26795i −0.110865 0.192024i
\(495\) −2.92820 −0.131613
\(496\) −0.767949 + 1.33013i −0.0344819 + 0.0597245i
\(497\) 25.8564 44.7846i 1.15982 2.00886i
\(498\) −8.92820 + 15.4641i −0.400082 + 0.692963i
\(499\) −5.46410 9.46410i −0.244607 0.423671i 0.717414 0.696647i \(-0.245326\pi\)
−0.962021 + 0.272975i \(0.911992\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −1.53590 + 2.66025i −0.0686189 + 0.118851i
\(502\) −0.464102 + 0.803848i −0.0207139 + 0.0358775i
\(503\) −14.6603 + 25.3923i −0.653668 + 1.13219i 0.328557 + 0.944484i \(0.393438\pi\)
−0.982226 + 0.187703i \(0.939896\pi\)
\(504\) 6.92820 0.308607
\(505\) 1.26795 + 2.19615i 0.0564230 + 0.0977275i
\(506\) −1.07180 + 1.85641i −0.0476472 + 0.0825273i
\(507\) 6.92820 0.307692
\(508\) −1.07180 −0.0475533
\(509\) 0.660254 1.14359i 0.0292652 0.0506889i −0.851022 0.525130i \(-0.824017\pi\)
0.880287 + 0.474441i \(0.157350\pi\)
\(510\) −5.46410 −0.241954
\(511\) 16.3923 + 28.3923i 0.725153 + 1.25600i
\(512\) 1.00000 0.0441942
\(513\) 5.00000 + 8.66025i 0.220755 + 0.382360i
\(514\) 9.73205 + 16.8564i 0.429262 + 0.743504i
\(515\) 3.26795 + 5.66025i 0.144003 + 0.249421i
\(516\) 1.96410 3.40192i 0.0864648 0.149761i
\(517\) −5.07180 −0.223057
\(518\) 19.7321 7.39230i 0.866977 0.324799i
\(519\) −11.8564 −0.520438
\(520\) 1.23205 2.13397i 0.0540290 0.0935810i
\(521\) 15.3564 + 26.5981i 0.672776 + 1.16528i 0.977114 + 0.212718i \(0.0682317\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(522\) −2.00000 3.46410i −0.0875376 0.151620i
\(523\) 21.8923 + 37.9186i 0.957284 + 1.65806i 0.729054 + 0.684457i \(0.239961\pi\)
0.228230 + 0.973607i \(0.426706\pi\)
\(524\) −12.9282 −0.564771
\(525\) −1.73205 3.00000i −0.0755929 0.130931i
\(526\) −14.3923 −0.627534
\(527\) −4.19615 + 7.26795i −0.182787 + 0.316597i
\(528\) −1.46410 −0.0637168
\(529\) −20.8564 −0.906800
\(530\) 6.23205 10.7942i 0.270703 0.468871i
\(531\) 1.46410 + 2.53590i 0.0635366 + 0.110049i
\(532\) 6.92820 0.300376
\(533\) 2.37564 4.11474i 0.102901 0.178229i
\(534\) −1.00000 + 1.73205i −0.0432742 + 0.0749532i
\(535\) −9.42820 + 16.3301i −0.407617 + 0.706013i
\(536\) −0.535898 0.928203i −0.0231473 0.0400923i
\(537\) 6.00000 + 10.3923i 0.258919 + 0.448461i
\(538\) −4.19615 + 7.26795i −0.180909 + 0.313344i
\(539\) −3.66025 + 6.33975i −0.157658 + 0.273072i
\(540\) −2.50000 + 4.33013i −0.107583 + 0.186339i
\(541\) −38.7846 −1.66748 −0.833740 0.552157i \(-0.813805\pi\)
−0.833740 + 0.552157i \(0.813805\pi\)
\(542\) 15.6244 + 27.0622i 0.671124 + 1.16242i
\(543\) 8.26795 14.3205i 0.354812 0.614552i
\(544\) 5.46410 0.234271
\(545\) −10.0000 −0.428353
\(546\) 4.26795 7.39230i 0.182651 0.316361i
\(547\) 41.9282 1.79272 0.896360 0.443326i \(-0.146202\pi\)
0.896360 + 0.443326i \(0.146202\pi\)
\(548\) −2.73205 4.73205i −0.116707 0.202143i
\(549\) 9.85641 0.420661
\(550\) −0.732051 1.26795i −0.0312148 0.0540655i
\(551\) −2.00000 3.46410i −0.0852029 0.147576i
\(552\) 0.732051 + 1.26795i 0.0311582 + 0.0539675i
\(553\) −1.85641 + 3.21539i −0.0789424 + 0.136732i
\(554\) −25.5359 −1.08492
\(555\) −1.00000 + 6.00000i −0.0424476 + 0.254686i
\(556\) 4.39230 0.186275
\(557\) −1.83975 + 3.18653i −0.0779525 + 0.135018i −0.902366 0.430970i \(-0.858172\pi\)
0.824414 + 0.565987i \(0.191505\pi\)
\(558\) 1.53590 + 2.66025i 0.0650198 + 0.112618i
