Properties

Label 370.2.l.a.101.2
Level $370$
Weight $2$
Character 370.101
Analytic conductor $2.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(11,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 370.101
Dual form 370.2.l.a.11.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} -1.73205i q^{6} +(1.36603 + 2.36603i) q^{7} +1.00000i q^{8} -1.00000 q^{10} +4.73205 q^{11} +(0.866025 - 1.50000i) q^{12} +(2.76795 - 1.59808i) q^{13} +2.73205i q^{14} +(1.50000 + 0.866025i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.633975 + 0.366025i) q^{17} +(0.464102 - 0.267949i) q^{19} +(-0.866025 - 0.500000i) q^{20} +(2.36603 - 4.09808i) q^{21} +(4.09808 + 2.36603i) q^{22} -1.26795i q^{23} +(1.50000 - 0.866025i) q^{24} +(0.500000 - 0.866025i) q^{25} +3.19615 q^{26} -5.19615 q^{27} +(-1.36603 + 2.36603i) q^{28} +4.92820i q^{29} +(0.866025 + 1.50000i) q^{30} -7.92820i q^{31} +(-0.866025 + 0.500000i) q^{32} +(-4.09808 - 7.09808i) q^{33} +(0.366025 + 0.633975i) q^{34} +(-2.36603 - 1.36603i) q^{35} +(-0.500000 + 6.06218i) q^{37} +0.535898 q^{38} +(-4.79423 - 2.76795i) q^{39} +(-0.500000 - 0.866025i) q^{40} +(2.23205 + 3.86603i) q^{41} +(4.09808 - 2.36603i) q^{42} +1.53590i q^{43} +(2.36603 + 4.09808i) q^{44} +(0.633975 - 1.09808i) q^{46} -6.73205 q^{47} +1.73205 q^{48} +(-0.232051 + 0.401924i) q^{49} +(0.866025 - 0.500000i) q^{50} -1.26795i q^{51} +(2.76795 + 1.59808i) q^{52} +(-6.69615 + 11.5981i) q^{53} +(-4.50000 - 2.59808i) q^{54} +(-4.09808 + 2.36603i) q^{55} +(-2.36603 + 1.36603i) q^{56} +(-0.803848 - 0.464102i) q^{57} +(-2.46410 + 4.26795i) q^{58} +(-4.90192 - 2.83013i) q^{59} +1.73205i q^{60} +(0.464102 - 0.267949i) q^{61} +(3.96410 - 6.86603i) q^{62} -1.00000 q^{64} +(-1.59808 + 2.76795i) q^{65} -8.19615i q^{66} +(-4.00000 - 6.92820i) q^{67} +0.732051i q^{68} +(-1.90192 + 1.09808i) q^{69} +(-1.36603 - 2.36603i) q^{70} +(-6.19615 - 10.7321i) q^{71} -5.66025 q^{73} +(-3.46410 + 5.00000i) q^{74} -1.73205 q^{75} +(0.464102 + 0.267949i) q^{76} +(6.46410 + 11.1962i) q^{77} +(-2.76795 - 4.79423i) q^{78} +(10.3923 - 6.00000i) q^{79} -1.00000i q^{80} +(4.50000 + 7.79423i) q^{81} +4.46410i q^{82} +(-4.26795 + 7.39230i) q^{83} +4.73205 q^{84} -0.732051 q^{85} +(-0.767949 + 1.33013i) q^{86} +(7.39230 - 4.26795i) q^{87} +4.73205i q^{88} +(-7.73205 - 4.46410i) q^{89} +(7.56218 + 4.36603i) q^{91} +(1.09808 - 0.633975i) q^{92} +(-11.8923 + 6.86603i) q^{93} +(-5.83013 - 3.36603i) q^{94} +(-0.267949 + 0.464102i) q^{95} +(1.50000 + 0.866025i) q^{96} -14.3923i q^{97} +(-0.401924 + 0.232051i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{7} - 4 q^{10} + 12 q^{11} + 18 q^{13} + 6 q^{15} - 2 q^{16} + 6 q^{17} - 12 q^{19} + 6 q^{21} + 6 q^{22} + 6 q^{24} + 2 q^{25} - 8 q^{26} - 2 q^{28} - 6 q^{33} - 2 q^{34} - 6 q^{35}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) −0.866025 1.50000i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 1.73205i 0.707107i
\(7\) 1.36603 + 2.36603i 0.516309 + 0.894274i 0.999821 + 0.0189356i \(0.00602775\pi\)
−0.483512 + 0.875338i \(0.660639\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 0.866025 1.50000i 0.250000 0.433013i
\(13\) 2.76795 1.59808i 0.767691 0.443227i −0.0643593 0.997927i \(-0.520500\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 2.73205i 0.730171i
\(15\) 1.50000 + 0.866025i 0.387298 + 0.223607i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.633975 + 0.366025i 0.153761 + 0.0887742i 0.574907 0.818219i \(-0.305038\pi\)
−0.421145 + 0.906993i \(0.638372\pi\)
\(18\) 0 0
\(19\) 0.464102 0.267949i 0.106472 0.0614718i −0.445818 0.895123i \(-0.647087\pi\)
0.552291 + 0.833652i \(0.313754\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 2.36603 4.09808i 0.516309 0.894274i
\(22\) 4.09808 + 2.36603i 0.873713 + 0.504438i
\(23\) 1.26795i 0.264386i −0.991224 0.132193i \(-0.957798\pi\)
0.991224 0.132193i \(-0.0422018\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 3.19615 0.626817
\(27\) −5.19615 −1.00000
\(28\) −1.36603 + 2.36603i −0.258155 + 0.447137i
\(29\) 4.92820i 0.915144i 0.889172 + 0.457572i \(0.151281\pi\)
−0.889172 + 0.457572i \(0.848719\pi\)
\(30\) 0.866025 + 1.50000i 0.158114 + 0.273861i
\(31\) 7.92820i 1.42395i −0.702206 0.711974i \(-0.747802\pi\)
0.702206 0.711974i \(-0.252198\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −4.09808 7.09808i −0.713384 1.23562i
\(34\) 0.366025 + 0.633975i 0.0627728 + 0.108726i
\(35\) −2.36603 1.36603i −0.399931 0.230900i
\(36\) 0 0
\(37\) −0.500000 + 6.06218i −0.0821995 + 0.996616i
\(38\) 0.535898 0.0869342
\(39\) −4.79423 2.76795i −0.767691 0.443227i
\(40\) −0.500000 0.866025i −0.0790569 0.136931i
\(41\) 2.23205 + 3.86603i 0.348588 + 0.603772i 0.985999 0.166752i \(-0.0533280\pi\)
−0.637411 + 0.770524i \(0.719995\pi\)
\(42\) 4.09808 2.36603i 0.632347 0.365086i
\(43\) 1.53590i 0.234222i 0.993119 + 0.117111i \(0.0373634\pi\)
−0.993119 + 0.117111i \(0.962637\pi\)
\(44\) 2.36603 + 4.09808i 0.356692 + 0.617808i
\(45\) 0 0
\(46\) 0.633975 1.09808i 0.0934745 0.161903i
\(47\) −6.73205 −0.981971 −0.490985 0.871168i \(-0.663363\pi\)
−0.490985 + 0.871168i \(0.663363\pi\)
\(48\) 1.73205 0.250000
\(49\) −0.232051 + 0.401924i −0.0331501 + 0.0574177i
\(50\) 0.866025 0.500000i 0.122474 0.0707107i
\(51\) 1.26795i 0.177548i
\(52\) 2.76795 + 1.59808i 0.383845 + 0.221613i
\(53\) −6.69615 + 11.5981i −0.919787 + 1.59312i −0.120050 + 0.992768i \(0.538306\pi\)
−0.799737 + 0.600350i \(0.795028\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) −4.09808 + 2.36603i −0.552584 + 0.319035i
\(56\) −2.36603 + 1.36603i −0.316173 + 0.182543i
\(57\) −0.803848 0.464102i −0.106472 0.0614718i
\(58\) −2.46410 + 4.26795i −0.323552 + 0.560409i
\(59\) −4.90192 2.83013i −0.638176 0.368451i 0.145735 0.989324i \(-0.453445\pi\)
−0.783912 + 0.620872i \(0.786778\pi\)
\(60\) 1.73205i 0.223607i
\(61\) 0.464102 0.267949i 0.0594221 0.0343074i −0.469995 0.882669i \(-0.655744\pi\)
0.529417 + 0.848362i \(0.322411\pi\)
\(62\) 3.96410 6.86603i 0.503441 0.871986i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.59808 + 2.76795i −0.198217 + 0.343322i
\(66\) 8.19615i 1.00888i
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0.732051i 0.0887742i
\(69\) −1.90192 + 1.09808i −0.228965 + 0.132193i
\(70\) −1.36603 2.36603i −0.163271 0.282794i
\(71\) −6.19615 10.7321i −0.735348 1.27366i −0.954570 0.297985i \(-0.903685\pi\)
0.219222 0.975675i \(-0.429648\pi\)
\(72\) 0 0
\(73\) −5.66025 −0.662483 −0.331241 0.943546i \(-0.607467\pi\)
−0.331241 + 0.943546i \(0.607467\pi\)
\(74\) −3.46410 + 5.00000i −0.402694 + 0.581238i
\(75\) −1.73205 −0.200000
\(76\) 0.464102 + 0.267949i 0.0532361 + 0.0307359i
\(77\) 6.46410 + 11.1962i 0.736653 + 1.27592i
\(78\) −2.76795 4.79423i −0.313409 0.542839i
