Properties

Label 370.2.q.d.103.3
Level $370$
Weight $2$
Character 370.103
Analytic conductor $2.954$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(97,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.q (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} - 4x^{10} + 6x^{8} + 44x^{7} + 56x^{6} + 32x^{5} + 92x^{4} - 16x^{3} + 36x^{2} - 24x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 103.3
Root \(-1.69087 + 0.453068i\) of defining polynomial
Character \(\chi\) \(=\) 370.103
Dual form 370.2.q.d.97.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.608236 + 2.26997i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.642592 + 2.14175i) q^{5} +(1.66173 - 1.66173i) q^{6} +(0.265598 + 0.991227i) q^{7} +1.00000 q^{8} +(-2.18472 + 1.26135i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.608236 + 2.26997i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.642592 + 2.14175i) q^{5} +(1.66173 - 1.66173i) q^{6} +(0.265598 + 0.991227i) q^{7} +1.00000 q^{8} +(-2.18472 + 1.26135i) q^{9} +(1.53351 - 1.62737i) q^{10} -1.09386i q^{11} +(-2.26997 - 0.608236i) q^{12} +(-0.227440 + 0.393937i) q^{13} +(0.725629 - 0.725629i) q^{14} +(-4.47084 + 2.76135i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.50536 + 1.44647i) q^{17} +(2.18472 + 1.26135i) q^{18} +(-0.134218 + 0.0359636i) q^{19} +(-2.17610 - 0.514372i) q^{20} +(-2.08851 + 1.20580i) q^{21} +(-0.947314 + 0.546932i) q^{22} -0.390557 q^{23} +(0.608236 + 2.26997i) q^{24} +(-4.17415 + 2.75254i) q^{25} +0.454879 q^{26} +(0.793148 + 0.793148i) q^{27} +(-0.991227 - 0.265598i) q^{28} +(1.28518 - 1.28518i) q^{29} +(4.62682 + 2.49119i) q^{30} +(-0.795949 - 0.795949i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.48303 - 0.665327i) q^{33} +(2.50536 + 1.44647i) q^{34} +(-1.95228 + 1.20580i) q^{35} -2.52270i q^{36} +(1.64941 + 5.85486i) q^{37} +(0.0982545 + 0.0982545i) q^{38} +(-1.03256 - 0.276674i) q^{39} +(0.642592 + 2.14175i) q^{40} +(-6.11196 - 3.52874i) q^{41} +(2.08851 + 1.20580i) q^{42} +8.52588 q^{43} +(0.947314 + 0.546932i) q^{44} +(-4.10537 - 3.86858i) q^{45} +(0.195278 + 0.338232i) q^{46} +(6.69408 - 6.69408i) q^{47} +(1.66173 - 1.66173i) q^{48} +(5.15019 - 2.97346i) q^{49} +(4.47084 + 2.23865i) q^{50} +(-4.80728 - 4.80728i) q^{51} +(-0.227440 - 0.393937i) q^{52} +(-2.03337 + 7.58864i) q^{53} +(0.290312 - 1.08346i) q^{54} +(2.34278 - 0.702908i) q^{55} +(0.265598 + 0.991227i) q^{56} +(-0.163272 - 0.282796i) q^{57} +(-1.75559 - 0.470410i) q^{58} +(-0.934291 + 3.48682i) q^{59} +(-0.155976 - 5.25254i) q^{60} +(4.90553 - 1.31443i) q^{61} +(-0.291337 + 1.08729i) q^{62} +(-1.83054 - 1.83054i) q^{63} +1.00000 q^{64} +(-0.989863 - 0.233977i) q^{65} +(-1.81771 - 1.81771i) q^{66} +(12.3464 - 3.30819i) q^{67} -2.89294i q^{68} +(-0.237550 - 0.886550i) q^{69} +(2.02040 + 1.08783i) q^{70} +(3.63611 - 6.29793i) q^{71} +(-2.18472 + 1.26135i) q^{72} +(1.40473 - 1.40473i) q^{73} +(4.24575 - 4.35587i) q^{74} +(-8.78704 - 7.80099i) q^{75} +(0.0359636 - 0.134218i) q^{76} +(1.08427 - 0.290529i) q^{77} +(0.276674 + 1.03256i) q^{78} +(-4.98605 + 1.33601i) q^{79} +(1.53351 - 1.62737i) q^{80} +(-5.10205 + 8.83700i) q^{81} +7.05749i q^{82} +(1.08371 - 4.04446i) q^{83} -2.41160i q^{84} +(-4.70789 - 4.43635i) q^{85} +(-4.26294 - 7.38363i) q^{86} +(3.69902 + 2.13563i) q^{87} -1.09386i q^{88} +(-13.3347 - 3.57303i) q^{89} +(-1.29760 + 5.48965i) q^{90} +(-0.450888 - 0.120815i) q^{91} +(0.195278 - 0.338232i) q^{92} +(1.32265 - 2.29090i) q^{93} +(-9.14429 - 2.45020i) q^{94} +(-0.163272 - 0.264351i) q^{95} +(-2.26997 - 0.608236i) q^{96} +11.8906i q^{97} +(-5.15019 - 2.97346i) q^{98} +(1.37974 + 2.38979i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} + 2 q^{5} + 6 q^{6} - 4 q^{7} + 12 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{2} - 6 q^{4} + 2 q^{5} + 6 q^{6} - 4 q^{7} + 12 q^{8} + 18 q^{9} - 4 q^{10} - 6 q^{12} + 8 q^{14} - 10 q^{15} - 6 q^{16} - 12 q^{17} - 18 q^{18} - 8 q^{19} + 2 q^{20} + 54 q^{21} - 6 q^{22} - 4 q^{23} - 14 q^{25} + 18 q^{27} - 4 q^{28} + 4 q^{29} - 4 q^{30} - 2 q^{31} - 6 q^{32} + 20 q^{33} + 12 q^{34} + 6 q^{35} + 14 q^{37} + 16 q^{38} - 30 q^{39} + 2 q^{40} + 12 q^{41} - 54 q^{42} + 44 q^{43} + 6 q^{44} - 60 q^{45} + 2 q^{46} - 28 q^{47} + 6 q^{48} + 24 q^{49} + 10 q^{50} - 8 q^{51} + 8 q^{53} - 18 q^{54} - 4 q^{56} - 28 q^{57} - 14 q^{58} + 14 q^{60} + 24 q^{61} - 14 q^{62} + 8 q^{63} + 12 q^{64} - 10 q^{65} + 8 q^{66} + 18 q^{67} - 40 q^{69} - 30 q^{70} + 18 q^{72} - 28 q^{73} + 38 q^{74} - 30 q^{75} - 8 q^{76} + 10 q^{77} + 48 q^{78} - 56 q^{79} - 4 q^{80} + 4 q^{81} + 14 q^{83} - 28 q^{85} - 22 q^{86} + 18 q^{87} - 2 q^{89} + 18 q^{90} + 38 q^{91} + 2 q^{92} - 16 q^{94} - 28 q^{95} - 6 q^{96} - 24 q^{98} + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.608236 + 2.26997i 0.351165 + 1.31057i 0.885242 + 0.465130i \(0.153992\pi\)
−0.534077 + 0.845436i \(0.679341\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.642592 + 2.14175i 0.287376 + 0.957818i
\(6\) 1.66173 1.66173i 0.678399 0.678399i
\(7\) 0.265598 + 0.991227i 0.100387 + 0.374649i 0.997781 0.0665810i \(-0.0212091\pi\)
−0.897394 + 0.441230i \(0.854542\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.18472 + 1.26135i −0.728240 + 0.420450i
\(10\) 1.53351 1.62737i 0.484939 0.514621i
\(11\) 1.09386i 0.329812i −0.986309 0.164906i \(-0.947268\pi\)
0.986309 0.164906i \(-0.0527321\pi\)
\(12\) −2.26997 0.608236i −0.655283 0.175583i
\(13\) −0.227440 + 0.393937i −0.0630804 + 0.109258i −0.895841 0.444375i \(-0.853426\pi\)
0.832760 + 0.553633i \(0.186759\pi\)
\(14\) 0.725629 0.725629i 0.193932 0.193932i
\(15\) −4.47084 + 2.76135i −1.15437 + 0.712977i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.50536 + 1.44647i −0.607638 + 0.350820i −0.772040 0.635573i \(-0.780764\pi\)
0.164403 + 0.986393i \(0.447430\pi\)