\(559\) 4.83975 + 8.38269i 0.204699 + 0.354550i
\(560\) 1.73205 + 3.00000i 0.0731925 + 0.126773i
\(561\) −8.00000 −0.337760
\(562\) 13.3564 + 23.1340i 0.563406 + 0.975848i
\(563\) 25.8564 1.08972 0.544859 0.838528i \(-0.316583\pi\)
0.544859 + 0.838528i \(0.316583\pi\)
\(564\) −1.73205 + 3.00000i −0.0729325 + 0.126323i
\(565\) 10.9282 0.459753
\(566\) 21.9282 0.921711
\(567\) 1.73205 3.00000i 0.0727393 0.125988i
\(568\) −7.46410 12.9282i −0.313187 0.542455i
\(569\) −12.0718 −0.506076 −0.253038 0.967456i \(-0.581430\pi\)
−0.253038 + 0.967456i \(0.581430\pi\)
\(570\) −1.00000 + 1.73205i −0.0418854 + 0.0725476i
\(571\) −6.92820 + 12.0000i −0.289936 + 0.502184i −0.973794 0.227431i \(-0.926967\pi\)
0.683858 + 0.729615i \(0.260301\pi\)
\(572\) 1.80385 3.12436i 0.0754227 0.130636i
\(573\) −12.1603 21.0622i −0.508002 0.879885i
\(574\) 3.33975 + 5.78461i 0.139398 + 0.241445i
\(575\) −0.732051 + 1.26795i −0.0305286 + 0.0528771i
\(576\) 1.00000 1.73205i 0.0416667 0.0721688i
\(577\) −3.73205 + 6.46410i −0.155367 + 0.269104i −0.933193 0.359376i \(-0.882989\pi\)
0.777825 + 0.628480i \(0.216323\pi\)
\(578\) 12.8564 0.534756
\(579\) −10.1962 17.6603i −0.423738 0.733935i
\(580\) 1.00000 1.73205i 0.0415227 0.0719195i
\(581\) 61.8564 2.56624
\(582\) 2.00000 0.0829027
\(583\) 9.12436 15.8038i 0.377892 0.654528i
\(584\) 9.46410 0.391627
\(585\) −2.46410 4.26795i −0.101878 0.176458i
\(586\) −6.46410 −0.267030
\(587\) −10.9641 18.9904i −0.452537 0.783817i 0.546006 0.837781i \(-0.316148\pi\)
−0.998543 + 0.0539644i \(0.982814\pi\)
\(588\) 2.50000 + 4.33013i 0.103098 + 0.178571i
\(589\) 1.53590 + 2.66025i 0.0632856 + 0.109614i
\(590\) −0.732051 + 1.26795i −0.0301381 + 0.0522006i
\(591\) −18.3205 −0.753605
\(592\) 1.00000 6.00000i 0.0410997 0.246598i
\(593\) −15.6077 −0.640931 −0.320466 0.947260i \(-0.603839\pi\)
−0.320466 + 0.947260i \(0.603839\pi\)
\(594\) −3.66025 + 6.33975i −0.150182 + 0.260123i
\(595\) 9.46410 + 16.3923i 0.387990 + 0.672019i
\(596\) 3.46410 + 6.00000i 0.141895 + 0.245770i
\(597\) −3.76795 6.52628i −0.154212 0.267103i
\(598\) −3.60770 −0.147530
\(599\) 7.62436 + 13.2058i 0.311523 + 0.539573i 0.978692 0.205333i \(-0.0658277\pi\)
−0.667169 + 0.744906i \(0.732494\pi\)
\(600\) −1.00000 −0.0408248
\(601\) −3.42820 + 5.93782i −0.139839 + 0.242209i −0.927436 0.373983i \(-0.877992\pi\)
0.787596 + 0.616192i \(0.211325\pi\)
\(602\) −13.6077 −0.554608
\(603\) −2.14359 −0.0872939
\(604\) 7.69615 13.3301i 0.313152 0.542395i
\(605\) 4.42820 + 7.66987i 0.180032 + 0.311825i
\(606\) 2.53590 0.103014
\(607\) −10.6603 + 18.4641i −0.432686 + 0.749435i −0.997104 0.0760549i \(-0.975768\pi\)
0.564417 + 0.825490i \(0.309101\pi\)
\(608\) 1.00000 1.73205i 0.0405554 0.0702439i
\(609\) 3.46410 6.00000i 0.140372 0.243132i
\(610\) 2.46410 + 4.26795i 0.0997686 + 0.172804i
\(611\) −4.26795 7.39230i −0.172663 0.299061i
\(612\) 5.46410 9.46410i 0.220873 0.382564i
\(613\) −1.53590 + 2.66025i −0.0620344 + 0.107447i −0.895375 0.445314i \(-0.853092\pi\)
0.833340 + 0.552760i \(0.186426\pi\)
\(614\) −8.42820 + 14.5981i −0.340135 + 0.589130i
\(615\) −1.92820 −0.0777527
\(616\) 2.53590 + 4.39230i 0.102174 + 0.176971i
\(617\) −5.53590 + 9.58846i −0.222867 + 0.386017i −0.955677 0.294416i \(-0.904875\pi\)
0.732810 + 0.680433i \(0.238208\pi\)
\(618\) 6.53590 0.262912