\(79\) 10.3923 6.00000i 1.16923 0.675053i 0.215728 0.976453i \(-0.430788\pi\)
0.953498 + 0.301401i \(0.0974542\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 4.46410i 0.492978i
\(83\) −4.26795 + 7.39230i −0.468468 + 0.811411i −0.999351 0.0360347i \(-0.988527\pi\)
0.530882 + 0.847446i \(0.321861\pi\)
\(84\) 4.73205 0.516309
\(85\) −0.732051 −0.0794021
\(86\) −0.767949 + 1.33013i −0.0828101 + 0.143431i
\(87\) 7.39230 4.26795i 0.792538 0.457572i
\(88\) 4.73205i 0.504438i
\(89\) −7.73205 4.46410i −0.819596 0.473194i 0.0306813 0.999529i \(-0.490232\pi\)
−0.850277 + 0.526335i \(0.823566\pi\)
\(90\) 0 0
\(91\) 7.56218 + 4.36603i 0.792732 + 0.457684i
\(92\) 1.09808 0.633975i 0.114482 0.0660964i
\(93\) −11.8923 + 6.86603i −1.23317 + 0.711974i
\(94\) −5.83013 3.36603i −0.601332 0.347179i
\(95\) −0.267949 + 0.464102i −0.0274910 + 0.0476158i
\(96\) 1.50000 + 0.866025i 0.153093 + 0.0883883i
\(97\) 14.3923i 1.46132i −0.682743 0.730659i \(-0.739213\pi\)
0.682743 0.730659i \(-0.260787\pi\)
\(98\) −0.401924 + 0.232051i −0.0406004 + 0.0234407i
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 13.6603 1.35925 0.679623 0.733562i \(-0.262143\pi\)
0.679623 + 0.733562i \(0.262143\pi\)
\(102\) 0.633975 1.09808i 0.0627728 0.108726i
\(103\) 0.196152i 0.0193275i −0.999953 0.00966374i \(-0.996924\pi\)
0.999953 0.00966374i \(-0.00307611\pi\)
\(104\) 1.59808 + 2.76795i 0.156704 + 0.271420i
\(105\) 4.73205i 0.461801i
\(106\) −11.5981 + 6.69615i −1.12650 + 0.650388i
\(107\) −8.06218 13.9641i −0.779400 1.34996i −0.932288 0.361717i \(-0.882191\pi\)
0.152888 0.988244i \(-0.451143\pi\)
\(108\) −2.59808 4.50000i −0.250000 0.433013i
\(109\) 8.66025 + 5.00000i 0.829502 + 0.478913i 0.853682 0.520794i \(-0.174364\pi\)
−0.0241802 + 0.999708i \(0.507698\pi\)
\(110\) −4.73205 −0.451183
\(111\) 9.52628 4.50000i 0.904194 0.427121i
\(112\) −2.73205 −0.258155
\(113\) −7.26795 4.19615i −0.683711 0.394741i 0.117541 0.993068i \(-0.462499\pi\)
−0.801252 + 0.598327i \(0.795832\pi\)
\(114\) −0.464102 0.803848i −0.0434671 0.0752872i
\(115\) 0.633975 + 1.09808i 0.0591184 + 0.102396i
\(116\) −4.26795 + 2.46410i −0.396269 + 0.228786i
\(117\) 0 0
\(118\) −2.83013 4.90192i −0.260534 0.451259i
\(119\) 2.00000i 0.183340i
\(120\) −0.866025 + 1.50000i −0.0790569 + 0.136931i
\(121\) 11.3923 1.03566
\(122\) 0.535898 0.0485180
\(123\) 3.86603 6.69615i 0.348588 0.603772i
\(124\) 6.86603 3.96410i 0.616587 0.355987i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 1.26795 2.19615i 0.112512 0.194877i −0.804270 0.594264i \(-0.797444\pi\)
0.916783 + 0.399387i \(0.130777\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.30385 1.33013i 0.202842 0.117111i
\(130\) −2.76795 + 1.59808i −0.242765 + 0.140161i
\(131\) −8.66025 5.00000i −0.756650 0.436852i 0.0714417 0.997445i \(-0.477240\pi\)
−0.828092 + 0.560593i \(0.810573\pi\)
\(132\) 4.09808 7.09808i 0.356692 0.617808i
\(133\) 1.26795 + 0.732051i 0.109945 + 0.0634769i
\(134\) 8.00000i 0.691095i
\(135\) 4.50000 2.59808i 0.387298 0.223607i
\(136\) −0.366025 + 0.633975i −0.0313864 + 0.0543629i
\(137\) 5.66025 0.483588 0.241794 0.970328i \(-0.422264\pi\)
0.241794 + 0.970328i \(0.422264\pi\)
\(138\) −2.19615 −0.186949
\(139\) −5.83013 + 10.0981i −0.494505 + 0.856508i −0.999980 0.00633359i \(-0.997984\pi\)
0.505475 + 0.862841i \(0.331317\pi\)
\(140\) 2.73205i 0.230900i
\(141\) 5.83013 + 10.0981i 0.490985 + 0.850411i
\(142\) 12.3923i 1.03994i
\(143\) 13.0981 7.56218i 1.09532 0.632381i
\(144\) 0 0
\(145\) −2.46410 4.26795i −0.204633 0.354434i
\(146\) −4.90192 2.83013i −0.405686 0.234223i
\(147\) 0.803848 0.0663002
\(148\) −5.50000 + 2.59808i −0.452097 + 0.213561i
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) −1.50000 0.866025i −0.122474 0.0707107i
\(151\) 11.3301 + 19.6244i 0.922033 + 1.59701i 0.796265 + 0.604948i \(0.206806\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(152\) 0.267949 + 0.464102i 0.0217335 + 0.0376436i
\(153\) 0 0
\(154\) 12.9282i 1.04178i
\(155\) 3.96410 + 6.86603i 0.318404 + 0.551492i
\(156\) 5.53590i 0.443227i
\(157\) 2.23205 3.86603i 0.178137 0.308542i −0.763105 0.646274i \(-0.776326\pi\)
0.941242 + 0.337732i \(0.109660\pi\)
\(158\) 12.0000 0.954669
\(159\) 23.1962 1.83957
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 3.00000 1.73205i 0.236433 0.136505i
\(162\) 9.00000i 0.707107i
\(163\) −4.33013 2.50000i −0.339162 0.195815i 0.320740 0.947167i \(-0.396069\pi\)
−0.659901 + 0.751352i \(0.729402\pi\)
\(164\) −2.23205 + 3.86603i −0.174294 + 0.301886i
\(165\) 7.09808 + 4.09808i 0.552584 + 0.319035i
\(166\) −7.39230 + 4.26795i −0.573754 + 0.331257i
\(167\) −10.2679 + 5.92820i −0.794558 + 0.458738i −0.841565 0.540156i \(-0.818365\pi\)
0.0470069 + 0.998895i \(0.485032\pi\)
\(168\) 4.09808 + 2.36603i 0.316173 + 0.182543i
\(169\) −1.39230 + 2.41154i −0.107100 + 0.185503i
\(170\) −0.633975 0.366025i −0.0486236 0.0280729i
\(171\) 0 0
\(172\) −1.33013 + 0.767949i −0.101421 + 0.0585556i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 8.53590 0.647105
\(175\) 2.73205 0.206524
\(176\) −2.36603 + 4.09808i −0.178346 + 0.308904i
\(177\) 9.80385i 0.736902i
\(178\) −4.46410 7.73205i −0.334599 0.579542i
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) −1.83013 3.16987i −0.136032 0.235615i 0.789959 0.613160i \(-0.210102\pi\)
−0.925991 + 0.377545i \(0.876768\pi\)
\(182\) 4.36603 + 7.56218i 0.323631 + 0.560546i
\(183\) −0.803848 0.464102i −0.0594221 0.0343074i
\(184\) 1.26795 0.0934745
\(185\) −2.59808 5.50000i −0.191014 0.404368i
\(186\) −13.7321 −1.00688
\(187\) 3.00000 + 1.73205i 0.219382 + 0.126660i
\(188\) −3.36603 5.83013i −0.245493 0.425206i
\(189\) −7.09808 12.2942i −0.516309 0.894274i
\(190\) −0.464102 + 0.267949i −0.0336695 + 0.0194391i
\(191\) 21.3923i 1.54789i 0.633251 + 0.773946i \(0.281720\pi\)
−0.633251 + 0.773946i \(0.718280\pi\)
\(192\) 0.866025 + 1.50000i 0.0625000 + 0.108253i
\(193\) 14.5885i 1.05010i 0.851071 + 0.525050i \(0.175953\pi\)
−0.851071 + 0.525050i \(0.824047\pi\)
\(194\) 7.19615 12.4641i 0.516654 0.894870i
\(195\) 5.53590 0.396434
\(196\) −0.464102 −0.0331501
\(197\) −13.1603 + 22.7942i −0.937629 + 1.62402i −0.167752 + 0.985829i \(0.553651\pi\)
−0.769877 + 0.638192i \(0.779682\pi\)
\(198\) 0 0
\(199\) 1.00000i 0.0708881i −0.999372 0.0354441i \(-0.988715\pi\)
0.999372 0.0354441i \(-0.0112846\pi\)
\(200\) 0.866025 + 0.500000i 0.0612372 + 0.0353553i
\(201\) −6.92820 + 12.0000i −0.488678 + 0.846415i
\(202\) 11.8301 + 6.83013i 0.832365 + 0.480566i
\(203\) −11.6603 + 6.73205i −0.818389 + 0.472497i
\(204\) 1.09808 0.633975i 0.0768807 0.0443871i
\(205\) −3.86603 2.23205i −0.270015 0.155893i
\(206\) 0.0980762 0.169873i 0.00683329 0.0118356i
\(207\) 0 0