\(18\) 2.18472 + 1.26135i 0.514943 + 0.297303i
\(19\) −0.134218 + 0.0359636i −0.0307917 + 0.00825062i −0.274182 0.961678i \(-0.588407\pi\)
0.243390 + 0.969928i \(0.421740\pi\)
\(20\) −2.17610 0.514372i −0.486591 0.115017i
\(21\) −2.08851 + 1.20580i −0.455749 + 0.263127i
\(22\) −0.947314 + 0.546932i −0.201968 + 0.116606i
\(23\) −0.390557 −0.0814367 −0.0407183 0.999171i \(-0.512965\pi\)
−0.0407183 + 0.999171i \(0.512965\pi\)
\(24\) 0.608236 + 2.26997i 0.124156 + 0.463355i
\(25\) −4.17415 + 2.75254i −0.834830 + 0.550508i
\(26\) 0.454879 0.0892091
\(27\) 0.793148 + 0.793148i 0.152641 + 0.152641i
\(28\) −0.991227 0.265598i −0.187324 0.0501934i
\(29\) 1.28518 1.28518i 0.238653 0.238653i −0.577639 0.816292i \(-0.696026\pi\)
0.816292 + 0.577639i \(0.196026\pi\)
\(30\) 4.62682 + 2.49119i 0.844738 + 0.454827i
\(31\) −0.795949 0.795949i −0.142957 0.142957i 0.632006 0.774963i \(-0.282232\pi\)
−0.774963 + 0.632006i \(0.782232\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 2.48303 0.665327i 0.432241 0.115819i
\(34\) 2.50536 + 1.44647i 0.429665 + 0.248067i
\(35\) −1.95228 + 1.20580i −0.329996 + 0.203817i
\(36\) 2.52270i 0.420450i
\(37\) 1.64941 + 5.85486i 0.271162 + 0.962534i
\(38\) 0.0982545 + 0.0982545i 0.0159390 + 0.0159390i
\(39\) −1.03256 0.276674i −0.165342 0.0443032i
\(40\) 0.642592 + 2.14175i 0.101603 + 0.338640i
\(41\) −6.11196 3.52874i −0.954528 0.551097i −0.0600436 0.998196i \(-0.519124\pi\)
−0.894485 + 0.447099i \(0.852457\pi\)
\(42\) 2.08851 + 1.20580i 0.322263 + 0.186059i
\(43\) 8.52588 1.30018 0.650092 0.759855i \(-0.274730\pi\)
0.650092 + 0.759855i \(0.274730\pi\)
\(44\) 0.947314 + 0.546932i 0.142813 + 0.0824531i
\(45\) −4.10537 3.86858i −0.611993 0.576694i
\(46\) 0.195278 + 0.338232i 0.0287922 + 0.0498696i
\(47\) 6.69408 6.69408i 0.976432 0.976432i −0.0232961 0.999729i \(-0.507416\pi\)
0.999729 + 0.0232961i \(0.00741606\pi\)
\(48\) 1.66173 1.66173i 0.239850 0.239850i
\(49\) 5.15019 2.97346i 0.735741 0.424780i
\(50\) 4.47084 + 2.23865i 0.632273 + 0.316593i
\(51\) −4.80728 4.80728i −0.673154 0.673154i
\(52\) −0.227440 0.393937i −0.0315402 0.0546292i
\(53\) −2.03337 + 7.58864i −0.279305 + 1.04238i 0.673597 + 0.739099i \(0.264749\pi\)
−0.952901 + 0.303280i \(0.901918\pi\)
\(54\) 0.290312 1.08346i 0.0395065 0.147440i
\(55\) 2.34278 0.702908i 0.315900 0.0947801i
\(56\) 0.265598 + 0.991227i 0.0354921 + 0.132458i
\(57\) −0.163272 0.282796i −0.0216260 0.0374573i
\(58\) −1.75559 0.470410i −0.230521 0.0617679i
\(59\) −0.934291 + 3.48682i −0.121634 + 0.453946i −0.999697 0.0245994i \(-0.992169\pi\)
0.878063 + 0.478545i \(0.158836\pi\)
\(60\) −0.155976 5.25254i −0.0201365 0.678100i
\(61\) 4.90553 1.31443i 0.628089 0.168296i 0.0692867 0.997597i \(-0.477928\pi\)
0.558802 + 0.829301i \(0.311261\pi\)
\(62\) −0.291337 + 1.08729i −0.0369999 + 0.138085i
\(63\) −1.83054 1.83054i −0.230627 0.230627i
\(64\) 1.00000 0.125000
\(65\) −0.989863 0.233977i −0.122777 0.0290213i
\(66\) −1.81771 1.81771i −0.223744 0.223744i
\(67\) 12.3464 3.30819i 1.50835 0.404160i 0.592461 0.805599i \(-0.298156\pi\)
0.915886 + 0.401439i \(0.131490\pi\)
\(68\) 2.89294i 0.350820i
\(69\) −0.237550 0.886550i −0.0285977 0.106728i
\(70\) 2.02040 + 1.08783i 0.241483 + 0.130020i
\(71\) 3.63611 6.29793i 0.431527 0.747426i −0.565478 0.824763i \(-0.691308\pi\)
0.997005 + 0.0773369i \(0.0246417\pi\)
\(72\) −2.18472 + 1.26135i −0.257472 + 0.148651i
\(73\) 1.40473 1.40473i 0.164411 0.164411i −0.620107 0.784518i \(-0.712911\pi\)
0.784518 + 0.620107i \(0.212911\pi\)
\(74\) 4.24575 4.35587i 0.493559 0.506359i
\(75\) −8.78704 7.80099i −1.01464 0.900781i
\(76\) 0.0359636 0.134218i 0.00412531 0.0153959i
\(77\) 1.08427 0.290529i 0.123564 0.0331088i
\(78\) 0.276674 + 1.03256i 0.0313271 + 0.116914i
\(79\) −4.98605 + 1.33601i −0.560975 + 0.150313i −0.528154 0.849149i \(-0.677116\pi\)
−0.0328206 + 0.999461i \(0.510449\pi\)
\(80\) 1.53351 1.62737i 0.171452 0.181946i
\(81\) −5.10205 + 8.83700i −0.566894 + 0.981889i
\(82\) 7.05749i 0.779369i
\(83\) 1.08371 4.04446i 0.118953 0.443938i −0.880599 0.473861i \(-0.842860\pi\)
0.999552 + 0.0299237i \(0.00952644\pi\)
\(84\) 2.41160i 0.263127i
\(85\) −4.70789 4.43635i −0.510642 0.481189i
\(86\) −4.26294 7.38363i −0.459685 0.796197i
\(87\) 3.69902 + 2.13563i 0.396577 + 0.228964i
\(88\) 1.09386i 0.116606i
\(89\) −13.3347 3.57303i −1.41348 0.378741i −0.530314 0.847801i \(-0.677926\pi\)
−0.883166 + 0.469061i \(0.844593\pi\)
\(90\) −1.29760 + 5.48965i −0.136780 + 0.578660i
\(91\) −0.450888 0.120815i −0.0472660 0.0126649i
\(92\) 0.195278 0.338232i 0.0203592 0.0352631i
\(93\) 1.32265 2.29090i 0.137153 0.237555i
\(94\) −9.14429 2.45020i −0.943161 0.252719i
\(95\) −0.163272 0.264351i −0.0167514 0.0271219i
\(96\) −2.26997 0.608236i −0.231677 0.0620778i
\(97\) 11.8906i 1.20731i 0.797245 + 0.603656i \(0.206290\pi\)
−0.797245 + 0.603656i \(0.793710\pi\)
\(98\) −5.15019 2.97346i −0.520248 0.300365i
\(99\) 1.37974 + 2.38979i 0.138669 + 0.240183i
\(100\) −0.296693 4.99119i −0.0296693 0.499119i
\(101\) 2.62938i 0.261633i −0.991407 0.130816i \(-0.958240\pi\)
0.991407 0.130816i \(-0.0417598\pi\)
\(102\) −1.75959 + 6.56687i −0.174225 + 0.650217i
\(103\) 6.18963i 0.609882i −0.952371 0.304941i \(-0.901363\pi\)
0.952371 0.304941i \(-0.0986368\pi\)
\(104\) −0.227440 + 0.393937i −0.0223023 + 0.0386287i
\(105\) −3.92457 3.69821i −0.382999 0.360908i
\(106\) 7.58864 2.03337i 0.737074 0.197498i
\(107\) −1.98266 7.39938i −0.191671 0.715325i −0.993104 0.117240i \(-0.962595\pi\)
0.801433 0.598085i \(-0.204071\pi\)
\(108\) −1.08346 + 0.290312i −0.104256 + 0.0279353i
\(109\) 0.145164 0.541758i 0.0139041 0.0518910i −0.958625 0.284671i \(-0.908116\pi\)
0.972529 + 0.232780i \(0.0747823\pi\)
\(110\) −1.78013 1.67745i −0.169728 0.159939i
\(111\) −12.2871 + 7.30525i −1.16624 + 0.693384i