\(619\) 14.0000 0.562708 0.281354 0.959604i \(-0.409217\pi\)
0.281354 + 0.959604i \(0.409217\pi\)
\(620\) −0.767949 + 1.33013i −0.0308416 + 0.0534192i
\(621\) 7.32051 0.293762
\(622\) 2.76795 + 4.79423i 0.110985 + 0.192231i
\(623\) 6.92820 0.277573
\(624\) −1.23205 2.13397i −0.0493215 0.0854274i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 2.46410 + 4.26795i 0.0984853 + 0.170582i
\(627\) −1.46410 + 2.53590i −0.0584706 + 0.101274i
\(628\) 18.3205 0.731068
\(629\) 5.46410 32.7846i 0.217868 1.30721i
\(630\) 6.92820 0.276026
\(631\) −8.16025 + 14.1340i −0.324855 + 0.562665i −0.981483 0.191550i \(-0.938649\pi\)
0.656628 + 0.754214i \(0.271982\pi\)
\(632\) 0.535898 + 0.928203i 0.0213169 + 0.0369219i
\(633\) 7.00000 + 12.1244i 0.278225 + 0.481900i
\(634\) 12.2321 + 21.1865i 0.485797 + 0.841425i
\(635\) −1.07180 −0.0425330
\(636\) −6.23205 10.7942i −0.247117 0.428019i
\(637\) −12.3205 −0.488156
\(638\) 1.46410 2.53590i 0.0579643 0.100397i
\(639\) −29.8564 −1.18110
\(640\) 1.00000 0.0395285
\(641\) −10.8205 + 18.7417i −0.427384 + 0.740251i −0.996640 0.0819093i \(-0.973898\pi\)
0.569255 + 0.822161i \(0.307232\pi\)
\(642\) 9.42820 + 16.3301i 0.372102 + 0.644499i
\(643\) −18.0718 −0.712682 −0.356341 0.934356i \(-0.615976\pi\)
−0.356341 + 0.934356i \(0.615976\pi\)
\(644\) 2.53590 4.39230i 0.0999284 0.173081i
\(645\) 1.96410 3.40192i 0.0773364 0.133951i
\(646\) 5.46410 9.46410i 0.214982 0.372360i
\(647\) 1.46410 + 2.53590i 0.0575598 + 0.0996965i 0.893369 0.449323i \(-0.148335\pi\)
−0.835810 + 0.549019i \(0.815001\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −1.07180 + 1.85641i −0.0420717 + 0.0728703i
\(650\) 1.23205 2.13397i 0.0483250 0.0837014i
\(651\) −2.66025 + 4.60770i −0.104264 + 0.180590i
\(652\) −16.8564 −0.660148
\(653\) −18.2321 31.5788i −0.713475 1.23578i −0.963545 0.267548i \(-0.913787\pi\)
0.250069 0.968228i \(-0.419547\pi\)
\(654\) −5.00000 + 8.66025i −0.195515 + 0.338643i
\(655\) −12.9282 −0.505147
\(656\) 1.92820 0.0752837
\(657\) 9.46410 16.3923i 0.369230 0.639525i
\(658\) 12.0000 0.467809
\(659\) 22.3923 + 38.7846i 0.872280 + 1.51083i 0.859632 + 0.510914i \(0.170693\pi\)
0.0126485 + 0.999920i \(0.495974\pi\)
\(660\) −1.46410 −0.0569901
\(661\) −1.19615 2.07180i −0.0465249 0.0805836i 0.841825 0.539750i \(-0.181481\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(662\) 6.12436 + 10.6077i 0.238030 + 0.412280i
\(663\) −6.73205 11.6603i −0.261451 0.452847i
\(664\) 8.92820 15.4641i 0.346481 0.600124i
\(665\) 6.92820 0.268664
\(666\) −9.39230 7.73205i −0.363944 0.299611i
\(667\) −2.92820 −0.113380
\(668\) 1.53590 2.66025i 0.0594257 0.102928i
\(669\) −5.66025 9.80385i −0.218838 0.379039i
\(670\) −0.535898 0.928203i −0.0207036 0.0358596i
\(671\) 3.60770 + 6.24871i 0.139274 + 0.241229i
\(672\) 3.46410 0.133631
\(673\) −21.0526 36.4641i −0.811517 1.40559i −0.911802 0.410629i \(-0.865309\pi\)
0.100286 0.994959i \(-0.468024\pi\)
\(674\) −4.92820 −0.189827
\(675\) −2.50000 + 4.33013i −0.0962250 + 0.166667i
\(676\) −6.92820 −0.266469
\(677\) −38.7846 −1.49061 −0.745307 0.666722i \(-0.767697\pi\)
−0.745307 + 0.666722i \(0.767697\pi\)
\(678\) 5.46410 9.46410i 0.209848 0.363467i
\(679\) −3.46410 6.00000i −0.132940 0.230259i
\(680\) 5.46410 0.209539
\(681\) −6.96410 + 12.0622i −0.266865 + 0.462224i
\(682\) −1.12436 + 1.94744i −0.0430538 + 0.0745714i