\(208\) 3.19615i 0.221613i
\(209\) 2.19615 1.26795i 0.151911 0.0877059i
\(210\) −2.36603 + 4.09808i −0.163271 + 0.282794i
\(211\) −2.39230 −0.164693 −0.0823465 0.996604i \(-0.526241\pi\)
−0.0823465 + 0.996604i \(0.526241\pi\)
\(212\) −13.3923 −0.919787
\(213\) −10.7321 + 18.5885i −0.735348 + 1.27366i
\(214\) 16.1244i 1.10224i
\(215\) −0.767949 1.33013i −0.0523737 0.0907139i
\(216\) 5.19615i 0.353553i
\(217\) 18.7583 10.8301i 1.27340 0.735197i
\(218\) 5.00000 + 8.66025i 0.338643 + 0.586546i
\(219\) 4.90192 + 8.49038i 0.331241 + 0.573727i
\(220\) −4.09808 2.36603i −0.276292 0.159517i
\(221\) 2.33975 0.157388
\(222\) 10.5000 + 0.866025i 0.704714 + 0.0581238i
\(223\) 10.5885 0.709056 0.354528 0.935045i \(-0.384642\pi\)
0.354528 + 0.935045i \(0.384642\pi\)
\(224\) −2.36603 1.36603i −0.158087 0.0912714i
\(225\) 0 0
\(226\) −4.19615 7.26795i −0.279124 0.483457i
\(227\) 11.1340 6.42820i 0.738988 0.426655i −0.0827133 0.996573i \(-0.526359\pi\)
0.821701 + 0.569919i \(0.193025\pi\)
\(228\) 0.928203i 0.0614718i
\(229\) −10.3660 17.9545i −0.685006 1.18647i −0.973435 0.228964i \(-0.926466\pi\)
0.288429 0.957501i \(-0.406867\pi\)
\(230\) 1.26795i 0.0836061i
\(231\) 11.1962 19.3923i 0.736653 1.27592i
\(232\) −4.92820 −0.323552
\(233\) 16.7321 1.09615 0.548077 0.836428i \(-0.315360\pi\)
0.548077 + 0.836428i \(0.315360\pi\)
\(234\) 0 0
\(235\) 5.83013 3.36603i 0.380316 0.219575i
\(236\) 5.66025i 0.368451i
\(237\) −18.0000 10.3923i −1.16923 0.675053i
\(238\) −1.00000 + 1.73205i −0.0648204 + 0.112272i
\(239\) 18.9282 + 10.9282i 1.22436 + 0.706887i 0.965845 0.259120i \(-0.0834324\pi\)
0.258518 + 0.966006i \(0.416766\pi\)
\(240\) −1.50000 + 0.866025i −0.0968246 + 0.0559017i
\(241\) 3.46410 2.00000i 0.223142 0.128831i −0.384262 0.923224i \(-0.625544\pi\)
0.607404 + 0.794393i \(0.292211\pi\)
\(242\) 9.86603 + 5.69615i 0.634212 + 0.366163i
\(243\) 0 0
\(244\) 0.464102 + 0.267949i 0.0297111 + 0.0171537i
\(245\) 0.464102i 0.0296504i
\(246\) 6.69615 3.86603i 0.426931 0.246489i
\(247\) 0.856406 1.48334i 0.0544918 0.0943826i
\(248\) 7.92820 0.503441
\(249\) 14.7846 0.936937
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 3.46410i 0.218652i −0.994006 0.109326i \(-0.965131\pi\)
0.994006 0.109326i \(-0.0348693\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 2.19615 1.26795i 0.137799 0.0795582i
\(255\) 0.633975 + 1.09808i 0.0397010 + 0.0687642i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.169873 + 0.0980762i 0.0105964 + 0.00611783i 0.505289 0.862950i \(-0.331386\pi\)
−0.494692 + 0.869068i \(0.664719\pi\)
\(258\) 2.66025 0.165620
\(259\) −15.0263 + 7.09808i −0.933688 + 0.441053i
\(260\) −3.19615 −0.198217
\(261\) 0 0
\(262\) −5.00000 8.66025i −0.308901 0.535032i
\(263\) −3.36603 5.83013i −0.207558 0.359501i 0.743387 0.668862i \(-0.233218\pi\)
−0.950945 + 0.309361i \(0.899885\pi\)
\(264\) 7.09808 4.09808i 0.436856 0.252219i
\(265\) 13.3923i 0.822683i
\(266\) 0.732051 + 1.26795i 0.0448849 + 0.0777430i
\(267\) 15.4641i 0.946388i
\(268\) 4.00000 6.92820i 0.244339 0.423207i
\(269\) −7.12436 −0.434380 −0.217190 0.976129i \(-0.569689\pi\)
−0.217190 + 0.976129i \(0.569689\pi\)
\(270\) 5.19615 0.316228
\(271\) 12.7942 22.1603i 0.777194 1.34614i −0.156359 0.987700i \(-0.549976\pi\)
0.933553 0.358439i \(-0.116691\pi\)
\(272\) −0.633975 + 0.366025i −0.0384404 + 0.0221936i
\(273\) 15.1244i 0.915368i
\(274\) 4.90192 + 2.83013i 0.296136 + 0.170974i
\(275\) 2.36603 4.09808i 0.142677 0.247123i
\(276\) −1.90192 1.09808i −0.114482 0.0660964i
\(277\) 20.5526 11.8660i 1.23488 0.712960i 0.266840 0.963741i \(-0.414021\pi\)
0.968044 + 0.250781i \(0.0806873\pi\)
\(278\) −10.0981 + 5.83013i −0.605642 + 0.349668i
\(279\) 0 0
\(280\) 1.36603 2.36603i 0.0816356 0.141397i
\(281\) 5.08846 + 2.93782i 0.303552 + 0.175256i 0.644037 0.764994i \(-0.277258\pi\)
−0.340486 + 0.940250i \(0.610591\pi\)
\(282\) 11.6603i 0.694358i
\(283\) 11.7224 6.76795i 0.696826 0.402313i −0.109338 0.994005i \(-0.534873\pi\)
0.806164 + 0.591692i \(0.201540\pi\)
\(284\) 6.19615 10.7321i 0.367674 0.636830i
\(285\) 0.928203 0.0549820
\(286\) 15.1244 0.894322
\(287\) −6.09808 + 10.5622i −0.359958 + 0.623466i
\(288\) 0 0
\(289\) −8.23205 14.2583i −0.484238 0.838725i
\(290\) 4.92820i 0.289394i
\(291\) −21.5885 + 12.4641i −1.26554 + 0.730659i
\(292\) −2.83013 4.90192i −0.165621 0.286863i
\(293\) 14.2321 + 24.6506i 0.831445 + 1.44011i 0.896892 + 0.442249i \(0.145819\pi\)
−0.0654468 + 0.997856i \(0.520847\pi\)
\(294\) 0.696152 + 0.401924i 0.0406004 + 0.0234407i
\(295\) 5.66025 0.329553
\(296\) −6.06218 0.500000i −0.352357 0.0290619i
\(297\) −24.5885 −1.42677
\(298\) −10.3923 6.00000i −0.602010 0.347571i
\(299\) −2.02628 3.50962i −0.117183 0.202967i
\(300\) −0.866025 1.50000i −0.0500000 0.0866025i
\(301\) −3.63397 + 2.09808i −0.209459 + 0.120931i
\(302\) 22.6603i 1.30395i
\(303\) −11.8301 20.4904i −0.679623 1.17714i
\(304\) 0.535898i 0.0307359i
\(305\) −0.267949 + 0.464102i −0.0153427 + 0.0265744i
\(306\) 0 0
\(307\) −13.1962 −0.753144 −0.376572 0.926387i \(-0.622897\pi\)
−0.376572 + 0.926387i \(0.622897\pi\)
\(308\) −6.46410 + 11.1962i −0.368326 + 0.637960i
\(309\) −0.294229 + 0.169873i −0.0167381 + 0.00966374i
\(310\) 7.92820i 0.450292i
\(311\) −27.1865 15.6962i −1.54161 0.890047i −0.998738 0.0502299i \(-0.984005\pi\)
−0.542869 0.839817i \(-0.682662\pi\)
\(312\) 2.76795 4.79423i 0.156704 0.271420i
\(313\) 18.1244 + 10.4641i 1.02445 + 0.591466i 0.915390 0.402569i \(-0.131883\pi\)
0.109060 + 0.994035i \(0.465216\pi\)
\(314\) 3.86603 2.23205i 0.218172 0.125962i
\(315\) 0 0
\(316\) 10.3923 + 6.00000i 0.584613 + 0.337526i
\(317\) −16.1603 + 27.9904i −0.907650 + 1.57210i −0.0903307 + 0.995912i \(0.528792\pi\)
−0.817320 + 0.576185i \(0.804541\pi\)
\(318\) 20.0885 + 11.5981i 1.12650 + 0.650388i
\(319\) 23.3205i 1.30570i
\(320\) 0.866025 0.500000i 0.0484123 0.0279508i
\(321\) −13.9641 + 24.1865i −0.779400 + 1.34996i
\(322\) 3.46410 0.193047
\(323\) 0.392305 0.0218284
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) 3.19615i 0.177291i
\(326\) −2.50000 4.33013i −0.138462 0.239824i
\(327\) 17.3205i 0.957826i
\(328\) −3.86603 + 2.23205i −0.213466 + 0.123244i
\(329\) −9.19615 15.9282i −0.507000 0.878150i
\(330\) 4.09808 + 7.09808i 0.225592 + 0.390736i
\(331\) −5.02628 2.90192i −0.276269 0.159504i 0.355464 0.934690i \(-0.384323\pi\)
−0.631733 + 0.775186i \(0.717656\pi\)
\(332\) −8.53590 −0.468468
\(333\) 0 0
\(334\) −11.8564 −0.648754
\(335\) 6.92820 + 4.00000i 0.378528 + 0.218543i
\(336\) 2.36603 + 4.09808i 0.129077 + 0.223568i
\(337\) −16.1244 27.9282i −0.878350 1.52135i −0.853151 0.521664i \(-0.825312\pi\)
−0.0251984 0.999682i \(-0.508022\pi\)
\(338\) −2.41154 + 1.39230i −0.131171 + 0.0757314i