\(112\) 0.725629 0.725629i 0.0685655 0.0685655i
\(113\) 4.31602 2.49186i 0.406017 0.234414i −0.283060 0.959102i \(-0.591349\pi\)
0.689077 + 0.724688i \(0.258016\pi\)
\(114\) −0.163272 + 0.282796i −0.0152919 + 0.0264863i
\(115\) −0.250969 0.836473i −0.0234029 0.0780015i
\(116\) 0.470410 + 1.75559i 0.0436765 + 0.163003i
\(117\) 1.14752i 0.106088i
\(118\) 3.48682 0.934291i 0.320988 0.0860085i
\(119\) −2.09920 2.09920i −0.192433 0.192433i
\(120\) −4.47084 + 2.76135i −0.408130 + 0.252075i
\(121\) 9.80346 0.891224
\(122\) −3.59110 3.59110i −0.325123 0.325123i
\(123\) 4.29262 16.0203i 0.387052 1.44450i
\(124\) 1.08729 0.291337i 0.0976412 0.0261629i
\(125\) −8.57751 7.17121i −0.767196 0.641413i
\(126\) −0.670025 + 2.50057i −0.0596905 + 0.222768i
\(127\) 20.3452 + 5.45148i 1.80535 + 0.483741i 0.994792 0.101924i \(-0.0324999\pi\)
0.810553 + 0.585665i \(0.199167\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 5.18575 + 19.3535i 0.456579 + 1.70398i
\(130\) 0.292302 + 0.974235i 0.0256366 + 0.0854461i
\(131\) 4.71929 17.6126i 0.412327 1.53882i −0.377804 0.925885i \(-0.623321\pi\)
0.790131 0.612938i \(-0.210012\pi\)
\(132\) −0.665327 + 2.48303i −0.0579093 + 0.216120i
\(133\) −0.0712962 0.123489i −0.00618217 0.0107078i
\(134\) −9.03816 9.03816i −0.780778 0.780778i
\(135\) −1.18905 + 2.20839i −0.102337 + 0.190068i
\(136\) −2.50536 + 1.44647i −0.214832 + 0.124034i
\(137\) −11.0845 + 11.0845i −0.947009 + 0.947009i −0.998665 0.0516564i \(-0.983550\pi\)
0.0516564 + 0.998665i \(0.483550\pi\)
\(138\) −0.649000 + 0.649000i −0.0552465 + 0.0552465i
\(139\) −6.67857 11.5676i −0.566469 0.981152i −0.996911 0.0785346i \(-0.974976\pi\)
0.430443 0.902618i \(-0.358357\pi\)
\(140\) −0.0681103 2.29363i −0.00575637 0.193847i
\(141\) 19.2669 + 11.1238i 1.62257 + 0.936790i
\(142\) −7.27222 −0.610271
\(143\) 0.430913 + 0.248788i 0.0360348 + 0.0208047i
\(144\) 2.18472 + 1.26135i 0.182060 + 0.105112i
\(145\) 3.57839 + 1.92669i 0.297169 + 0.160003i
\(146\) −1.91889 0.514166i −0.158809 0.0425527i
\(147\) 9.88219 + 9.88219i 0.815069 + 0.815069i
\(148\) −5.89517 1.49900i −0.484580 0.123217i
\(149\) 2.61183i 0.213969i −0.994261 0.106985i \(-0.965880\pi\)
0.994261 0.106985i \(-0.0341196\pi\)
\(150\) −2.36234 + 11.5103i −0.192884 + 0.939811i
\(151\) 19.3408 + 11.1664i 1.57393 + 0.908711i 0.995680 + 0.0928532i \(0.0295987\pi\)
0.578253 + 0.815857i \(0.303735\pi\)
\(152\) −0.134218 + 0.0359636i −0.0108865 + 0.00291704i
\(153\) 3.64900 6.32025i 0.295004 0.510962i
\(154\) −0.793739 0.793739i −0.0639613 0.0639613i
\(155\) 1.19325 2.21619i 0.0958441 0.178009i
\(156\) 0.755886 0.755886i 0.0605194 0.0605194i
\(157\) 3.09826 + 0.830175i 0.247268 + 0.0662552i 0.380324 0.924853i \(-0.375812\pi\)
−0.133056 + 0.991108i \(0.542479\pi\)
\(158\) 3.65004 + 3.65004i 0.290382 + 0.290382i
\(159\) −18.4627 −1.46419
\(160\) −2.17610 0.514372i −0.172036 0.0406647i
\(161\) −0.103731 0.387130i −0.00817517 0.0305101i
\(162\) 10.2041 0.801709
\(163\) −17.3556 + 10.0203i −1.35940 + 0.784847i −0.989542 0.144243i \(-0.953925\pi\)
−0.369853 + 0.929090i \(0.620592\pi\)
\(164\) 6.11196 3.52874i 0.477264 0.275549i
\(165\) 3.02054 + 4.89049i 0.235149 + 0.380724i
\(166\) −4.04446 + 1.08371i −0.313911 + 0.0841123i
\(167\) 4.22666 + 2.44027i 0.327069 + 0.188833i 0.654539 0.756028i \(-0.272863\pi\)
−0.327470 + 0.944862i \(0.606196\pi\)
\(168\) −2.08851 + 1.20580i −0.161132 + 0.0930294i
\(169\) 6.39654 + 11.0791i 0.492042 + 0.852241i
\(170\) −1.48804 + 6.29532i −0.114128 + 0.482829i
\(171\) 0.247866 0.247866i 0.0189548 0.0189548i
\(172\) −4.26294 + 7.38363i −0.325046 + 0.562997i
\(173\) 15.4323 + 4.13508i 1.17330 + 0.314384i 0.792265 0.610177i \(-0.208902\pi\)
0.381033 + 0.924561i \(0.375568\pi\)
\(174\) 4.27126i 0.323803i
\(175\) −3.83704 3.40646i −0.290053 0.257504i
\(176\) −0.947314 + 0.546932i −0.0714065 + 0.0412265i
\(177\) −8.48324 −0.637639
\(178\) 3.57303 + 13.3347i 0.267810 + 0.999481i
\(179\) −8.92638 + 8.92638i −0.667189 + 0.667189i −0.957064 0.289875i \(-0.906386\pi\)
0.289875 + 0.957064i \(0.406386\pi\)
\(180\) 5.40298 1.62107i 0.402714 0.120827i
\(181\) 8.68014 15.0344i 0.645190 1.11750i −0.339068 0.940762i \(-0.610112\pi\)
0.984258 0.176740i \(-0.0565550\pi\)
\(182\) 0.120815 + 0.450888i 0.00895542 + 0.0334221i
\(183\) 5.96744 + 10.3359i 0.441126 + 0.764052i
\(184\) −0.390557 −0.0287922
\(185\) −11.4797 + 7.29491i −0.844007 + 0.536333i
\(186\) −2.64530 −0.193963
\(187\) 1.58224 + 2.74052i 0.115705 + 0.200406i
\(188\) 2.45020 + 9.14429i 0.178700 + 0.666916i
\(189\) −0.575531 + 0.996849i −0.0418637 + 0.0725101i
\(190\) −0.147299 + 0.273574i −0.0106862 + 0.0198471i
\(191\) 7.40119 7.40119i 0.535531 0.535531i −0.386682 0.922213i \(-0.626379\pi\)
0.922213 + 0.386682i \(0.126379\pi\)
\(192\) 0.608236 + 2.26997i 0.0438956 + 0.163821i
\(193\) 5.47453 0.394065 0.197033 0.980397i \(-0.436870\pi\)
0.197033 + 0.980397i \(0.436870\pi\)
\(194\) 10.2976 5.94532i 0.739325 0.426849i
\(195\) −0.0709504 2.38927i −0.00508086 0.171099i
\(196\) 5.94693i 0.424780i
\(197\) −5.41467 1.45086i −0.385779 0.103369i 0.0607164 0.998155i \(-0.480661\pi\)
−0.446496 + 0.894786i \(0.647328\pi\)
\(198\) 1.37974 2.38979i 0.0980541 0.169835i
\(199\) −10.8649 + 10.8649i −0.770191 + 0.770191i −0.978140 0.207948i \(-0.933321\pi\)
0.207948 + 0.978140i \(0.433321\pi\)
\(200\) −4.17415 + 2.75254i −0.295157 + 0.194634i
\(201\) 15.0190 + 26.0136i 1.05936 + 1.83486i
\(202\) −2.27711 + 1.31469i −0.160217 + 0.0925011i
\(203\) 1.61525 + 0.932566i 0.113368 + 0.0654533i
\(204\) 6.56687 1.75959i 0.459773 0.123196i
\(205\) 3.63017 15.3578i 0.253542 1.07264i
\(206\) −5.36037 + 3.09481i −0.373475 + 0.215626i
\(207\) 0.853257 0.492628i 0.0593054 0.0342400i
\(208\) 0.454879 0.0315402
\(209\) 0.0393393 + 0.146816i 0.00272116 + 0.0101555i
\(210\) −1.24046 + 5.24788i −0.0855997 + 0.362138i