\(683\) −16.4282 + 28.4545i −0.628608 + 1.08878i 0.359224 + 0.933252i \(0.383042\pi\)
−0.987831 + 0.155529i \(0.950292\pi\)
\(684\) −2.00000 3.46410i −0.0764719 0.132453i
\(685\) −2.73205 4.73205i −0.104386 0.180802i
\(686\) −3.46410 + 6.00000i −0.132260 + 0.229081i
\(687\) −2.80385 + 4.85641i −0.106973 + 0.185283i
\(688\) −1.96410 + 3.40192i −0.0748807 + 0.129697i
\(689\) 30.7128 1.17006
\(690\) 0.732051 + 1.26795i 0.0278687 + 0.0482700i
\(691\) 15.1962 26.3205i 0.578089 1.00128i −0.417610 0.908627i \(-0.637132\pi\)
0.995698 0.0926528i \(-0.0295346\pi\)
\(692\) 11.8564 0.450713
\(693\) 10.1436 0.385323
\(694\) 8.53590 14.7846i 0.324018 0.561216i
\(695\) 4.39230 0.166610
\(696\) −1.00000 1.73205i −0.0379049 0.0656532i
\(697\) 10.5359 0.399076
\(698\) 15.3923 + 26.6603i 0.582607 + 1.00911i
\(699\) −15.1962 26.3205i −0.574771 0.995533i
\(700\) 1.73205 + 3.00000i 0.0654654 + 0.113389i
\(701\) −19.0000 + 32.9090i −0.717620 + 1.24295i 0.244320 + 0.969695i \(0.421435\pi\)
−0.961940 + 0.273260i \(0.911898\pi\)
\(702\) −12.3205 −0.465008
\(703\) −9.39230 7.73205i −0.354237 0.291620i
\(704\) 1.46410 0.0551804
\(705\) −1.73205 + 3.00000i −0.0652328 + 0.112987i
\(706\) −18.6603 32.3205i −0.702288 1.21640i
\(707\) −4.39230 7.60770i −0.165190 0.286117i
\(708\) 0.732051 + 1.26795i 0.0275122 + 0.0476524i
\(709\) −12.0000 −0.450669 −0.225335 0.974281i \(-0.572348\pi\)
−0.225335 + 0.974281i \(0.572348\pi\)
\(710\) −7.46410 12.9282i −0.280123 0.485187i
\(711\) 2.14359 0.0803910
\(712\) 1.00000 1.73205i 0.0374766 0.0649113i
\(713\) 2.24871 0.0842149
\(714\) 18.9282 0.708370
\(715\) 1.80385 3.12436i 0.0674601 0.116844i
\(716\) −6.00000 10.3923i −0.224231 0.388379i
\(717\) −26.9282 −1.00565
\(718\) 1.23205 2.13397i 0.0459797 0.0796392i
\(719\) −0.160254 + 0.277568i −0.00597647 + 0.0103515i −0.868998 0.494815i \(-0.835236\pi\)
0.863022 + 0.505167i \(0.168569\pi\)
\(720\) 1.00000 1.73205i 0.0372678 0.0645497i
\(721\) −11.3205 19.6077i −0.421598 0.730229i
\(722\) 7.50000 + 12.9904i 0.279121 + 0.483452i
\(723\) −1.00000 + 1.73205i −0.0371904 + 0.0644157i
\(724\) −8.26795 + 14.3205i −0.307276 + 0.532217i
\(725\) 1.00000 1.73205i 0.0371391 0.0643268i
\(726\) 8.85641 0.328692
\(727\) 6.00000 + 10.3923i 0.222528 + 0.385429i 0.955575 0.294749i \(-0.0952359\pi\)
−0.733047 + 0.680178i \(0.761903\pi\)
\(728\) −4.26795 + 7.39230i −0.158181 + 0.273977i
\(729\) 13.0000 0.481481
\(730\) 9.46410 0.350282
\(731\) −10.7321 + 18.5885i −0.396939 + 0.687519i
\(732\) 4.92820 0.182152
\(733\) −1.92820 3.33975i −0.0712198 0.123356i 0.828216 0.560408i \(-0.189356\pi\)
−0.899436 + 0.437052i \(0.856023\pi\)
\(734\) −30.7846 −1.13628
\(735\) 2.50000 + 4.33013i 0.0922139 + 0.159719i
\(736\) −0.732051 1.26795i −0.0269838 0.0467372i
\(737\) −0.784610 1.35898i −0.0289015 0.0500588i
\(738\) 1.92820 3.33975i 0.0709781 0.122938i
\(739\) −9.46410 −0.348143 −0.174071 0.984733i \(-0.555692\pi\)
−0.174071 + 0.984733i \(0.555692\pi\)
\(740\) 1.00000 6.00000i 0.0367607 0.220564i
\(741\) −4.92820 −0.181042
\(742\) −21.5885 + 37.3923i −0.792537 + 1.37271i
\(743\) −7.12436 12.3397i −0.261367 0.452701i 0.705238 0.708970i \(-0.250840\pi\)
−0.966605 + 0.256269i \(0.917507\pi\)
\(744\) 0.767949 + 1.33013i 0.0281544 + 0.0487648i
\(745\) 3.46410 + 6.00000i 0.126915 + 0.219823i