\(339\) 14.5359i 0.789482i
\(340\) −0.366025 0.633975i −0.0198505 0.0343821i
\(341\) 37.5167i 2.03164i
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) −1.53590 −0.0828101
\(345\) 1.09808 1.90192i 0.0591184 0.102396i
\(346\) −5.19615 + 3.00000i −0.279347 + 0.161281i
\(347\) 15.0718i 0.809096i 0.914517 + 0.404548i \(0.132571\pi\)
−0.914517 + 0.404548i \(0.867429\pi\)
\(348\) 7.39230 + 4.26795i 0.396269 + 0.228786i
\(349\) −6.46410 + 11.1962i −0.346015 + 0.599316i −0.985538 0.169456i \(-0.945799\pi\)
0.639522 + 0.768773i \(0.279132\pi\)
\(350\) 2.36603 + 1.36603i 0.126469 + 0.0730171i
\(351\) −14.3827 + 8.30385i −0.767691 + 0.443227i
\(352\) −4.09808 + 2.36603i −0.218428 + 0.126110i
\(353\) −23.8301 13.7583i −1.26835 0.732282i −0.293674 0.955906i \(-0.594878\pi\)
−0.974676 + 0.223624i \(0.928211\pi\)
\(354\) −4.90192 + 8.49038i −0.260534 + 0.451259i
\(355\) 10.7321 + 6.19615i 0.569598 + 0.328858i
\(356\) 8.92820i 0.473194i
\(357\) 3.00000 1.73205i 0.158777 0.0916698i
\(358\) 6.00000 10.3923i 0.317110 0.549250i
\(359\) −28.2679 −1.49193 −0.745963 0.665988i \(-0.768010\pi\)
−0.745963 + 0.665988i \(0.768010\pi\)
\(360\) 0 0
\(361\) −9.35641 + 16.2058i −0.492442 + 0.852935i
\(362\) 3.66025i 0.192379i
\(363\) −9.86603 17.0885i −0.517832 0.896911i
\(364\) 8.73205i 0.457684i
\(365\) 4.90192 2.83013i 0.256578 0.148136i
\(366\) −0.464102 0.803848i −0.0242590 0.0420178i
\(367\) −16.1244 27.9282i −0.841685 1.45784i −0.888470 0.458935i \(-0.848231\pi\)
0.0467851 0.998905i \(-0.485102\pi\)
\(368\) 1.09808 + 0.633975i 0.0572412 + 0.0330482i
\(369\) 0 0
\(370\) 0.500000 6.06218i 0.0259938 0.315158i
\(371\) −36.5885 −1.89958
\(372\) −11.8923 6.86603i −0.616587 0.355987i
\(373\) 6.76795 + 11.7224i 0.350431 + 0.606965i 0.986325 0.164812i \(-0.0527017\pi\)
−0.635894 + 0.771777i \(0.719368\pi\)
\(374\) 1.73205 + 3.00000i 0.0895622 + 0.155126i
\(375\) 1.50000 0.866025i 0.0774597 0.0447214i
\(376\) 6.73205i 0.347179i
\(377\) 7.87564 + 13.6410i 0.405616 + 0.702548i
\(378\) 14.1962i 0.730171i
\(379\) −6.56218 + 11.3660i −0.337076 + 0.583834i −0.983881 0.178822i \(-0.942771\pi\)
0.646805 + 0.762655i \(0.276105\pi\)
\(380\) −0.535898 −0.0274910
\(381\) −4.39230 −0.225025
\(382\) −10.6962 + 18.5263i −0.547263 + 0.947887i
\(383\) 32.4904 18.7583i 1.66018 0.958506i 0.687554 0.726133i \(-0.258684\pi\)
0.972627 0.232373i \(-0.0746489\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) −11.1962 6.46410i −0.570609 0.329441i
\(386\) −7.29423 + 12.6340i −0.371266 + 0.643052i
\(387\) 0 0
\(388\) 12.4641 7.19615i 0.632769 0.365329i
\(389\) 12.9282 7.46410i 0.655486 0.378445i −0.135069 0.990836i \(-0.543126\pi\)
0.790555 + 0.612391i \(0.209792\pi\)
\(390\) 4.79423 + 2.76795i 0.242765 + 0.140161i
\(391\) 0.464102 0.803848i 0.0234706 0.0406523i
\(392\) −0.401924 0.232051i −0.0203002 0.0117203i
\(393\) 17.3205i 0.873704i
\(394\) −22.7942 + 13.1603i −1.14836 + 0.663004i
\(395\) −6.00000 + 10.3923i −0.301893 + 0.522894i
\(396\) 0 0
\(397\) 3.53590 0.177462 0.0887308 0.996056i \(-0.471719\pi\)
0.0887308 + 0.996056i \(0.471719\pi\)
\(398\) 0.500000 0.866025i 0.0250627 0.0434099i
\(399\) 2.53590i 0.126954i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 4.92820i 0.246103i −0.992400 0.123051i \(-0.960732\pi\)
0.992400 0.123051i \(-0.0392680\pi\)
\(402\) −12.0000 + 6.92820i −0.598506 + 0.345547i
\(403\) −12.6699 21.9449i −0.631131 1.09315i
\(404\) 6.83013 + 11.8301i 0.339812 + 0.588571i
\(405\) −7.79423 4.50000i −0.387298 0.223607i
\(406\) −13.4641 −0.668212
\(407\) −2.36603 + 28.6865i −0.117280 + 1.42194i
\(408\) 1.26795 0.0627728
\(409\) 21.8205 + 12.5981i 1.07895 + 0.622935i 0.930614 0.366002i \(-0.119274\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) −2.23205 3.86603i −0.110233 0.190929i
\(411\) −4.90192 8.49038i −0.241794 0.418800i
\(412\) 0.169873 0.0980762i 0.00836904 0.00483187i
\(413\) 15.4641i 0.760939i
\(414\) 0 0
\(415\) 8.53590i 0.419011i
\(416\) −1.59808 + 2.76795i −0.0783521 + 0.135710i
\(417\) 20.1962 0.989010
\(418\) 2.53590 0.124035
\(419\) −14.0263 + 24.2942i −0.685229 + 1.18685i 0.288136 + 0.957589i \(0.406964\pi\)
−0.973365 + 0.229261i \(0.926369\pi\)
\(420\) −4.09808 + 2.36603i −0.199966 + 0.115450i
\(421\) 20.5885i 1.00342i −0.865036 0.501710i \(-0.832704\pi\)
0.865036 0.501710i \(-0.167296\pi\)
\(422\) −2.07180 1.19615i −0.100853 0.0582278i
\(423\) 0 0
\(424\) −11.5981 6.69615i −0.563252 0.325194i
\(425\) 0.633975 0.366025i 0.0307523 0.0177548i
\(426\) −18.5885 + 10.7321i −0.900614 + 0.519970i
\(427\) 1.26795 + 0.732051i 0.0613604 + 0.0354264i
\(428\) 8.06218 13.9641i 0.389700 0.674980i
\(429\) −22.6865 13.0981i −1.09532 0.632381i
\(430\) 1.53590i 0.0740676i
\(431\) 15.4019 8.89230i 0.741885 0.428327i −0.0808696 0.996725i \(-0.525770\pi\)
0.822754 + 0.568397i \(0.192436\pi\)
\(432\) 2.59808 4.50000i 0.125000 0.216506i
\(433\) −12.7846 −0.614389 −0.307195 0.951647i \(-0.599390\pi\)
−0.307195 + 0.951647i \(0.599390\pi\)
\(434\) 21.6603 1.03973
\(435\) −4.26795 + 7.39230i −0.204633 + 0.354434i
\(436\) 10.0000i 0.478913i
\(437\) −0.339746 0.588457i −0.0162523 0.0281497i
\(438\) 9.80385i 0.468446i
\(439\) −27.5263 + 15.8923i −1.31376 + 0.758498i −0.982716 0.185118i \(-0.940733\pi\)
−0.331041 + 0.943616i \(0.607400\pi\)
\(440\) −2.36603 4.09808i −0.112796 0.195368i
\(441\) 0 0
\(442\) 2.02628 + 1.16987i 0.0963803 + 0.0556452i
\(443\) 30.2679 1.43807 0.719037 0.694972i \(-0.244583\pi\)
0.719037 + 0.694972i \(0.244583\pi\)
\(444\) 8.66025 + 6.00000i 0.410997 + 0.284747i
\(445\) 8.92820 0.423237
\(446\) 9.16987 + 5.29423i 0.434206 + 0.250689i
\(447\) 10.3923 + 18.0000i 0.491539 + 0.851371i
\(448\) −1.36603 2.36603i −0.0645386 0.111784i
\(449\) −14.3038 + 8.25833i −0.675040 + 0.389735i −0.797984 0.602679i \(-0.794100\pi\)
0.122943 + 0.992414i \(0.460767\pi\)
\(450\) 0 0
\(451\) 10.5622 + 18.2942i 0.497354 + 0.861442i
\(452\) 8.39230i 0.394741i
\(453\) 19.6244 33.9904i 0.922033 1.59701i
\(454\) 12.8564 0.603381
\(455\) −8.73205 −0.409365
\(456\) 0.464102 0.803848i 0.0217335 0.0376436i
\(457\) −1.60770 + 0.928203i −0.0752048 + 0.0434195i −0.537131 0.843499i \(-0.680492\pi\)
0.461926 + 0.886918i \(0.347159\pi\)
\(458\) 20.7321i 0.968745i
\(459\) −3.29423 1.90192i −0.153761 0.0887742i
\(460\) −0.633975 + 1.09808i −0.0295592 + 0.0511981i
\(461\) 27.0000 + 15.5885i 1.25752 + 0.726027i 0.972591 0.232523i \(-0.0746981\pi\)
0.284925 + 0.958550i \(0.408031\pi\)
\(462\) 19.3923 11.1962i 0.902212 0.520892i
\(463\) −1.60770 + 0.928203i −0.0747159 + 0.0431373i −0.536893 0.843651i \(-0.680402\pi\)
0.462177 + 0.886788i \(0.347069\pi\)
\(464\) −4.26795 2.46410i −0.198135 0.114393i
\(465\) 6.86603 11.8923i 0.318404 0.551492i
\(466\) 14.4904 + 8.36603i 0.671254 + 0.387549i