\(211\) 4.61625 0.317796 0.158898 0.987295i \(-0.449206\pi\)
0.158898 + 0.987295i \(0.449206\pi\)
\(212\) −5.55527 5.55527i −0.381537 0.381537i
\(213\) 16.5077 + 4.42322i 1.13109 + 0.303074i
\(214\) −5.41672 + 5.41672i −0.370280 + 0.370280i
\(215\) 5.47867 + 18.2603i 0.373642 + 1.24534i
\(216\) 0.793148 + 0.793148i 0.0539669 + 0.0539669i
\(217\) 0.577563 1.00037i 0.0392075 0.0679094i
\(218\) −0.541758 + 0.145164i −0.0366925 + 0.00983172i
\(219\) 4.04309 + 2.33428i 0.273207 + 0.157736i
\(220\) −0.562653 + 2.38036i −0.0379340 + 0.160484i
\(221\) 1.31594i 0.0885194i
\(222\) 12.4701 + 6.98833i 0.836938 + 0.469026i
\(223\) −13.3465 13.3465i −0.893748 0.893748i 0.101126 0.994874i \(-0.467756\pi\)
−0.994874 + 0.101126i \(0.967756\pi\)
\(224\) −0.991227 0.265598i −0.0662291 0.0177460i
\(225\) 5.64744 11.2786i 0.376496 0.751906i
\(226\) −4.31602 2.49186i −0.287098 0.165756i
\(227\) −8.86763 5.11973i −0.588565 0.339808i 0.175965 0.984396i \(-0.443696\pi\)
−0.764530 + 0.644588i \(0.777029\pi\)
\(228\) 0.326545 0.0216260
\(229\) 0.542093 + 0.312978i 0.0358225 + 0.0206822i 0.517804 0.855499i \(-0.326750\pi\)
−0.481982 + 0.876181i \(0.660083\pi\)
\(230\) −0.598923 + 0.635582i −0.0394918 + 0.0419090i
\(231\) 1.31898 + 2.28454i 0.0867825 + 0.150312i
\(232\) 1.28518 1.28518i 0.0843765 0.0843765i
\(233\) −4.49284 + 4.49284i −0.294335 + 0.294335i −0.838790 0.544455i \(-0.816737\pi\)
0.544455 + 0.838790i \(0.316737\pi\)
\(234\) −0.993783 + 0.573761i −0.0649657 + 0.0375079i
\(235\) 18.6386 + 10.0355i 1.21585 + 0.654641i
\(236\) −2.55253 2.55253i −0.166156 0.166156i
\(237\) −6.06539 10.5056i −0.393989 0.682410i
\(238\) −0.768359 + 2.86756i −0.0498053 + 0.185876i
\(239\) 4.58065 17.0952i 0.296298 1.10580i −0.643884 0.765123i \(-0.722678\pi\)
0.940181 0.340674i \(-0.110655\pi\)
\(240\) 4.62682 + 2.49119i 0.298660 + 0.160806i
\(241\) −0.941745 3.51464i −0.0606631 0.226398i 0.928938 0.370235i \(-0.120723\pi\)
−0.989601 + 0.143837i \(0.954056\pi\)
\(242\) −4.90173 8.49005i −0.315095 0.545761i
\(243\) −19.9126 5.33555i −1.27739 0.342276i
\(244\) −1.31443 + 4.90553i −0.0841480 + 0.314045i
\(245\) 9.67787 + 9.11967i 0.618297 + 0.582635i
\(246\) −16.0203 + 4.29262i −1.02141 + 0.273687i
\(247\) 0.0163591 0.0610530i 0.00104090 0.00388471i
\(248\) −0.795949 0.795949i −0.0505428 0.0505428i
\(249\) 9.83995 0.623581
\(250\) −1.92169 + 11.0140i −0.121539 + 0.696583i
\(251\) −15.8289 15.8289i −0.999112 0.999112i 0.000887213 1.00000i \(-0.499718\pi\)
−1.00000 0.000887213i \(0.999718\pi\)
\(252\) 2.50057 0.670025i 0.157521 0.0422076i
\(253\) 0.427216i 0.0268588i
\(254\) −5.45148 20.3452i −0.342056 1.27657i
\(255\) 7.20685 13.3851i 0.451310 0.838207i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −18.9356 + 10.9325i −1.18117 + 0.681949i −0.956285 0.292436i \(-0.905534\pi\)
−0.224886 + 0.974385i \(0.572201\pi\)
\(258\) 14.1677 14.1677i 0.882044 0.882044i
\(259\) −5.36542 + 3.18999i −0.333391 + 0.198216i
\(260\) 0.697562 0.740258i 0.0432609 0.0459089i
\(261\) −1.18670 + 4.42883i −0.0734550 + 0.274138i
\(262\) −17.6126 + 4.71929i −1.08811 + 0.291559i
\(263\) −2.22756 8.31336i −0.137357 0.512624i −0.999977 0.00677111i \(-0.997845\pi\)
0.862620 0.505852i \(-0.168822\pi\)
\(264\) 2.48303 0.665327i 0.152820 0.0409480i
\(265\) −17.5596 + 0.521439i −1.07868 + 0.0320317i
\(266\) −0.0712962 + 0.123489i −0.00437145 + 0.00757158i
\(267\) 32.4427i 1.98546i
\(268\) −3.30819 + 12.3464i −0.202080 + 0.754173i
\(269\) 5.72668i 0.349162i 0.984643 + 0.174581i \(0.0558570\pi\)
−0.984643 + 0.174581i \(0.944143\pi\)
\(270\) 2.50705 0.0744480i 0.152574 0.00453076i
\(271\) 3.30228 + 5.71972i 0.200599 + 0.347448i 0.948722 0.316113i \(-0.102378\pi\)
−0.748122 + 0.663561i \(0.769044\pi\)
\(272\) 2.50536 + 1.44647i 0.151909 + 0.0877050i
\(273\) 1.09699i 0.0663926i
\(274\) 15.1416 + 4.05719i 0.914740 + 0.245104i
\(275\) 3.01090 + 4.56595i 0.181564 + 0.275337i
\(276\) 0.886550 + 0.237550i 0.0533641 + 0.0142989i
\(277\) −4.44783 + 7.70387i −0.267244 + 0.462881i −0.968149 0.250374i \(-0.919446\pi\)
0.700905 + 0.713255i \(0.252780\pi\)
\(278\) −6.67857 + 11.5676i −0.400554 + 0.693780i
\(279\) 2.74289 + 0.734956i 0.164213 + 0.0440007i
\(280\) −1.95228 + 1.20580i −0.116671 + 0.0720603i
\(281\) 1.59322 + 0.426903i 0.0950437 + 0.0254669i 0.306027 0.952023i \(-0.401000\pi\)
−0.210984 + 0.977490i \(0.567667\pi\)
\(282\) 22.2475i 1.32482i
\(283\) −28.2496 16.3099i −1.67926 0.969522i −0.962133 0.272582i \(-0.912122\pi\)
−0.717129 0.696940i \(-0.754544\pi\)
\(284\) 3.63611 + 6.29793i 0.215763 + 0.373713i
\(285\) 0.500760 0.531411i 0.0296625 0.0314781i
\(286\) 0.497576i 0.0294223i
\(287\) 1.87446 6.99557i 0.110646 0.412936i
\(288\) 2.52270i 0.148651i
\(289\) −4.31546 + 7.47460i −0.253851 + 0.439682i
\(290\) −0.120632 4.06232i −0.00708378 0.238548i
\(291\) −26.9914 + 7.23232i −1.58226 + 0.423966i
\(292\) 0.514166 + 1.91889i 0.0300893 + 0.112295i
\(293\) −23.1842 + 6.21218i −1.35443 + 0.362919i −0.861769 0.507300i \(-0.830643\pi\)
−0.492664 + 0.870220i \(0.663977\pi\)
\(294\) 3.61713 13.4993i 0.210955 0.787296i
\(295\) −8.06825 + 0.239590i −0.469752 + 0.0139495i
\(296\) 1.64941 + 5.85486i 0.0958702 + 0.340307i
\(297\) 0.867596 0.867596i 0.0503430 0.0503430i
\(298\) −2.26191 + 1.30592i −0.131029 + 0.0756496i
\(299\) 0.0888280 0.153855i 0.00513706 0.00889764i
\(300\) 11.1494 3.70930i 0.643709 0.214157i
\(301\) 2.26446 + 8.45108i 0.130521 + 0.487112i
\(302\) 22.3328i 1.28511i
\(303\) 5.96860 1.59928i 0.342887 0.0918763i
\(304\) 0.0982545 + 0.0982545i 0.00563528 + 0.00563528i
\(305\) 5.96744 + 9.66176i 0.341695 + 0.553231i
\(306\) −7.29800 −0.417199
\(307\) −14.2681 14.2681i −0.814321 0.814321i 0.170957 0.985278i \(-0.445314\pi\)
−0.985278 + 0.170957i \(0.945314\pi\)
\(308\) −0.290529 + 1.08427i −0.0165544 + 0.0617819i