\(746\) −31.5359 −1.15461
\(747\) −17.8564 30.9282i −0.653332 1.13160i
\(748\) 8.00000 0.292509
\(749\) 32.6603 56.5692i 1.19338 2.06699i
\(750\) −1.00000 −0.0365148
\(751\) 5.67949 0.207248 0.103624 0.994617i \(-0.466956\pi\)
0.103624 + 0.994617i \(0.466956\pi\)
\(752\) 1.73205 3.00000i 0.0631614 0.109399i
\(753\) 0.464102 + 0.803848i 0.0169128 + 0.0292938i
\(754\) 4.92820 0.179475
\(755\) 7.69615 13.3301i 0.280092 0.485133i
\(756\) 8.66025 15.0000i 0.314970 0.545545i
\(757\) 10.2321 17.7224i 0.371890 0.644133i −0.617966 0.786205i \(-0.712043\pi\)
0.989856 + 0.142072i \(0.0453765\pi\)
\(758\) 1.80385 + 3.12436i 0.0655187 + 0.113482i
\(759\) 1.07180 + 1.85641i 0.0389038 + 0.0673833i
\(760\) 1.00000 1.73205i 0.0362738 0.0628281i
\(761\) −2.46410 + 4.26795i −0.0893236 + 0.154713i −0.907225 0.420645i \(-0.861804\pi\)
0.817902 + 0.575358i \(0.195137\pi\)
\(762\) −0.535898 + 0.928203i −0.0194136 + 0.0336253i
\(763\) 34.6410 1.25409
\(764\) 12.1603 + 21.0622i 0.439943 + 0.762003i
\(765\) 5.46410 9.46410i 0.197555 0.342175i
\(766\) 7.46410 0.269689
\(767\) −3.60770 −0.130266
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −42.7846 −1.54285 −0.771426 0.636319i \(-0.780456\pi\)
−0.771426 + 0.636319i \(0.780456\pi\)
\(770\) 2.53590 + 4.39230i 0.0913874 + 0.158288i
\(771\) 19.4641 0.700982
\(772\) 10.1962 + 17.6603i 0.366968 + 0.635606i
\(773\) −11.0885 19.2058i −0.398824 0.690784i 0.594757 0.803906i \(-0.297248\pi\)
−0.993581 + 0.113122i \(0.963915\pi\)
\(774\) 3.92820 + 6.80385i 0.141196 + 0.244559i
\(775\) −0.767949 + 1.33013i −0.0275855 + 0.0477796i
\(776\) −2.00000 −0.0717958
\(777\) 3.46410 20.7846i 0.124274 0.745644i
\(778\) −31.7128 −1.13696
\(779\) 1.92820 3.33975i 0.0690851 0.119659i
\(780\) −1.23205 2.13397i −0.0441145 0.0764085i
\(781\) −10.9282 18.9282i −0.391042 0.677304i
\(782\) −4.00000 6.92820i −0.143040 0.247752i
\(783\) −10.0000 −0.357371
\(784\) −2.50000 4.33013i −0.0892857 0.154647i
\(785\) 18.3205 0.653887
\(786\) −6.46410 + 11.1962i −0.230567 + 0.399354i
\(787\) 2.21539 0.0789701 0.0394851 0.999220i \(-0.487428\pi\)
0.0394851 + 0.999220i \(0.487428\pi\)
\(788\) 18.3205 0.652641
\(789\) −7.19615 + 12.4641i −0.256190 + 0.443734i
\(790\) 0.535898 + 0.928203i 0.0190664 + 0.0330240i
\(791\) −37.8564 −1.34602
\(792\) 1.46410 2.53590i 0.0520246 0.0901092i
\(793\) −6.07180 + 10.5167i −0.215616 + 0.373458i
\(794\) −1.23205 + 2.13397i −0.0437238 + 0.0757319i
\(795\) −6.23205 10.7942i −0.221028 0.382832i
\(796\) 3.76795 + 6.52628i 0.133551 + 0.231318i
\(797\) −13.2321 + 22.9186i −0.468703 + 0.811818i −0.999360 0.0357689i \(-0.988612\pi\)
0.530657 + 0.847587i \(0.321945\pi\)
\(798\) 3.46410 6.00000i 0.122628 0.212398i
\(799\) 9.46410 16.3923i 0.334816 0.579918i
\(800\) 1.00000 0.0353553
\(801\) −2.00000 3.46410i −0.0706665 0.122398i
\(802\) −11.0000 + 19.0526i −0.388424 + 0.672769i
\(803\) 13.8564 0.488982
\(804\) −1.07180 −0.0377994
\(805\) 2.53590 4.39230i 0.0893787 0.154808i
\(806\) −3.78461 −0.133307
\(807\) 4.19615 + 7.26795i 0.147712 + 0.255844i
\(808\) −2.53590 −0.0892126
\(809\) 8.35641 + 14.4737i 0.293796 + 0.508869i 0.974704 0.223500i \(-0.0717482\pi\)
−0.680908 + 0.732369i \(0.738415\pi\)
\(810\) −0.500000 0.866025i −0.0175682 0.0304290i
\(811\) 13.3205 + 23.0718i 0.467746 + 0.810160i 0.999321 0.0368512i \(-0.0117328\pi\)