\(467\) 1.00000i 0.0462745i 0.999732 + 0.0231372i \(0.00736547\pi\)
−0.999732 + 0.0231372i \(0.992635\pi\)
\(468\) 0 0
\(469\) 10.9282 18.9282i 0.504618 0.874023i
\(470\) 6.73205 0.310526
\(471\) −7.73205 −0.356274
\(472\) 2.83013 4.90192i 0.130267 0.225629i
\(473\) 7.26795i 0.334181i
\(474\) −10.3923 18.0000i −0.477334 0.826767i
\(475\) 0.535898i 0.0245887i
\(476\) −1.73205 + 1.00000i −0.0793884 + 0.0458349i
\(477\) 0 0
\(478\) 10.9282 + 18.9282i 0.499844 + 0.865756i
\(479\) 9.74167 + 5.62436i 0.445108 + 0.256983i 0.705762 0.708449i \(-0.250605\pi\)
−0.260654 + 0.965432i \(0.583938\pi\)
\(480\) −1.73205 −0.0790569
\(481\) 8.30385 + 17.5788i 0.378623 + 0.801526i
\(482\) 4.00000 0.182195
\(483\) −5.19615 3.00000i −0.236433 0.136505i
\(484\) 5.69615 + 9.86603i 0.258916 + 0.448456i
\(485\) 7.19615 + 12.4641i 0.326760 + 0.565966i
\(486\) 0 0
\(487\) 34.7846i 1.57624i −0.615521 0.788121i \(-0.711054\pi\)
0.615521 0.788121i \(-0.288946\pi\)
\(488\) 0.267949 + 0.464102i 0.0121295 + 0.0210089i
\(489\) 8.66025i 0.391630i
\(490\) 0.232051 0.401924i 0.0104830 0.0181571i
\(491\) −16.7321 −0.755107 −0.377553 0.925988i \(-0.623235\pi\)
−0.377553 + 0.925988i \(0.623235\pi\)
\(492\) 7.73205 0.348588
\(493\) −1.80385 + 3.12436i −0.0812412 + 0.140714i
\(494\) 1.48334 0.856406i 0.0667386 0.0385315i
\(495\) 0 0
\(496\) 6.86603 + 3.96410i 0.308294 + 0.177993i
\(497\) 16.9282 29.3205i 0.759334 1.31520i
\(498\) 12.8038 + 7.39230i 0.573754 + 0.331257i
\(499\) 12.9282 7.46410i 0.578746 0.334139i −0.181889 0.983319i \(-0.558221\pi\)
0.760635 + 0.649180i \(0.224888\pi\)
\(500\) −0.866025 + 0.500000i −0.0387298 + 0.0223607i
\(501\) 17.7846 + 10.2679i 0.794558 + 0.458738i
\(502\) 1.73205 3.00000i 0.0773052 0.133897i
\(503\) −1.90192 1.09808i −0.0848026 0.0489608i 0.456999 0.889467i \(-0.348924\pi\)
−0.541802 + 0.840506i \(0.682258\pi\)
\(504\) 0 0
\(505\) −11.8301 + 6.83013i −0.526434 + 0.303937i
\(506\) 3.00000 5.19615i 0.133366 0.230997i
\(507\) 4.82309 0.214201
\(508\) 2.53590 0.112512
\(509\) 7.83013 13.5622i 0.347064 0.601133i −0.638662 0.769487i \(-0.720512\pi\)
0.985727 + 0.168354i \(0.0538452\pi\)
\(510\) 1.26795i 0.0561457i
\(511\) −7.73205 13.3923i −0.342046 0.592441i
\(512\) 1.00000i 0.0441942i
\(513\) −2.41154 + 1.39230i −0.106472 + 0.0614718i
\(514\) 0.0980762 + 0.169873i 0.00432596 + 0.00749278i
\(515\) 0.0980762 + 0.169873i 0.00432175 + 0.00748550i
\(516\) 2.30385 + 1.33013i 0.101421 + 0.0585556i
\(517\) −31.8564 −1.40104
\(518\) −16.5622 1.36603i −0.727700 0.0600197i
\(519\) 10.3923 0.456172
\(520\) −2.76795 1.59808i −0.121383 0.0700803i
\(521\) −1.69615 2.93782i −0.0743098 0.128708i 0.826476 0.562972i \(-0.190342\pi\)
−0.900786 + 0.434263i \(0.857009\pi\)
\(522\) 0 0
\(523\) −8.72243 + 5.03590i −0.381405 + 0.220204i −0.678430 0.734665i \(-0.737339\pi\)
0.297024 + 0.954870i \(0.404006\pi\)
\(524\) 10.0000i 0.436852i
\(525\) −2.36603 4.09808i −0.103262 0.178855i
\(526\) 6.73205i 0.293531i
\(527\) 2.90192 5.02628i 0.126410 0.218948i
\(528\) 8.19615 0.356692
\(529\) 21.3923 0.930100
\(530\) 6.69615 11.5981i 0.290862 0.503788i
\(531\) 0 0
\(532\) 1.46410i 0.0634769i
\(533\) 12.3564 + 7.13397i 0.535215 + 0.309007i
\(534\) −7.73205 + 13.3923i −0.334599 + 0.579542i
\(535\) 13.9641 + 8.06218i 0.603721 + 0.348558i
\(536\) 6.92820 4.00000i 0.299253 0.172774i
\(537\) −18.0000 + 10.3923i −0.776757 + 0.448461i
\(538\) −6.16987 3.56218i −0.266002 0.153576i
\(539\) −1.09808 + 1.90192i −0.0472975 + 0.0819217i
\(540\) 4.50000 + 2.59808i 0.193649 + 0.111803i
\(541\) 8.24871i 0.354640i 0.984153 + 0.177320i \(0.0567427\pi\)
−0.984153 + 0.177320i \(0.943257\pi\)
\(542\) 22.1603 12.7942i 0.951864 0.549559i
\(543\) −3.16987 + 5.49038i −0.136032 + 0.235615i
\(544\) −0.732051 −0.0313864
\(545\) −10.0000 −0.428353
\(546\) 7.56218 13.0981i 0.323631 0.560546i
\(547\) 29.7846i 1.27350i −0.771071 0.636749i \(-0.780279\pi\)
0.771071 0.636749i \(-0.219721\pi\)
\(548\) 2.83013 + 4.90192i 0.120897 + 0.209400i
\(549\) 0 0
\(550\) 4.09808 2.36603i 0.174743 0.100888i
\(551\) 1.32051 + 2.28719i 0.0562555 + 0.0974374i
\(552\) −1.09808 1.90192i −0.0467372 0.0809513i
\(553\) 28.3923 + 16.3923i 1.20736 + 0.697072i
\(554\) 23.7321 1.00828
\(555\) −6.00000 + 8.66025i −0.254686 + 0.367607i
\(556\) −11.6603 −0.494505
\(557\) 16.5000 + 9.52628i 0.699127 + 0.403641i 0.807022 0.590521i \(-0.201078\pi\)
−0.107895 + 0.994162i \(0.534411\pi\)
\(558\) 0 0
\(559\) 2.45448 + 4.25129i 0.103814 + 0.179810i
\(560\) 2.36603 1.36603i 0.0999828 0.0577251i
\(561\) 6.00000i 0.253320i
\(562\) 2.93782 + 5.08846i 0.123925 + 0.214644i
\(563\) 12.2487i 0.516222i −0.966115 0.258111i \(-0.916900\pi\)
0.966115 0.258111i \(-0.0831000\pi\)
\(564\) −5.83013 + 10.0981i −0.245493 + 0.425206i
\(565\) 8.39230 0.353067
\(566\) 13.5359 0.568956
\(567\) −12.2942 + 21.2942i −0.516309 + 0.894274i
\(568\) 10.7321 6.19615i 0.450307 0.259985i
\(569\) 27.9808i 1.17301i −0.809944 0.586507i \(-0.800503\pi\)
0.809944 0.586507i \(-0.199497\pi\)
\(570\) 0.803848 + 0.464102i 0.0336695 + 0.0194391i
\(571\) −5.26795 + 9.12436i −0.220457 + 0.381842i −0.954947 0.296777i \(-0.904088\pi\)
0.734490 + 0.678620i \(0.237421\pi\)
\(572\) 13.0981 + 7.56218i 0.547658 + 0.316191i
\(573\) 32.0885 18.5263i 1.34051 0.773946i
\(574\) −10.5622 + 6.09808i −0.440857 + 0.254529i
\(575\) −1.09808 0.633975i −0.0457929 0.0264386i
\(576\) 0 0
\(577\) −4.22243 2.43782i −0.175782 0.101488i 0.409527 0.912298i \(-0.365694\pi\)
−0.585309 + 0.810810i \(0.699027\pi\)
\(578\) 16.4641i 0.684816i
\(579\) 21.8827 12.6340i 0.909413 0.525050i
\(580\) 2.46410 4.26795i 0.102316 0.177217i
\(581\) −23.3205 −0.967498
\(582\) −24.9282 −1.03331
\(583\) −31.6865 + 54.8827i −1.31232 + 2.27301i
\(584\) 5.66025i 0.234223i
\(585\) 0 0
\(586\) 28.4641i 1.17584i
\(587\) 15.4019 8.89230i 0.635705 0.367025i −0.147253 0.989099i \(-0.547043\pi\)
0.782958 + 0.622074i \(0.213710\pi\)
\(588\) 0.401924 + 0.696152i 0.0165751 + 0.0287088i
\(589\) −2.12436 3.67949i −0.0875325 0.151611i
\(590\) 4.90192 + 2.83013i 0.201809 + 0.116514i
\(591\) 45.5885 1.87526
\(592\) −5.00000 3.46410i −0.205499 0.142374i
\(593\) 27.8038 1.14177 0.570884 0.821031i \(-0.306601\pi\)
0.570884 + 0.821031i \(0.306601\pi\)
\(594\) −21.2942 12.2942i −0.873713 0.504438i
\(595\) −1.00000 1.73205i −0.0409960 0.0710072i
\(596\) −6.00000 10.3923i −0.245770 0.425685i
\(597\) −1.50000 + 0.866025i −0.0613909 + 0.0354441i
\(598\) 4.05256i 0.165721i
\(599\) −4.25833 7.37564i −0.173991 0.301361i 0.765821 0.643054i \(-0.222333\pi\)
−0.939812 + 0.341693i \(0.889000\pi\)
\(600\) 1.73205i 0.0707107i
\(601\) −14.6962 + 25.4545i −0.599469 + 1.03831i 0.393431 + 0.919354i \(0.371288\pi\)