\(309\) 14.0502 3.76475i 0.799291 0.214169i
\(310\) −2.51590 + 0.0747108i −0.142894 + 0.00424329i
\(311\) 1.96729 7.34201i 0.111555 0.416327i −0.887452 0.460901i \(-0.847526\pi\)
0.999006 + 0.0445738i \(0.0141930\pi\)
\(312\) −1.03256 0.276674i −0.0584572 0.0156636i
\(313\) −16.2812 28.1999i −0.920270 1.59395i −0.798997 0.601335i \(-0.794636\pi\)
−0.121273 0.992619i \(-0.538698\pi\)
\(314\) −0.830175 3.09826i −0.0468495 0.174845i
\(315\) 2.74426 5.09685i 0.154622 0.287175i
\(316\) 1.33601 4.98605i 0.0751564 0.280487i
\(317\) 6.76893 25.2620i 0.380181 1.41885i −0.465444 0.885077i \(-0.654106\pi\)
0.845625 0.533777i \(-0.179228\pi\)
\(318\) 9.23136 + 15.9892i 0.517669 + 0.896629i
\(319\) −1.40582 1.40582i −0.0787106 0.0787106i
\(320\) 0.642592 + 2.14175i 0.0359220 + 0.119727i
\(321\) 15.5904 9.00114i 0.870173 0.502394i
\(322\) −0.283399 + 0.283399i −0.0157932 + 0.0157932i
\(323\) 0.284244 0.284244i 0.0158157 0.0158157i
\(324\) −5.10205 8.83700i −0.283447 0.490945i
\(325\) −0.134959 2.27039i −0.00748620 0.125938i
\(326\) 17.3556 + 10.0203i 0.961238 + 0.554971i
\(327\) 1.31807 0.0728892
\(328\) −6.11196 3.52874i −0.337477 0.194842i
\(329\) 8.41330 + 4.85742i 0.463840 + 0.267798i
\(330\) 2.72502 5.06111i 0.150008 0.278605i
\(331\) −16.9750 4.54843i −0.933029 0.250004i −0.239883 0.970802i \(-0.577109\pi\)
−0.693146 + 0.720798i \(0.743776\pi\)
\(332\) 2.96075 + 2.96075i 0.162492 + 0.162492i
\(333\) −10.9885 10.7108i −0.602168 0.586946i
\(334\) 4.88053i 0.267051i
\(335\) 15.0190 + 24.3169i 0.820575 + 1.32858i
\(336\) 2.08851 + 1.20580i 0.113937 + 0.0657817i
\(337\) −21.2283 + 5.68810i −1.15638 + 0.309851i −0.785519 0.618838i \(-0.787604\pi\)
−0.370860 + 0.928689i \(0.620937\pi\)
\(338\) 6.39654 11.0791i 0.347926 0.602626i
\(339\) 8.28159 + 8.28159i 0.449794 + 0.449794i
\(340\) 6.19593 1.85898i 0.336022 0.100817i
\(341\) −0.870660 + 0.870660i −0.0471489 + 0.0471489i
\(342\) −0.338592 0.0907254i −0.0183089 0.00490587i
\(343\) 9.39466 + 9.39466i 0.507264 + 0.507264i
\(344\) 8.52588 0.459685
\(345\) 1.74612 1.07846i 0.0940078 0.0580625i
\(346\) −4.13508 15.4323i −0.222303 0.829647i
\(347\) 12.3387 0.662377 0.331189 0.943565i \(-0.392550\pi\)
0.331189 + 0.943565i \(0.392550\pi\)
\(348\) −3.69902 + 2.13563i −0.198288 + 0.114482i
\(349\) 19.7732 11.4160i 1.05843 0.611087i 0.133435 0.991058i \(-0.457399\pi\)
0.924999 + 0.379971i \(0.124066\pi\)
\(350\) −1.03156 + 5.02620i −0.0551393 + 0.268662i
\(351\) −0.492844 + 0.132057i −0.0263061 + 0.00704869i
\(352\) 0.947314 + 0.546932i 0.0504920 + 0.0291516i
\(353\) −14.7854 + 8.53634i −0.786946 + 0.454343i −0.838886 0.544307i \(-0.816793\pi\)
0.0519405 + 0.998650i \(0.483459\pi\)
\(354\) 4.24162 + 7.34670i 0.225439 + 0.390473i
\(355\) 15.8251 + 3.74062i 0.839909 + 0.198532i
\(356\) 9.76171 9.76171i 0.517369 0.517369i
\(357\) 3.48830 6.04191i 0.184620 0.319772i
\(358\) 12.1937 + 3.26728i 0.644455 + 0.172681i
\(359\) 20.3975i 1.07654i 0.842773 + 0.538269i \(0.180922\pi\)
−0.842773 + 0.538269i \(0.819078\pi\)
\(360\) −4.10537 3.86858i −0.216372 0.203892i
\(361\) −16.4378 + 9.49035i −0.865145 + 0.499492i
\(362\) −17.3603 −0.912436
\(363\) 5.96281 + 22.2535i 0.312967 + 1.16801i
\(364\) 0.330073 0.330073i 0.0173005 0.0173005i
\(365\) 3.91123 + 2.10590i 0.204723 + 0.110228i
\(366\) 5.96744 10.3359i 0.311923 0.540267i
\(367\) 3.45216 + 12.8836i 0.180201 + 0.672521i 0.995607 + 0.0936308i \(0.0298473\pi\)
−0.815406 + 0.578890i \(0.803486\pi\)
\(368\) 0.195278 + 0.338232i 0.0101796 + 0.0176316i
\(369\) 17.8039 0.926834
\(370\) 12.0574 + 6.29428i 0.626837 + 0.327224i
\(371\) −8.06212 −0.418565
\(372\) 1.32265 + 2.29090i 0.0685763 + 0.118778i
\(373\) −4.51612 16.8544i −0.233836 0.872688i −0.978670 0.205438i \(-0.934138\pi\)
0.744834 0.667250i \(-0.232529\pi\)
\(374\) 1.58224 2.74052i 0.0818156 0.141709i
\(375\) 11.0613 23.8325i 0.571201 1.23070i
\(376\) 6.69408 6.69408i 0.345221 0.345221i
\(377\) 0.213980 + 0.798583i 0.0110205 + 0.0411291i
\(378\) 1.15106 0.0592043
\(379\) 21.7843 12.5772i 1.11898 0.646045i 0.177842 0.984059i \(-0.443089\pi\)
0.941141 + 0.338014i \(0.109755\pi\)
\(380\) 0.310571 0.00922254i 0.0159320 0.000473106i
\(381\) 49.4987i 2.53590i
\(382\) −10.1102 2.70902i −0.517284 0.138606i
\(383\) −5.36863 + 9.29874i −0.274324 + 0.475143i −0.969964 0.243247i \(-0.921787\pi\)
0.695640 + 0.718390i \(0.255121\pi\)
\(384\) 1.66173 1.66173i 0.0847998 0.0847998i
\(385\) 1.31898 + 2.13553i 0.0672215 + 0.108837i
\(386\) −2.73726 4.74108i −0.139323 0.241315i
\(387\) −18.6267 + 10.7541i −0.946847 + 0.546662i
\(388\) −10.2976 5.94532i −0.522782 0.301828i
\(389\) 29.4549 7.89241i 1.49342 0.400161i 0.582531 0.812808i \(-0.302062\pi\)
0.910891 + 0.412647i \(0.135396\pi\)
\(390\) −2.03369 + 1.25608i −0.102980 + 0.0636041i
\(391\) 0.978483 0.564927i 0.0494840 0.0285696i
\(392\) 5.15019 2.97346i 0.260124 0.150183i
\(393\) 42.8505 2.16152
\(394\) 1.45086 + 5.41467i 0.0730931 + 0.272787i
\(395\) −6.06539 9.82035i −0.305183 0.494115i
\(396\) −2.75949 −0.138669
\(397\) 14.1042 + 14.1042i 0.707867 + 0.707867i 0.966086 0.258219i \(-0.0831356\pi\)
−0.258219 + 0.966086i \(0.583136\pi\)
\(398\) 14.8417 + 3.97682i 0.743948 + 0.199340i
\(399\) 0.236950 0.236950i 0.0118624 0.0118624i
\(400\) 4.47084 + 2.23865i 0.223542 + 0.111933i
\(401\) 9.57043 + 9.57043i 0.477925 + 0.477925i 0.904467 0.426543i \(-0.140269\pi\)
−0.426543 + 0.904467i \(0.640269\pi\)
\(402\) 15.0190 26.0136i 0.749079 1.29744i
\(403\) 0.494584 0.132523i 0.0246370 0.00660146i
\(404\) 2.27711 + 1.31469i 0.113290 + 0.0654082i
\(405\) −22.2051 5.24870i −1.10338 0.260810i
\(406\) 1.86513i 0.0925650i
\(407\) 6.40442 1.80423i 0.317456 0.0894325i
\(408\) −4.80728 4.80728i −0.237996 0.237996i
\(409\) −26.7076 7.15628i −1.32061 0.353855i −0.471401 0.881919i \(-0.656251\pi\)