−0.531574 + 0.847012i \(0.678399\pi\)
\(812\) −3.46410 + 6.00000i −0.121566 + 0.210559i
\(813\) 31.2487 1.09594
\(814\) 1.46410 8.78461i 0.0513167 0.307900i
\(815\) −16.8564 −0.590454
\(816\) 2.73205 4.73205i 0.0956409 0.165655i
\(817\) 3.92820 + 6.80385i 0.137430 + 0.238036i
\(818\) 5.50000 + 9.52628i 0.192303 + 0.333079i
\(819\) 8.53590 + 14.7846i 0.298268 + 0.516616i
\(820\) 1.92820 0.0673358
\(821\) −18.4641 31.9808i −0.644402 1.11614i −0.984439 0.175725i \(-0.943773\pi\)
0.340038 0.940412i \(-0.389560\pi\)
\(822\) −5.46410 −0.190582
\(823\) 8.26795 14.3205i 0.288203 0.499182i −0.685178 0.728375i \(-0.740276\pi\)
0.973381 + 0.229194i \(0.0736090\pi\)
\(824\) −6.53590 −0.227689
\(825\) −1.46410 −0.0509735
\(826\) 2.53590 4.39230i 0.0882352 0.152828i
\(827\) −22.3923 38.7846i −0.778657 1.34867i −0.932716 0.360611i \(-0.882568\pi\)
0.154059 0.988062i \(-0.450765\pi\)
\(828\) −2.92820 −0.101762
\(829\) 27.9808 48.4641i 0.971812 1.68323i 0.281734 0.959492i \(-0.409090\pi\)
0.690078 0.723735i \(-0.257576\pi\)
\(830\) 8.92820 15.4641i 0.309902 0.536767i
\(831\) −12.7679 + 22.1147i −0.442915 + 0.767152i
\(832\) 1.23205 + 2.13397i 0.0427137 + 0.0739823i
\(833\) −13.6603 23.6603i −0.473300 0.819779i
\(834\) 2.19615 3.80385i 0.0760465 0.131716i
\(835\) 1.53590 2.66025i 0.0531520 0.0920619i
\(836\) 1.46410 2.53590i 0.0506370 0.0877059i
\(837\) 7.67949 0.265442
\(838\) 0.732051 + 1.26795i 0.0252883 + 0.0438006i
\(839\) −27.0167 + 46.7942i −0.932719 + 1.61552i −0.154066 + 0.988060i \(0.549237\pi\)
−0.778652 + 0.627456i \(0.784096\pi\)
\(840\) 3.46410 0.119523
\(841\) −25.0000 −0.862069
\(842\) 18.6603 32.3205i 0.643075 1.11384i
\(843\) 26.7128 0.920038
\(844\) −7.00000 12.1244i −0.240950 0.417338i
\(845\) −6.92820 −0.238337
\(846\) −3.46410 6.00000i −0.119098 0.206284i
\(847\) −15.3397 26.5692i −0.527080 0.912929i
\(848\) 6.23205 + 10.7942i 0.214010 + 0.370675i
\(849\) 10.9641 18.9904i 0.376287 0.651748i
\(850\) 5.46410 0.187417
\(851\) −8.33975 + 3.12436i −0.285883 + 0.107102i
\(852\) −14.9282 −0.511432
\(853\) 16.6244 28.7942i 0.569207 0.985896i −0.427438 0.904045i \(-0.640584\pi\)
0.996645 0.0818507i \(-0.0260831\pi\)
\(854\) −8.53590 14.7846i −0.292092 0.505919i
\(855\) −2.00000 3.46410i −0.0683986 0.118470i
\(856\) −9.42820 16.3301i −0.322249 0.558152i
\(857\) 42.2487 1.44319 0.721594 0.692316i \(-0.243410\pi\)
0.721594 + 0.692316i \(0.243410\pi\)
\(858\) −1.80385 3.12436i −0.0615823 0.106664i
\(859\) 5.07180 0.173047 0.0865237 0.996250i \(-0.472424\pi\)
0.0865237 + 0.996250i \(0.472424\pi\)
\(860\) −1.96410 + 3.40192i −0.0669753 + 0.116005i
\(861\) 6.67949 0.227636
\(862\) 12.4641 0.424529
\(863\) 8.53590 14.7846i 0.290565 0.503274i −0.683378 0.730065i \(-0.739490\pi\)
0.973944 + 0.226791i \(0.0728233\pi\)
\(864\) −2.50000 4.33013i −0.0850517 0.147314i
\(865\) 11.8564 0.403130
\(866\) 15.8564 27.4641i 0.538823 0.933268i
\(867\) 6.42820 11.1340i 0.218313 0.378130i
\(868\) 2.66025 4.60770i 0.0902949 0.156395i
\(869\) 0.784610 + 1.35898i 0.0266161 + 0.0461004i
\(870\) −1.00000 1.73205i −0.0339032 0.0587220i
\(871\) 1.32051 2.28719i 0.0447437 0.0774984i
\(872\) 5.00000 8.66025i 0.169321 0.293273i
\(873\) −2.00000 + 3.46410i −0.0676897 + 0.117242i
\(874\) −2.92820 −0.0990480
\(875\) 1.73205 + 3.00000i 0.0585540 + 0.101419i