−0.992900 + 0.118956i \(0.962045\pi\)
\(602\) −4.19615 −0.171022
\(603\) 0 0
\(604\) −11.3301 + 19.6244i −0.461016 + 0.798504i
\(605\) −9.86603 + 5.69615i −0.401111 + 0.231582i
\(606\) 23.6603i 0.961132i
\(607\) 34.6865 + 20.0263i 1.40788 + 0.812842i 0.995184 0.0980258i \(-0.0312528\pi\)
0.412699 + 0.910867i \(0.364586\pi\)
\(608\) −0.267949 + 0.464102i −0.0108668 + 0.0188218i
\(609\) 20.1962 + 11.6603i 0.818389 + 0.472497i
\(610\) −0.464102 + 0.267949i −0.0187909 + 0.0108489i
\(611\) −18.6340 + 10.7583i −0.753850 + 0.435235i
\(612\) 0 0
\(613\) 12.0000 20.7846i 0.484675 0.839482i −0.515170 0.857088i \(-0.672271\pi\)
0.999845 + 0.0176058i \(0.00560439\pi\)
\(614\) −11.4282 6.59808i −0.461205 0.266277i
\(615\) 7.73205i 0.311786i
\(616\) −11.1962 + 6.46410i −0.451106 + 0.260446i
\(617\) −19.0526 + 33.0000i −0.767027 + 1.32853i 0.172141 + 0.985072i \(0.444932\pi\)
−0.939168 + 0.343458i \(0.888402\pi\)
\(618\) −0.339746 −0.0136666
\(619\) 0.143594 0.00577151 0.00288576 0.999996i \(-0.499081\pi\)
0.00288576 + 0.999996i \(0.499081\pi\)
\(620\) −3.96410 + 6.86603i −0.159202 + 0.275746i
\(621\) 6.58846i 0.264386i
\(622\) −15.6962 27.1865i −0.629358 1.09008i
\(623\) 24.3923i 0.977257i
\(624\) 4.79423 2.76795i 0.191923 0.110807i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 10.4641 + 18.1244i 0.418230 + 0.724395i
\(627\) −3.80385 2.19615i −0.151911 0.0877059i
\(628\) 4.46410 0.178137
\(629\) −2.53590 + 3.66025i −0.101113 + 0.145944i
\(630\) 0 0
\(631\) 36.3109 + 20.9641i 1.44551 + 0.834568i 0.998210 0.0598142i \(-0.0190508\pi\)
0.447304 + 0.894382i \(0.352384\pi\)
\(632\) 6.00000 + 10.3923i 0.238667 + 0.413384i
\(633\) 2.07180 + 3.58846i 0.0823465 + 0.142628i
\(634\) −27.9904 + 16.1603i −1.11164 + 0.641806i
\(635\) 2.53590i 0.100634i
\(636\) 11.5981 + 20.0885i 0.459894 + 0.796559i
\(637\) 1.48334i 0.0587721i
\(638\) −11.6603 + 20.1962i −0.461634 + 0.799573i
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 10.8923 18.8660i 0.430220 0.745163i −0.566672 0.823944i \(-0.691769\pi\)
0.996892 + 0.0787804i \(0.0251026\pi\)
\(642\) −24.1865 + 13.9641i −0.954566 + 0.551119i
\(643\) 35.7846i 1.41121i 0.708607 + 0.705604i \(0.249324\pi\)
−0.708607 + 0.705604i \(0.750676\pi\)
\(644\) 3.00000 + 1.73205i 0.118217 + 0.0682524i
\(645\) −1.33013 + 2.30385i −0.0523737 + 0.0907139i
\(646\) 0.339746 + 0.196152i 0.0133671 + 0.00771751i
\(647\) 22.3923 12.9282i 0.880332 0.508260i 0.00956437 0.999954i \(-0.496956\pi\)
0.870768 + 0.491694i \(0.163622\pi\)
\(648\) −7.79423 + 4.50000i −0.306186 + 0.176777i
\(649\) −23.1962 13.3923i −0.910529 0.525694i
\(650\) 1.59808 2.76795i 0.0626817 0.108568i
\(651\) −32.4904 18.7583i −1.27340 0.735197i
\(652\) 5.00000i 0.195815i
\(653\) 11.5526 6.66987i 0.452087 0.261012i −0.256624 0.966511i \(-0.582610\pi\)
0.708711 + 0.705499i \(0.249277\pi\)
\(654\) 8.66025 15.0000i 0.338643 0.586546i
\(655\) 10.0000 0.390732
\(656\) −4.46410 −0.174294
\(657\) 0 0
\(658\) 18.3923i 0.717007i
\(659\) 21.1244 + 36.5885i 0.822888 + 1.42528i 0.903523 + 0.428540i \(0.140972\pi\)
−0.0806346 + 0.996744i \(0.525695\pi\)
\(660\) 8.19615i 0.319035i
\(661\) −38.6147 + 22.2942i −1.50194 + 0.867145i −0.501942 + 0.864901i \(0.667381\pi\)
−0.999997 + 0.00224354i \(0.999286\pi\)
\(662\) −2.90192 5.02628i −0.112786 0.195352i
\(663\) −2.02628 3.50962i −0.0786942 0.136302i
\(664\) −7.39230 4.26795i −0.286877 0.165629i
\(665\) −1.46410 −0.0567754
\(666\) 0 0
\(667\) 6.24871 0.241951
\(668\) −10.2679 5.92820i −0.397279 0.229369i
\(669\) −9.16987 15.8827i −0.354528 0.614060i
\(670\) 4.00000 + 6.92820i 0.154533 + 0.267660i
\(671\) 2.19615 1.26795i 0.0847815 0.0489486i
\(672\) 4.73205i 0.182543i
\(673\) −8.70577 15.0788i −0.335583 0.581247i 0.648014 0.761629i \(-0.275600\pi\)
−0.983597 + 0.180382i \(0.942267\pi\)
\(674\) 32.2487i 1.24217i
\(675\) −2.59808 + 4.50000i −0.100000 + 0.173205i
\(676\) −2.78461 −0.107100
\(677\) 28.7846 1.10628 0.553141 0.833088i \(-0.313429\pi\)
0.553141 + 0.833088i \(0.313429\pi\)
\(678\) −7.26795 + 12.5885i −0.279124 + 0.483457i
\(679\) 34.0526 19.6603i 1.30682 0.754491i
\(680\) 0.732051i 0.0280729i
\(681\) −19.2846 11.1340i −0.738988 0.426655i
\(682\) 18.7583 32.4904i 0.718294 1.24412i
\(683\) −5.25833 3.03590i −0.201204 0.116165i 0.396013 0.918245i \(-0.370394\pi\)
−0.597217 + 0.802080i \(0.703727\pi\)
\(684\) 0 0
\(685\) −4.90192 + 2.83013i −0.187293 + 0.108134i
\(686\) 15.4641 + 8.92820i 0.590422 + 0.340880i
\(687\) −17.9545 + 31.0981i −0.685006 + 1.18647i
\(688\) −1.33013 0.767949i −0.0507106 0.0292778i
\(689\) 42.8038i 1.63070i
\(690\) 1.90192 1.09808i 0.0724050 0.0418030i
\(691\) −9.75833 + 16.9019i −0.371224 + 0.642979i −0.989754 0.142782i \(-0.954395\pi\)
0.618530 + 0.785761i \(0.287729\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −7.53590 + 13.0526i −0.286059 + 0.495468i
\(695\) 11.6603i 0.442299i
\(696\) 4.26795 + 7.39230i 0.161776 + 0.280205i
\(697\) 3.26795i 0.123782i
\(698\) −11.1962 + 6.46410i −0.423781 + 0.244670i
\(699\) −14.4904 25.0981i −0.548077 0.949296i
\(700\) 1.36603 + 2.36603i 0.0516309 + 0.0894274i
\(701\) −22.8564 13.1962i −0.863275 0.498412i 0.00183293 0.999998i \(-0.499417\pi\)
−0.865107 + 0.501587i \(0.832750\pi\)
\(702\) −16.6077 −0.626817
\(703\) 1.39230 + 2.94744i 0.0525118 + 0.111165i
\(704\) −4.73205 −0.178346
\(705\) −10.0981 5.83013i −0.380316 0.219575i
\(706\) −13.7583 23.8301i −0.517802 0.896859i
\(707\) 18.6603 + 32.3205i 0.701791 + 1.21554i
\(708\) −8.49038 + 4.90192i −0.319088 + 0.184226i
\(709\) 32.3923i 1.21652i −0.793738 0.608259i \(-0.791868\pi\)
0.793738 0.608259i \(-0.208132\pi\)
\(710\) 6.19615 + 10.7321i 0.232537 + 0.402767i
\(711\) 0 0
\(712\) 4.46410 7.73205i 0.167299 0.289771i
\(713\) −10.0526 −0.376471
\(714\) 3.46410 0.129641
\(715\) −7.56218 + 13.0981i −0.282809 + 0.489840i
\(716\) 10.3923 6.00000i 0.388379 0.224231i
\(717\) 37.8564i 1.41377i
\(718\) −24.4808 14.1340i −0.913614 0.527475i
\(719\) −0.937822 + 1.62436i −0.0349749 + 0.0605782i −0.882983 0.469405i \(-0.844468\pi\)
0.848008 + 0.529983i \(0.177802\pi\)
\(720\) 0 0
\(721\) 0.464102 0.267949i 0.0172840 0.00997895i
\(722\) −16.2058 + 9.35641i −0.603116 + 0.348209i
\(723\) −6.00000 3.46410i −0.223142 0.128831i
\(724\) 1.83013 3.16987i 0.0680161 0.117807i
\(725\) 4.26795 + 2.46410i 0.158508 + 0.0915144i
\(726\) 19.7321i 0.732325i
\(727\) 6.92820 4.00000i 0.256953 0.148352i −0.365991 0.930618i \(-0.619270\pi\)
0.622944 + 0.782267i \(0.285937\pi\)
\(728\) −4.36603 + 7.56218i −0.161816 + 0.280273i
\(729\) 27.0000 1.00000
\(730\) 5.66025 0.209495
\(731\) −0.562178 + 0.973721i −0.0207929 + 0.0360144i
\(732\) 0.928203i 0.0343074i
\(733\) 5.66025 + 9.80385i 0.209066 + 0.362113i 0.951421 0.307894i \(-0.0996242\pi\)