−0.849205 + 0.528064i \(0.822918\pi\)
\(410\) −15.1153 + 4.53509i −0.746494 + 0.223972i
\(411\) −31.9033 18.4194i −1.57367 0.908561i
\(412\) 5.36037 + 3.09481i 0.264087 + 0.152471i
\(413\) −3.70438 −0.182281
\(414\) −0.853257 0.492628i −0.0419353 0.0242113i
\(415\) 9.35860 0.277908i 0.459396 0.0136420i
\(416\) −0.227440 0.393937i −0.0111511 0.0193143i
\(417\) 22.1960 22.1960i 1.08694 1.08694i
\(418\) 0.107477 0.107477i 0.00525687 0.00525687i
\(419\) −0.732348 + 0.422822i −0.0357776 + 0.0206562i −0.517782 0.855513i \(-0.673242\pi\)
0.482005 + 0.876169i \(0.339909\pi\)
\(420\) 5.16503 1.54967i 0.252028 0.0756164i
\(421\) −5.01009 5.01009i −0.244177 0.244177i 0.574399 0.818576i \(-0.305236\pi\)
−0.818576 + 0.574399i \(0.805236\pi\)
\(422\) −2.30813 3.99779i −0.112358 0.194609i
\(423\) −6.18112 + 23.0683i −0.300537 + 1.12162i
\(424\) −2.03337 + 7.58864i −0.0987491 + 0.368537i
\(425\) 6.47627 12.9339i 0.314145 0.627384i
\(426\) −4.42322 16.5077i −0.214306 0.799800i
\(427\) 2.60580 + 4.51339i 0.126104 + 0.218418i
\(428\) 7.39938 + 1.98266i 0.357663 + 0.0958354i
\(429\) −0.302643 + 1.12948i −0.0146118 + 0.0545318i
\(430\) 13.0745 13.8748i 0.630510 0.669102i
\(431\) 15.3592 4.11547i 0.739824 0.198235i 0.130824 0.991406i \(-0.458238\pi\)
0.609000 + 0.793170i \(0.291571\pi\)
\(432\) 0.290312 1.08346i 0.0139677 0.0521280i
\(433\) −19.2276 19.2276i −0.924022 0.924022i 0.0732891 0.997311i \(-0.476650\pi\)
−0.997311 + 0.0732891i \(0.976650\pi\)
\(434\) −1.15513 −0.0554478
\(435\) −2.19702 + 9.29470i −0.105339 + 0.445647i
\(436\) 0.396594 + 0.396594i 0.0189934 + 0.0189934i
\(437\) 0.0524198 0.0140458i 0.00250758 0.000671903i
\(438\) 4.66856i 0.223072i
\(439\) 0.975860 + 3.64196i 0.0465752 + 0.173821i 0.985296 0.170859i \(-0.0546542\pi\)
−0.938720 + 0.344680i \(0.887987\pi\)
\(440\) 2.34278 0.702908i 0.111688 0.0335098i
\(441\) −7.50115 + 12.9924i −0.357198 + 0.618684i
\(442\) −1.13963 + 0.657968i −0.0542068 + 0.0312963i
\(443\) −16.0819 + 16.0819i −0.764074 + 0.764074i −0.977056 0.212982i \(-0.931682\pi\)
0.212982 + 0.977056i \(0.431682\pi\)
\(444\) −0.182976 14.2936i −0.00868364 0.678343i
\(445\) −0.916271 30.8556i −0.0434354 1.46270i
\(446\) −4.88516 + 18.2317i −0.231319 + 0.863294i
\(447\) 5.92877 1.58861i 0.280421 0.0751386i
\(448\) 0.265598 + 0.991227i 0.0125483 + 0.0468311i
\(449\) 3.02946 0.811742i 0.142969 0.0383085i −0.186625 0.982431i \(-0.559755\pi\)
0.329594 + 0.944123i \(0.393088\pi\)
\(450\) −12.5913 + 0.748466i −0.593558 + 0.0352830i
\(451\) −3.85996 + 6.68566i −0.181759 + 0.314815i
\(452\) 4.98372i 0.234414i
\(453\) −13.5836 + 50.6948i −0.638215 + 2.38185i
\(454\) 10.2395i 0.480562i
\(455\) −0.0309819 1.04332i −0.00145246 0.0489118i
\(456\) −0.163272 0.282796i −0.00764593 0.0132431i
\(457\) −31.9599 18.4520i −1.49502 0.863150i −0.495036 0.868872i \(-0.664845\pi\)
−0.999984 + 0.00572214i \(0.998179\pi\)
\(458\) 0.625956i 0.0292490i
\(459\) −3.13438 0.839855i −0.146300 0.0392011i
\(460\) 0.849891 + 0.200891i 0.0396264 + 0.00936660i
\(461\) −23.7875 6.37384i −1.10789 0.296859i −0.341919 0.939730i \(-0.611077\pi\)
−0.765975 + 0.642870i \(0.777743\pi\)
\(462\) 1.31898 2.28454i 0.0613645 0.106286i
\(463\) −0.812285 + 1.40692i −0.0377501 + 0.0653850i −0.884283 0.466951i \(-0.845352\pi\)
0.846533 + 0.532336i \(0.178686\pi\)
\(464\) −1.75559 0.470410i −0.0815014 0.0218382i
\(465\) 5.75645 + 1.36067i 0.266949 + 0.0630996i
\(466\) 6.13733 + 1.64449i 0.284306 + 0.0761796i
\(467\) 30.6174i 1.41680i 0.705810 + 0.708401i \(0.250583\pi\)
−0.705810 + 0.708401i \(0.749417\pi\)
\(468\) 0.993783 + 0.573761i 0.0459377 + 0.0265221i
\(469\) 6.55834 + 11.3594i 0.302836 + 0.524528i
\(470\) −0.628332 21.1592i −0.0289828 0.976002i
\(471\) 7.53788i 0.347327i
\(472\) −0.934291 + 3.48682i −0.0430042 + 0.160494i
\(473\) 9.32615i 0.428817i
\(474\) −6.06539 + 10.5056i −0.278593 + 0.482537i
\(475\) 0.461255 0.519558i 0.0211638 0.0238390i
\(476\) 2.86756 0.768359i 0.131434 0.0352177i
\(477\) −5.12958 19.1438i −0.234867 0.876536i
\(478\) −17.0952 + 4.58065i −0.781917 + 0.209514i
\(479\) 1.07888 4.02643i 0.0492952 0.183972i −0.936888 0.349629i \(-0.886308\pi\)
0.986183 + 0.165657i \(0.0529743\pi\)
\(480\) −0.155976 5.25254i −0.00711932 0.239744i
\(481\) −2.68159 0.681863i −0.122270 0.0310903i
\(482\) −2.57289 + 2.57289i −0.117192 + 0.117192i
\(483\) 0.815680 0.470933i 0.0371147 0.0214282i
\(484\) −4.90173 + 8.49005i −0.222806 + 0.385911i
\(485\) −25.4667 + 7.64084i −1.15639 + 0.346953i
\(486\) 5.33555 + 19.9126i 0.242026 + 0.903252i
\(487\) 8.40797i 0.381002i −0.981687 0.190501i \(-0.938989\pi\)
0.981687 0.190501i \(-0.0610112\pi\)
\(488\) 4.90553 1.31443i 0.222063 0.0595016i
\(489\) −33.3019 33.3019i −1.50597 1.50597i
\(490\) 3.05893 12.9411i 0.138188 0.584620i
\(491\) −10.8980 −0.491819 −0.245909 0.969293i \(-0.579087\pi\)
−0.245909 + 0.969293i \(0.579087\pi\)
\(492\) 11.7276 + 11.7276i 0.528723 + 0.528723i
\(493\) −1.36087 + 5.07882i −0.0612903 + 0.228739i
\(494\) −0.0610530 + 0.0163591i −0.00274690 + 0.000736031i
\(495\) −4.23170 + 4.49072i −0.190201 + 0.201843i
\(496\) −0.291337 + 1.08729i −0.0130814 + 0.0488206i
\(497\) 7.20842 + 1.93149i 0.323342 + 0.0866392i
\(498\) −4.91997 8.52165i −0.220469 0.381864i
\(499\) 3.97714 + 14.8429i 0.178041 + 0.664459i 0.996014 + 0.0892013i \(0.0284315\pi\)
−0.817972 + 0.575257i \(0.804902\pi\)
\(500\) 10.4992 3.84274i 0.469539 0.171853i
\(501\) −2.96851 + 11.0786i −0.132623 + 0.494957i
\(502\) −5.79379 + 21.6227i −0.258589 + 0.965068i
\(503\) 16.2062 + 28.0700i 0.722600 + 1.25158i 0.959954 + 0.280156i \(0.0903862\pi\)
−0.237355 + 0.971423i \(0.576280\pi\)
\(504\) −1.83054 1.83054i −0.0815388 0.0815388i
\(505\) 5.63146 1.68962i 0.250597 0.0751870i
\(506\) 0.369980 0.213608i 0.0164476 0.00949603i
\(507\) −21.2587 + 21.2587i −0.944130 + 0.944130i