\(876\) 4.73205 8.19615i 0.159881 0.276922i
\(877\) −27.2487 −0.920124 −0.460062 0.887887i \(-0.652173\pi\)
−0.460062 + 0.887887i \(0.652173\pi\)
\(878\) 18.4641 0.623133
\(879\) −3.23205 + 5.59808i −0.109014 + 0.188818i
\(880\) 1.46410 0.0493549
\(881\) 17.5359 + 30.3731i 0.590799 + 1.02329i 0.994125 + 0.108238i \(0.0345209\pi\)
−0.403326 + 0.915057i \(0.632146\pi\)
\(882\) −10.0000 −0.336718
\(883\) 11.5718 + 20.0429i 0.389422 + 0.674499i 0.992372 0.123280i \(-0.0393415\pi\)
−0.602950 + 0.797779i \(0.706008\pi\)
\(884\) 6.73205 + 11.6603i 0.226423 + 0.392177i
\(885\) 0.732051 + 1.26795i 0.0246076 + 0.0426216i
\(886\) −13.9641 + 24.1865i −0.469133 + 0.812562i
\(887\) −4.14359 −0.139128 −0.0695641 0.997577i \(-0.522161\pi\)
−0.0695641 + 0.997577i \(0.522161\pi\)
\(888\) −4.69615 3.86603i −0.157593 0.129735i
\(889\) 3.71281 0.124524
\(890\) 1.00000 1.73205i 0.0335201 0.0580585i
\(891\) −0.732051 1.26795i −0.0245246 0.0424779i
\(892\) 5.66025 + 9.80385i 0.189519 + 0.328257i
\(893\) −3.46410 6.00000i −0.115922 0.200782i
\(894\) 6.92820 0.231714
\(895\) −6.00000 10.3923i −0.200558 0.347376i
\(896\) −3.46410 −0.115728
\(897\) −1.80385 + 3.12436i −0.0602287 + 0.104319i
\(898\) −15.0000 −0.500556
\(899\) −3.07180 −0.102450
\(900\) 1.00000 1.73205i 0.0333333 0.0577350i
\(901\) 34.0526 + 58.9808i 1.13446 + 1.96493i
\(902\) 2.82309 0.0939985
\(903\) −6.80385 + 11.7846i −0.226418 + 0.392167i
\(904\) −5.46410 + 9.46410i −0.181733 + 0.314771i
\(905\) −8.26795 + 14.3205i −0.274836 + 0.476030i
\(906\) −7.69615 13.3301i −0.255688 0.442864i
\(907\) −1.60770 2.78461i −0.0533826 0.0924614i 0.838099 0.545518i \(-0.183667\pi\)
−0.891482 + 0.453056i \(0.850334\pi\)
\(908\) 6.96410 12.0622i 0.231112 0.400297i
\(909\) −2.53590 + 4.39230i −0.0841104 + 0.145684i
\(910\) −4.26795 + 7.39230i −0.141481 + 0.245053i
\(911\) −38.1769 −1.26486 −0.632429 0.774618i \(-0.717942\pi\)
−0.632429 + 0.774618i \(0.717942\pi\)
\(912\) −1.00000 1.73205i −0.0331133 0.0573539i
\(913\) 13.0718 22.6410i 0.432613 0.749308i
\(914\) 25.8564 0.855254
\(915\) 4.92820 0.162921
\(916\) 2.80385 4.85641i 0.0926417 0.160460i
\(917\) 44.7846 1.47892
\(918\) −13.6603 23.6603i −0.450856 0.780905i
\(919\) 30.9282 1.02023 0.510114 0.860107i \(-0.329603\pi\)
0.510114 + 0.860107i \(0.329603\pi\)
\(920\) −0.732051 1.26795i −0.0241350 0.0418030i
\(921\) 8.42820 + 14.5981i 0.277719 + 0.481023i
\(922\) −0.464102 0.803848i −0.0152844 0.0264733i
\(923\) 18.3923 31.8564i 0.605390 1.04857i
\(924\) 5.07180 0.166850
\(925\) 1.00000 6.00000i 0.0328798 0.197279i
\(926\) −6.92820 −0.227675
\(927\) −6.53590 + 11.3205i −0.214667 + 0.371814i
\(928\) 1.00000 + 1.73205i 0.0328266 + 0.0568574i
\(929\) 10.5718 + 18.3109i 0.346849 + 0.600761i 0.985688 0.168580i \(-0.0539182\pi\)
−0.638839 + 0.769341i \(0.720585\pi\)
\(930\) 0.767949 + 1.33013i 0.0251820 + 0.0436166i
\(931\) −10.0000 −0.327737
\(932\) 15.1962 + 26.3205i 0.497767 + 0.862157i
\(933\) 5.53590 0.181237
\(934\) −1.50000 + 2.59808i −0.0490815 + 0.0850117i
\(935\) 8.00000 0.261628
\(936\) 4.92820 0.161083
\(937\) −25.9282 + 44.9090i −0.847037 + 1.46711i 0.0368025 + 0.999323i \(0.488283\pi\)
−0.883840 + 0.467789i \(0.845051\pi\)
\(938\) 1.85641 + 3.21539i 0.0606138 + 0.104986i
\(939\) 4.92820 0.160826
\(940\) 1.73205 3.00000i 0.0564933 0.0978492i