−0.742354 + 0.670007i \(0.766291\pi\)
\(734\) 32.2487i 1.19032i
\(735\) −0.696152 + 0.401924i −0.0256780 + 0.0148252i
\(736\) 0.633975 + 1.09808i 0.0233686 + 0.0404756i
\(737\) −18.9282 32.7846i −0.697229 1.20764i
\(738\) 0 0
\(739\) 31.2679 1.15021 0.575105 0.818080i \(-0.304961\pi\)
0.575105 + 0.818080i \(0.304961\pi\)
\(740\) 3.46410 5.00000i 0.127343 0.183804i
\(741\) −2.96668 −0.108984
\(742\) −31.6865 18.2942i −1.16325 0.671602i
\(743\) −4.16987 7.22243i −0.152978 0.264965i 0.779343 0.626597i \(-0.215553\pi\)
−0.932321 + 0.361632i \(0.882220\pi\)
\(744\) −6.86603 11.8923i −0.251721 0.435993i
\(745\) 10.3923 6.00000i 0.380745 0.219823i
\(746\) 13.5359i 0.495584i
\(747\) 0 0
\(748\) 3.46410i 0.126660i
\(749\) 22.0263 38.1506i 0.804823 1.39399i
\(750\) 1.73205 0.0632456
\(751\) 3.33975 0.121869 0.0609345 0.998142i \(-0.480592\pi\)
0.0609345 + 0.998142i \(0.480592\pi\)
\(752\) 3.36603 5.83013i 0.122746 0.212603i
\(753\) −5.19615 + 3.00000i −0.189358 + 0.109326i
\(754\) 15.7513i 0.573628i
\(755\) −19.6244 11.3301i −0.714203 0.412346i
\(756\) 7.09808 12.2942i 0.258155 0.447137i
\(757\) 40.9641 + 23.6506i 1.48887 + 0.859597i 0.999919 0.0127168i \(-0.00404801\pi\)
0.488946 + 0.872314i \(0.337381\pi\)
\(758\) −11.3660 + 6.56218i −0.412833 + 0.238349i
\(759\) −9.00000 + 5.19615i −0.326679 + 0.188608i
\(760\) −0.464102 0.267949i −0.0168347 0.00971954i
\(761\) 26.7846 46.3923i 0.970941 1.68172i 0.278216 0.960519i \(-0.410257\pi\)
0.692726 0.721201i \(-0.256410\pi\)
\(762\) −3.80385 2.19615i −0.137799 0.0795582i
\(763\) 27.3205i 0.989069i
\(764\) −18.5263 + 10.6962i −0.670257 + 0.386973i
\(765\) 0 0
\(766\) 37.5167 1.35553
\(767\) −18.0910 −0.653229
\(768\) −0.866025 + 1.50000i −0.0312500 + 0.0541266i
\(769\) 21.3205i 0.768837i 0.923159 + 0.384419i \(0.125598\pi\)
−0.923159 + 0.384419i \(0.874402\pi\)
\(770\) −6.46410 11.1962i −0.232950 0.403481i
\(771\) 0.339746i 0.0122357i
\(772\) −12.6340 + 7.29423i −0.454707 + 0.262525i
\(773\) 9.16025 + 15.8660i 0.329471 + 0.570661i 0.982407 0.186752i \(-0.0597961\pi\)
−0.652936 + 0.757413i \(0.726463\pi\)
\(774\) 0 0
\(775\) −6.86603 3.96410i −0.246635 0.142395i
\(776\) 14.3923 0.516654
\(777\) 23.6603 + 16.3923i 0.848807 + 0.588071i
\(778\) 14.9282 0.535202
\(779\) 2.07180 + 1.19615i 0.0742298 + 0.0428566i
\(780\) 2.76795 + 4.79423i 0.0991085 + 0.171661i
\(781\) −29.3205 50.7846i −1.04917 1.81722i
\(782\) 0.803848 0.464102i 0.0287455 0.0165962i
\(783\) 25.6077i 0.915144i
\(784\) −0.232051 0.401924i −0.00828753 0.0143544i
\(785\) 4.46410i 0.159331i
\(786\) −8.66025 + 15.0000i −0.308901 + 0.535032i
\(787\) −41.0526 −1.46337 −0.731683 0.681645i \(-0.761265\pi\)
−0.731683 + 0.681645i \(0.761265\pi\)
\(788\) −26.3205 −0.937629
\(789\) −5.83013 + 10.0981i −0.207558 + 0.359501i
\(790\) −10.3923 + 6.00000i −0.369742 + 0.213470i
\(791\) 22.9282i 0.815233i
\(792\) 0 0
\(793\) 0.856406 1.48334i 0.0304119 0.0526749i
\(794\) 3.06218 + 1.76795i 0.108673 + 0.0627422i
\(795\) −20.0885 + 11.5981i −0.712464 + 0.411341i
\(796\) 0.866025 0.500000i 0.0306955 0.0177220i
\(797\) 2.64359 + 1.52628i 0.0936409 + 0.0540636i 0.546089 0.837727i \(-0.316116\pi\)
−0.452448 + 0.891791i \(0.649449\pi\)
\(798\) 1.26795 2.19615i 0.0448849 0.0777430i
\(799\) −4.26795 2.46410i −0.150989 0.0871736i
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 2.46410 4.26795i 0.0870105 0.150707i
\(803\) −26.7846 −0.945208
\(804\) −13.8564 −0.488678
\(805\) −1.73205 + 3.00000i −0.0610468 + 0.105736i
\(806\) 25.3397i 0.892554i
\(807\) 6.16987 + 10.6865i 0.217190 + 0.376184i
\(808\) 13.6603i 0.480566i
\(809\) −30.5718 + 17.6506i −1.07485 + 0.620563i −0.929502 0.368818i \(-0.879763\pi\)
−0.145345 + 0.989381i \(0.546429\pi\)
\(810\) −4.50000 7.79423i −0.158114 0.273861i
\(811\) 21.3205 + 36.9282i 0.748664 + 1.29672i 0.948463 + 0.316888i \(0.102638\pi\)
−0.199799 + 0.979837i \(0.564029\pi\)
\(812\) −11.6603 6.73205i −0.409195 0.236249i
\(813\) −44.3205 −1.55439
\(814\) −16.3923 + 23.6603i −0.574550 + 0.829291i
\(815\) 5.00000 0.175142
\(816\) 1.09808 + 0.633975i 0.0384404 + 0.0221936i
\(817\) 0.411543 + 0.712813i 0.0143981 + 0.0249382i
\(818\) 12.5981 + 21.8205i 0.440481 + 0.762936i
\(819\) 0 0
\(820\) 4.46410i 0.155893i
\(821\) 21.2487 + 36.8038i 0.741585 + 1.28446i 0.951773 + 0.306802i \(0.0992590\pi\)
−0.210188 + 0.977661i \(0.567408\pi\)
\(822\) 9.80385i 0.341948i
\(823\) −16.8301 + 29.1506i −0.586661 + 1.01613i 0.408005 + 0.912980i \(0.366225\pi\)
−0.994666 + 0.103147i \(0.967109\pi\)
\(824\) 0.196152 0.00683329
\(825\) −8.19615 −0.285353
\(826\) 7.73205 13.3923i 0.269032 0.465978i
\(827\) 12.8038 7.39230i 0.445233 0.257056i −0.260582 0.965452i \(-0.583914\pi\)
0.705815 + 0.708396i \(0.250581\pi\)
\(828\) 0 0
\(829\) −25.0981 14.4904i −0.871692 0.503272i −0.00378200 0.999993i \(-0.501204\pi\)
−0.867910 + 0.496721i \(0.834537\pi\)
\(830\) 4.26795 7.39230i 0.148143 0.256591i
\(831\) −35.5981 20.5526i −1.23488 0.712960i
\(832\) −2.76795 + 1.59808i −0.0959614 + 0.0554033i
\(833\) −0.294229 + 0.169873i −0.0101944 + 0.00588575i
\(834\) 17.4904 + 10.0981i 0.605642 + 0.349668i
\(835\) 5.92820 10.2679i 0.205154 0.355337i
\(836\) 2.19615 + 1.26795i 0.0759555 + 0.0438529i
\(837\) 41.1962i 1.42395i
\(838\) −24.2942 + 14.0263i −0.839230 + 0.484530i
\(839\) −24.5263 + 42.4808i −0.846741 + 1.46660i 0.0373593 + 0.999302i \(0.488105\pi\)
−0.884100 + 0.467297i \(0.845228\pi\)
\(840\) −4.73205 −0.163271
\(841\) 4.71281 0.162511
\(842\) 10.2942 17.8301i 0.354763 0.614467i
\(843\) 10.1769i 0.350512i
\(844\) −1.19615 2.07180i −0.0411733 0.0713142i
\(845\) 2.78461i 0.0957935i
\(846\) 0 0
\(847\) 15.5622 + 26.9545i 0.534723 + 0.926167i
\(848\) −6.69615 11.5981i −0.229947 0.398280i
\(849\) −20.3038 11.7224i −0.696826 0.402313i
\(850\) 0.732051 0.0251091
\(851\) 7.68653 + 0.633975i 0.263491 + 0.0217324i
\(852\) −21.4641 −0.735348
\(853\) −38.2128 22.0622i −1.30838 0.755395i −0.326556 0.945178i \(-0.605888\pi\)
−0.981826 + 0.189783i \(0.939221\pi\)
\(854\) 0.732051 + 1.26795i 0.0250503 + 0.0433883i
\(855\) 0 0
\(856\) 13.9641 8.06218i 0.477283 0.275560i
\(857\) 44.4449i 1.51821i −0.650970 0.759104i \(-0.725637\pi\)
0.650970 0.759104i \(-0.274363\pi\)
\(858\) −13.0981 22.6865i −0.447161 0.774505i
\(859\) 42.9282i 1.46469i 0.680933 + 0.732346i \(0.261574\pi\)
−0.680933 + 0.732346i \(0.738426\pi\)
\(860\) 0.767949 1.33013i 0.0261869 0.0453570i
\(861\) 21.1244 0.719916
\(862\) 17.7846 0.605746
\(863\) 16.1962 28.0526i 0.551323 0.954920i −0.446856 0.894606i \(-0.647456\pi\)
0.998179 0.0603143i \(-0.0192103\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 6.00000i 0.204006i
\(866\) −11.0718 6.39230i −0.376235 0.217219i
\(867\) −14.2583 + 24.6962i −0.484238 + 0.838725i