\(508\) −14.8937 + 14.8937i −0.660802 + 0.660802i
\(509\) −16.9629 29.3806i −0.751867 1.30227i −0.946917 0.321478i \(-0.895820\pi\)
0.195050 0.980793i \(-0.437513\pi\)
\(510\) −15.1953 + 0.451230i −0.672857 + 0.0199808i
\(511\) 1.76550 + 1.01931i 0.0781010 + 0.0450916i
\(512\) 1.00000 0.0441942
\(513\) −0.134979 0.0779304i −0.00595949 0.00344071i
\(514\) 18.9356 + 10.9325i 0.835214 + 0.482211i
\(515\) 13.2566 3.97741i 0.584156 0.175265i
\(516\) −19.3535 5.18575i −0.851989 0.228290i
\(517\) −7.32242 7.32242i −0.322039 0.322039i
\(518\) 5.44532 + 3.05160i 0.239254 + 0.134079i
\(519\) 37.5460i 1.64809i
\(520\) −0.989863 0.233977i −0.0434084 0.0102606i
\(521\) 6.63535 + 3.83092i 0.290700 + 0.167836i 0.638258 0.769823i \(-0.279655\pi\)
−0.347557 + 0.937659i \(0.612989\pi\)
\(522\) 4.42883 1.18670i 0.193845 0.0519406i
\(523\) 6.03193 10.4476i 0.263758 0.456842i −0.703479 0.710716i \(-0.748371\pi\)
0.967237 + 0.253873i \(0.0817046\pi\)
\(524\) 12.8933 + 12.8933i 0.563248 + 0.563248i
\(525\) 5.39873 10.7819i 0.235620 0.470560i
\(526\) −6.08580 + 6.08580i −0.265354 + 0.265354i
\(527\) 3.14545 + 0.842820i 0.137018 + 0.0367138i
\(528\) −1.81771 1.81771i −0.0791055 0.0791055i
\(529\) −22.8475 −0.993368
\(530\) 9.23136 + 14.9463i 0.400985 + 0.649226i
\(531\) −2.35693 8.79620i −0.102282 0.381722i
\(532\) 0.142592 0.00618217
\(533\) 2.78020 1.60515i 0.120424 0.0695268i
\(534\) −28.0962 + 16.2213i −1.21584 + 0.701965i
\(535\) 14.5736 9.00114i 0.630070 0.389153i
\(536\) 12.3464 3.30819i 0.533281 0.142892i
\(537\) −25.6919 14.8332i −1.10869 0.640102i
\(538\) 4.95945 2.86334i 0.213817 0.123447i
\(539\) −3.25256 5.63361i −0.140098 0.242657i
\(540\) −1.31800 2.13395i −0.0567176 0.0918304i
\(541\) 22.7977 22.7977i 0.980151 0.980151i −0.0196559 0.999807i \(-0.506257\pi\)
0.999807 + 0.0196559i \(0.00625705\pi\)
\(542\) 3.30228 5.71972i 0.141845 0.245683i
\(543\) 39.4073 + 10.5591i 1.69113 + 0.453136i
\(544\) 2.89294i 0.124034i
\(545\) 1.25359 0.0372259i 0.0536978 0.00159458i
\(546\) −0.950017 + 0.548493i −0.0406570 + 0.0234733i
\(547\) 32.5413 1.39137 0.695683 0.718349i \(-0.255102\pi\)
0.695683 + 0.718349i \(0.255102\pi\)
\(548\) −4.05719 15.1416i −0.173315 0.646819i
\(549\) −9.05926 + 9.05926i −0.386640 + 0.386640i
\(550\) 2.44878 4.89049i 0.104416 0.208531i
\(551\) −0.126275 + 0.218715i −0.00537950 + 0.00931757i
\(552\) −0.237550 0.886550i −0.0101108 0.0377341i
\(553\) −2.64858 4.58747i −0.112629 0.195079i
\(554\) 8.89566 0.377940
\(555\) −23.5416 21.6216i −0.999285 0.917785i
\(556\) 13.3571 0.566469
\(557\) −2.04900 3.54898i −0.0868190 0.150375i 0.819346 0.573300i \(-0.194337\pi\)
−0.906165 + 0.422925i \(0.861004\pi\)
\(558\) −0.734956 2.74289i −0.0311132 0.116116i
\(559\) −1.93912 + 3.35866i −0.0820162 + 0.142056i
\(560\) 2.02040 + 1.08783i 0.0853773 + 0.0459692i
\(561\) −5.25851 + 5.25851i −0.222014 + 0.222014i
\(562\) −0.426903 1.59322i −0.0180078 0.0672061i
\(563\) 38.2228 1.61090 0.805449 0.592665i \(-0.201924\pi\)
0.805449 + 0.592665i \(0.201924\pi\)
\(564\) −19.2669 + 11.1238i −0.811284 + 0.468395i
\(565\) 8.11037 + 7.64258i 0.341206 + 0.321526i
\(566\) 32.6198i 1.37111i
\(567\) −10.1146 2.71019i −0.424772 0.113817i
\(568\) 3.63611 6.29793i 0.152568 0.264255i
\(569\) −5.18626 + 5.18626i −0.217420 + 0.217420i −0.807410 0.589991i \(-0.799131\pi\)
0.589991 + 0.807410i \(0.299131\pi\)
\(570\) −0.710595 0.167965i −0.0297636 0.00703530i
\(571\) 1.43605 + 2.48731i 0.0600968 + 0.104091i 0.894508 0.447051i \(-0.147526\pi\)
−0.834412 + 0.551142i \(0.814192\pi\)
\(572\) −0.430913 + 0.248788i −0.0180174 + 0.0104023i
\(573\) 21.3021 + 12.2988i 0.889909 + 0.513789i
\(574\) −6.99557 + 1.87446i −0.291990 + 0.0782384i
\(575\) 1.63024 1.07502i 0.0679858 0.0448315i
\(576\) −2.18472 + 1.26135i −0.0910300 + 0.0525562i
\(577\) 28.7785 16.6152i 1.19806 0.691702i 0.237940 0.971280i \(-0.423528\pi\)
0.960123 + 0.279578i \(0.0901946\pi\)
\(578\) 8.63093 0.358999
\(579\) 3.32980 + 12.4270i 0.138382 + 0.516448i
\(580\) −3.45776 + 2.13563i −0.143575 + 0.0886772i
\(581\) 4.29681 0.178262
\(582\) 19.7591 + 19.7591i 0.819039 + 0.819039i
\(583\) 8.30094 + 2.22423i 0.343790 + 0.0921182i
\(584\) 1.40473 1.40473i 0.0581280 0.0581280i
\(585\) 2.45770 0.737389i 0.101613 0.0304873i
\(586\) 16.9720 + 16.9720i 0.701106 + 0.701106i
\(587\) −2.92762 + 5.07079i −0.120836 + 0.209294i −0.920098 0.391689i \(-0.871891\pi\)
0.799262 + 0.600983i \(0.205224\pi\)
\(588\) −13.4993 + 3.61713i −0.556703 + 0.149168i
\(589\) 0.135456 + 0.0782055i 0.00558136 + 0.00322240i
\(590\) 4.24162 + 6.86752i 0.174625 + 0.282731i
\(591\) 13.1736i 0.541889i
\(592\) 4.24575 4.35587i 0.174499 0.179025i
\(593\) −6.25765 6.25765i −0.256971 0.256971i 0.566850 0.823821i \(-0.308162\pi\)
−0.823821 + 0.566850i \(0.808162\pi\)
\(594\) −1.18516 0.317562i −0.0486277 0.0130297i
\(595\) 3.14702 5.84487i 0.129015 0.239616i
\(596\) 2.26191 + 1.30592i 0.0926515 + 0.0534924i
\(597\) −31.2713 18.0545i −1.27985 0.738922i
\(598\) −0.177656 −0.00726489
\(599\) −10.8652 6.27302i −0.443940 0.256309i 0.261328 0.965250i \(-0.415840\pi\)
−0.705267 + 0.708941i \(0.749173\pi\)
\(600\) −8.78704 7.80099i −0.358729 0.318474i
\(601\) 9.26076 + 16.0401i 0.377754 + 0.654290i 0.990735 0.135808i \(-0.0433631\pi\)
−0.612981 + 0.790098i \(0.710030\pi\)
\(602\) 6.18662 6.18662i 0.252148 0.252148i
\(603\) −22.8005 + 22.8005i −0.928509 + 0.928509i
\(604\) −19.3408 + 11.1664i −0.786966 + 0.454355i
\(605\) 6.29963 + 20.9965i 0.256116 + 0.853630i
\(606\) −4.36932 4.36932i −0.177491 0.177491i
\(607\) 0.390284 + 0.675992i 0.0158412 + 0.0274377i 0.873837 0.486218i \(-0.161624\pi\)
−0.857996 + 0.513656i \(0.828291\pi\)
\(608\) 0.0359636 0.134218i 0.00145852 0.00544326i
\(609\) −1.13444 + 4.23379i −0.0459698 + 0.171562i
\(610\) 5.38361 9.99884i 0.217976 0.404841i