\(941\) 3.80385 6.58846i 0.124002 0.214778i −0.797340 0.603530i \(-0.793760\pi\)
0.921342 + 0.388752i \(0.127094\pi\)
\(942\) 9.16025 15.8660i 0.298457 0.516943i
\(943\) −1.41154 2.44486i −0.0459662 0.0796157i
\(944\) −0.732051 1.26795i −0.0238262 0.0412682i
\(945\) 8.66025 15.0000i 0.281718 0.487950i
\(946\) −2.87564 + 4.98076i −0.0934953 + 0.161939i
\(947\) −9.03590 + 15.6506i −0.293627 + 0.508577i −0.974665 0.223671i \(-0.928196\pi\)
0.681037 + 0.732249i \(0.261529\pi\)
\(948\) 1.07180 0.0348103
\(949\) 11.6603 + 20.1962i 0.378508 + 0.655595i
\(950\) 1.00000 1.73205i 0.0324443 0.0561951i
\(951\) 24.4641 0.793303
\(952\) −18.9282 −0.613467
\(953\) −12.1962 + 21.1244i −0.395072 + 0.684285i −0.993110 0.117183i \(-0.962614\pi\)
0.598038 + 0.801468i \(0.295947\pi\)
\(954\) 24.9282 0.807080
\(955\) 12.1603 + 21.0622i 0.393497 + 0.681556i
\(956\) 26.9282 0.870920
\(957\) −1.46410 2.53590i −0.0473277 0.0819740i
\(958\) 1.83975 + 3.18653i 0.0594395 + 0.102952i
\(959\) 9.46410 + 16.3923i 0.305612 + 0.529335i
\(960\) 0.500000 0.866025i 0.0161374 0.0279508i
\(961\) −28.6410 −0.923904
\(962\) 14.0359 5.25833i 0.452536 0.169535i
\(963\) −37.7128 −1.21528
\(964\) 1.00000 1.73205i 0.0322078 0.0557856i
\(965\) 10.1962 + 17.6603i 0.328226 + 0.568504i
\(966\) −2.53590 4.39230i −0.0815912 0.141320i
\(967\) −2.39230 4.14359i −0.0769313 0.133249i 0.824993 0.565143i \(-0.191179\pi\)
−0.901925 + 0.431894i \(0.857846\pi\)
\(968\) −8.85641 −0.284656
\(969\) −5.46410 9.46410i −0.175532 0.304031i
\(970\) −2.00000 −0.0642161
\(971\) 19.6603 34.0526i 0.630928 1.09280i −0.356435 0.934320i \(-0.616008\pi\)
0.987362 0.158478i \(-0.0506588\pi\)
\(972\) −16.0000 −0.513200
\(973\) −15.2154 −0.487783
\(974\) 0.464102 0.803848i 0.0148708 0.0257569i
\(975\) −1.23205 2.13397i −0.0394572 0.0683419i
\(976\) −4.92820 −0.157748
\(977\) −1.00000 + 1.73205i −0.0319928 + 0.0554132i −0.881579 0.472037i \(-0.843519\pi\)
0.849586 + 0.527451i \(0.176852\pi\)
\(978\) −8.42820 + 14.5981i −0.269504 + 0.466795i
\(979\) 1.46410 2.53590i 0.0467929 0.0810477i
\(980\) −2.50000 4.33013i −0.0798596 0.138321i
\(981\) −10.0000 17.3205i −0.319275 0.553001i
\(982\) −17.1244 + 29.6603i −0.546460 + 0.946497i
\(983\) 16.8564 29.1962i 0.537636 0.931213i −0.461395 0.887195i \(-0.652651\pi\)
0.999031 0.0440178i \(-0.0140158\pi\)
\(984\) 0.964102 1.66987i 0.0307344 0.0532336i
\(985\) 18.3205 0.583740
\(986\) 5.46410 + 9.46410i 0.174012 + 0.301398i
\(987\) 6.00000 10.3923i 0.190982 0.330791i
\(988\) 4.92820 0.156787
\(989\) 5.75129 0.182880
\(990\) 1.46410 2.53590i 0.0465322 0.0805961i
\(991\) −23.2487 −0.738520 −0.369260 0.929326i \(-0.620389\pi\)
−0.369260 + 0.929326i \(0.620389\pi\)
\(992\) −0.767949 1.33013i −0.0243824 0.0422316i
\(993\) 12.2487 0.388701
\(994\) 25.8564 + 44.7846i 0.820115 + 1.42048i
\(995\) 3.76795 + 6.52628i 0.119452 + 0.206897i
\(996\) −8.92820 15.4641i −0.282901 0.489999i
\(997\) 18.6962 32.3827i 0.592113 1.02557i −0.401834 0.915712i \(-0.631627\pi\)
0.993947 0.109858i \(-0.0350395\pi\)
\(998\) 10.9282 0.345926
\(999\) −28.4808 + 10.6699i −0.901091 + 0.337580i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.e.d.121.2 4
37.26 even 3 inner 370.2.e.d.211.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.e.d.121.2 4 1.1 even 1 trivial
370.2.e.d.211.2 yes 4 37.26 even 3 inner