\(868\) 18.7583 + 10.8301i 0.636699 + 0.367598i
\(869\) 49.1769 28.3923i 1.66821 0.963143i
\(870\) −7.39230 + 4.26795i −0.250623 + 0.144697i
\(871\) −22.1436 12.7846i −0.750307 0.433190i
\(872\) −5.00000 + 8.66025i −0.169321 + 0.293273i
\(873\) 0 0
\(874\) 0.679492i 0.0229842i
\(875\) −2.36603 + 1.36603i −0.0799863 + 0.0461801i
\(876\) −4.90192 + 8.49038i −0.165621 + 0.286863i
\(877\) 1.53590 0.0518636 0.0259318 0.999664i \(-0.491745\pi\)
0.0259318 + 0.999664i \(0.491745\pi\)
\(878\) −31.7846 −1.07268
\(879\) 24.6506 42.6962i 0.831445 1.44011i
\(880\) 4.73205i 0.159517i
\(881\) −6.53590 11.3205i −0.220200 0.381398i 0.734669 0.678426i \(-0.237338\pi\)
−0.954869 + 0.297029i \(0.904004\pi\)
\(882\) 0 0
\(883\) −40.9186 + 23.6244i −1.37702 + 0.795023i −0.991800 0.127802i \(-0.959208\pi\)
−0.385220 + 0.922825i \(0.625875\pi\)
\(884\) 1.16987 + 2.02628i 0.0393471 + 0.0681512i
\(885\) −4.90192 8.49038i −0.164776 0.285401i
\(886\) 26.2128 + 15.1340i 0.880637 + 0.508436i
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 4.50000 + 9.52628i 0.151010 + 0.319681i
\(889\) 6.92820 0.232364
\(890\) 7.73205 + 4.46410i 0.259179 + 0.149637i
\(891\) 21.2942 + 36.8827i 0.713384 + 1.23562i
\(892\) 5.29423 + 9.16987i 0.177264 + 0.307030i
\(893\) −3.12436 + 1.80385i −0.104553 + 0.0603635i
\(894\) 20.7846i 0.695141i
\(895\) 6.00000 + 10.3923i 0.200558 + 0.347376i
\(896\) 2.73205i 0.0912714i
\(897\) −3.50962 + 6.07884i −0.117183 + 0.202967i
\(898\) −16.5167 −0.551168
\(899\) 39.0718 1.30312
\(900\) 0 0
\(901\) −8.49038 + 4.90192i −0.282856 + 0.163307i
\(902\) 21.1244i 0.703364i
\(903\) 6.29423 + 3.63397i 0.209459 + 0.120931i
\(904\) 4.19615 7.26795i 0.139562 0.241728i
\(905\) 3.16987 + 1.83013i 0.105370 + 0.0608355i
\(906\) 33.9904 19.6244i 1.12925 0.651976i
\(907\) −0.803848 + 0.464102i −0.0266913 + 0.0154102i −0.513286 0.858217i \(-0.671572\pi\)
0.486595 + 0.873628i \(0.338239\pi\)
\(908\) 11.1340 + 6.42820i 0.369494 + 0.213327i
\(909\) 0 0
\(910\) −7.56218 4.36603i −0.250684 0.144732i
\(911\) 17.9282i 0.593988i −0.954879 0.296994i \(-0.904016\pi\)
0.954879 0.296994i \(-0.0959841\pi\)
\(912\) 0.803848 0.464102i 0.0266181 0.0153679i
\(913\) −20.1962 + 34.9808i −0.668395 + 1.15769i
\(914\) −1.85641 −0.0614045
\(915\) 0.928203 0.0306855
\(916\) 10.3660 17.9545i 0.342503 0.593233i
\(917\) 27.3205i 0.902203i
\(918\) −1.90192 3.29423i −0.0627728 0.108726i
\(919\) 55.4641i 1.82959i 0.403916 + 0.914796i \(0.367649\pi\)
−0.403916 + 0.914796i \(0.632351\pi\)
\(920\) −1.09808 + 0.633975i −0.0362025 + 0.0209015i
\(921\) 11.4282 + 19.7942i 0.376572 + 0.652242i
\(922\) 15.5885 + 27.0000i 0.513378 + 0.889198i
\(923\) −34.3013 19.8038i −1.12904 0.651852i
\(924\) 22.3923 0.736653
\(925\) 5.00000 + 3.46410i 0.164399 + 0.113899i
\(926\) −1.85641 −0.0610053
\(927\) 0 0
\(928\) −2.46410 4.26795i −0.0808881 0.140102i
\(929\) −17.9641 31.1147i −0.589383 1.02084i −0.994313 0.106494i \(-0.966038\pi\)
0.404930 0.914348i \(-0.367296\pi\)
\(930\) 11.8923 6.86603i 0.389964 0.225146i
\(931\) 0.248711i 0.00815118i
\(932\) 8.36603 + 14.4904i 0.274038 + 0.474648i
\(933\) 54.3731i 1.78009i
\(934\) −0.500000 + 0.866025i −0.0163605 + 0.0283372i
\(935\) −3.46410 −0.113288
\(936\) 0 0
\(937\) 7.58846 13.1436i 0.247904 0.429382i −0.715040 0.699084i \(-0.753592\pi\)
0.962944 + 0.269701i \(0.0869249\pi\)
\(938\) 18.9282 10.9282i 0.618028 0.356818i
\(939\) 36.2487i 1.18293i
\(940\) 5.83013 + 3.36603i 0.190158 + 0.109788i
\(941\) 15.0263 26.0263i 0.489843 0.848432i −0.510089 0.860122i \(-0.670388\pi\)
0.999932 + 0.0116892i \(0.00372087\pi\)
\(942\) −6.69615 3.86603i −0.218172 0.125962i
\(943\) 4.90192 2.83013i 0.159629 0.0921616i
\(944\) 4.90192 2.83013i 0.159544 0.0921128i
\(945\) 12.2942 + 7.09808i 0.399931 + 0.230900i
\(946\) −3.63397 + 6.29423i −0.118151 + 0.204643i
\(947\) 20.1340 + 11.6244i 0.654266 + 0.377741i 0.790089 0.612992i \(-0.210034\pi\)
−0.135823 + 0.990733i \(0.543368\pi\)
\(948\) 20.7846i 0.675053i
\(949\) −15.6673 + 9.04552i −0.508582 + 0.293630i
\(950\) 0.267949 0.464102i 0.00869342 0.0150574i
\(951\) 55.9808 1.81530
\(952\) −2.00000 −0.0648204
\(953\) 20.6865 35.8301i 0.670103 1.16065i −0.307772 0.951460i \(-0.599583\pi\)
0.977875 0.209192i \(-0.0670832\pi\)
\(954\) 0 0
\(955\) −10.6962 18.5263i −0.346119 0.599496i
\(956\) 21.8564i 0.706887i
\(957\) 34.9808 20.1962i 1.13077 0.652849i
\(958\) 5.62436 + 9.74167i 0.181715 + 0.314739i
\(959\) 7.73205 + 13.3923i 0.249681 + 0.432460i
\(960\) −1.50000 0.866025i −0.0484123 0.0279508i
\(961\) −31.8564 −1.02763
\(962\) −1.59808 + 19.3756i −0.0515240 + 0.624696i
\(963\) 0 0
\(964\) 3.46410 + 2.00000i 0.111571 + 0.0644157i
\(965\) −7.29423 12.6340i −0.234810 0.406702i
\(966\) −3.00000 5.19615i −0.0965234 0.167183i
\(967\) 9.80385 5.66025i 0.315270 0.182021i −0.334012 0.942569i \(-0.608403\pi\)
0.649283 + 0.760547i \(0.275069\pi\)
\(968\) 11.3923i 0.366163i
\(969\) −0.339746 0.588457i −0.0109142 0.0189040i
\(970\) 14.3923i 0.462109i
\(971\) 22.5622 39.0788i 0.724055 1.25410i −0.235307 0.971921i \(-0.575610\pi\)
0.959362 0.282179i \(-0.0910571\pi\)
\(972\) 0 0
\(973\) −31.8564 −1.02127
\(974\) 17.3923 30.1244i 0.557285 0.965247i
\(975\) −4.79423 + 2.76795i −0.153538 + 0.0886453i
\(976\) 0.535898i 0.0171537i
\(977\) −12.8038 7.39230i −0.409631 0.236501i 0.281000 0.959708i \(-0.409334\pi\)
−0.690631 + 0.723207i \(0.742667\pi\)
\(978\) −4.33013 + 7.50000i −0.138462 + 0.239824i
\(979\) −36.5885 21.1244i −1.16937 0.675137i
\(980\) 0.401924 0.232051i 0.0128390 0.00741259i
\(981\) 0 0
\(982\) −14.4904 8.36603i −0.462407 0.266971i
\(983\) −3.58846 + 6.21539i −0.114454 + 0.198240i −0.917561 0.397594i \(-0.869845\pi\)
0.803107 + 0.595834i \(0.203179\pi\)
\(984\) 6.69615 + 3.86603i 0.213466 + 0.123244i
\(985\) 26.3205i 0.838641i
\(986\) −3.12436 + 1.80385i −0.0994998 + 0.0574462i
\(987\) −15.9282 + 27.5885i −0.507000 + 0.878150i
\(988\) 1.71281 0.0544918
\(989\) 1.94744 0.0619250
\(990\) 0 0
\(991\) 55.1051i 1.75047i −0.483696 0.875236i \(-0.660706\pi\)
0.483696 0.875236i \(-0.339294\pi\)
\(992\) 3.96410 + 6.86603i 0.125860 + 0.217997i
\(993\) 10.0526i 0.319008i
\(994\) 29.3205 16.9282i 0.929990 0.536930i
\(995\) 0.500000 + 0.866025i 0.0158511 + 0.0274549i
\(996\) 7.39230 + 12.8038i 0.234234 + 0.405705i
\(997\) −11.7679 6.79423i −0.372695 0.215175i 0.301940 0.953327i \(-0.402366\pi\)
−0.674635 + 0.738151i \(0.735699\pi\)
\(998\) 14.9282 0.472544
\(999\) 2.59808 31.5000i 0.0821995 0.996616i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.l.a.101.2 yes 4
37.11 even 6 inner 370.2.l.a.11.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.l.a.11.2 4 37.11 even 6 inner
370.2.l.a.101.2 yes 4 1.1 even 1 trivial