\(611\) 1.11455 + 4.15955i 0.0450897 + 0.168277i
\(612\) 3.64900 + 6.32025i 0.147502 + 0.255481i
\(613\) −20.8106 5.57619i −0.840533 0.225220i −0.187229 0.982316i \(-0.559951\pi\)
−0.653304 + 0.757096i \(0.726617\pi\)
\(614\) −5.22247 + 19.4905i −0.210762 + 0.786574i
\(615\) 37.0697 1.10080i 1.49480 0.0443886i
\(616\) 1.08427 0.290529i 0.0436864 0.0117057i
\(617\) 6.21897 23.2095i 0.250366 0.934380i −0.720243 0.693722i \(-0.755970\pi\)
0.970610 0.240659i \(-0.0773635\pi\)
\(618\) −10.2855 10.2855i −0.413743 0.413743i
\(619\) 6.63573 0.266713 0.133356 0.991068i \(-0.457425\pi\)
0.133356 + 0.991068i \(0.457425\pi\)
\(620\) 1.32265 + 2.14148i 0.0531190 + 0.0860039i
\(621\) −0.309769 0.309769i −0.0124306 0.0124306i
\(622\) −7.34201 + 1.96729i −0.294388 + 0.0788810i
\(623\) 14.1667i 0.567579i
\(624\) 0.276674 + 1.03256i 0.0110758 + 0.0413355i
\(625\) 9.84707 22.9790i 0.393883 0.919161i
\(626\) −16.2812 + 28.1999i −0.650729 + 1.12710i
\(627\) −0.309341 + 0.178598i −0.0123539 + 0.00713251i
\(628\) −2.26808 + 2.26808i −0.0905063 + 0.0905063i
\(629\) −12.6012 12.2827i −0.502444 0.489743i
\(630\) −5.78613 + 0.171822i −0.230525 + 0.00684554i
\(631\) −2.82761 + 10.5528i −0.112565 + 0.420100i −0.999093 0.0425753i \(-0.986444\pi\)
0.886528 + 0.462675i \(0.153110\pi\)
\(632\) −4.98605 + 1.33601i −0.198335 + 0.0531436i
\(633\) 2.80777 + 10.4787i 0.111599 + 0.416492i
\(634\) −25.2620 + 6.76893i −1.00328 + 0.268828i
\(635\) 1.39798 + 47.0773i 0.0554772 + 1.86821i
\(636\) 9.23136 15.9892i 0.366047 0.634012i
\(637\) 2.70513i 0.107181i
\(638\) −0.514565 + 1.92038i −0.0203718 + 0.0760286i
\(639\) 18.3456i 0.725741i
\(640\) 1.53351 1.62737i 0.0606173 0.0643276i
\(641\) 21.2426 + 36.7932i 0.839031 + 1.45324i 0.890706 + 0.454580i \(0.150211\pi\)
−0.0516750 + 0.998664i \(0.516456\pi\)
\(642\) −15.5904 9.00114i −0.615305 0.355246i
\(643\) 18.2603i 0.720117i 0.932930 + 0.360058i \(0.117243\pi\)
−0.932930 + 0.360058i \(0.882757\pi\)
\(644\) 0.387130 + 0.103731i 0.0152551 + 0.00408758i
\(645\) −38.1179 + 23.5429i −1.50089 + 0.927002i
\(646\) −0.388284 0.104040i −0.0152768 0.00409342i
\(647\) 6.92548 11.9953i 0.272269 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788927\pi\)
\(648\) −5.10205 + 8.83700i −0.200427 + 0.347150i
\(649\) 3.81411 + 1.02199i 0.149717 + 0.0401165i
\(650\) −1.89873 + 1.25207i −0.0744745 + 0.0491103i
\(651\) 2.62210 + 0.702589i 0.102768 + 0.0275366i
\(652\) 20.0405i 0.784847i
\(653\) −1.44486 0.834191i −0.0565418 0.0326444i 0.471463 0.881886i \(-0.343726\pi\)
−0.528004 + 0.849242i \(0.677060\pi\)
\(654\) −0.659033 1.14148i −0.0257702 0.0446353i
\(655\) 40.7544 1.21022i 1.59241 0.0472872i
\(656\) 7.05749i 0.275549i
\(657\) −1.29708 + 4.84079i −0.0506041 + 0.188857i
\(658\) 9.71484i 0.378724i
\(659\) −4.01747 + 6.95846i −0.156498 + 0.271063i −0.933604 0.358307i \(-0.883354\pi\)
0.777105 + 0.629371i \(0.216687\pi\)
\(660\) −5.74556 + 0.170617i −0.223646 + 0.00664126i
\(661\) −27.5450 + 7.38067i −1.07138 + 0.287075i −0.751059 0.660235i \(-0.770457\pi\)
−0.320319 + 0.947310i \(0.603790\pi\)
\(662\) 4.54843 + 16.9750i 0.176780 + 0.659751i
\(663\) 2.98713 0.800399i 0.116010 0.0310849i
\(664\) 1.08371 4.04446i 0.0420561 0.156956i
\(665\) 0.218667 0.232051i 0.00847954 0.00899856i
\(666\) −3.78152 + 14.8717i −0.146531 + 0.576268i
\(667\) −0.501937 + 0.501937i −0.0194351 + 0.0194351i
\(668\) −4.22666 + 2.44027i −0.163535 + 0.0944167i
\(669\) 22.1783 38.4139i 0.857463 1.48517i
\(670\) 13.5496 25.1653i 0.523466 0.972220i
\(671\) −1.43781 5.36599i −0.0555061 0.207152i
\(672\) 2.41160i 0.0930294i
\(673\) 42.8128 11.4717i 1.65031 0.442200i 0.690613 0.723224i \(-0.257341\pi\)
0.959701 + 0.281024i \(0.0906740\pi\)
\(674\) 15.5402 + 15.5402i 0.598586 + 0.598586i
\(675\) −5.49389 1.12755i −0.211460 0.0433994i
\(676\) −12.7931 −0.492042
\(677\) 36.0280 + 36.0280i 1.38467 + 1.38467i 0.836118 + 0.548549i \(0.184820\pi\)
0.548549 + 0.836118i \(0.315180\pi\)
\(678\) 3.03127 11.3129i 0.116415 0.434468i
\(679\) −11.7863 + 3.15814i −0.452318 + 0.121198i
\(680\) −4.70789 4.43635i −0.180539 0.170126i
\(681\) 6.22800 23.2432i 0.238658 0.890682i
\(682\) 1.18934 + 0.318684i 0.0455423 + 0.0122030i
\(683\) −20.5569 35.6056i −0.786588 1.36241i −0.928046 0.372467i \(-0.878512\pi\)
0.141457 0.989944i \(-0.454821\pi\)
\(684\) 0.0907254 + 0.338592i 0.00346897 + 0.0129464i
\(685\) −30.8629 16.6173i −1.17921 0.634914i
\(686\) 3.43868 12.8333i 0.131290 0.489979i
\(687\) −0.380729 + 1.42090i −0.0145257 + 0.0542106i
\(688\) −4.26294 7.38363i −0.162523 0.281498i
\(689\) −2.52698 2.52698i −0.0962701 0.0962701i
\(690\) −1.80703 0.972951i −0.0687926 0.0370396i
\(691\) 28.4645 16.4340i 1.08284 0.625179i 0.151181 0.988506i \(-0.451693\pi\)
0.931662 + 0.363327i \(0.118359\pi\)
\(692\) −11.2972 + 11.2972i −0.429457 + 0.429457i
\(693\) −2.00236 + 2.00236i −0.0760635 + 0.0760635i
\(694\) −6.16936 10.6856i −0.234186 0.405622i
\(695\) 20.4833 21.7371i 0.776976 0.824533i
\(696\) 3.69902 + 2.13563i 0.140211 + 0.0809509i
\(697\) 20.4169 0.773343
\(698\) −19.7732 11.4160i −0.748425 0.432104i
\(699\) −12.9313 7.46588i −0.489106 0.282386i
\(700\) 4.86860 1.61974i 0.184016 0.0612205i
\(701\) −43.3904 11.6264i −1.63883 0.439124i −0.682376 0.731001i \(-0.739053\pi\)
−0.956456 + 0.291878i \(0.905720\pi\)
\(702\) 0.360787 + 0.360787i 0.0136170 + 0.0136170i
\(703\) −0.431943 0.726510i −0.0162911 0.0274008i
\(704\) 1.09386i 0.0412265i
\(705\) −11.4435 + 48.4129i −0.430987 + 1.82334i
\(706\) 14.7854 + 8.53634i 0.556455 + 0.321269i
\(707\) 2.60631 0.698358i 0.0980203 0.0262645i
\(708\) 4.24162 7.34670i 0.159410 0.276106i
\(709\) 1.37574 + 1.37574i 0.0516669 + 0.0516669i 0.732468 0.680801i \(-0.238368\pi\)
−0.680801 + 0.732468i \(0.738368\pi\)
\(710\) −4.67307 15.5752i −0.175377 0.584529i
\(711\) 9.20796 9.20796i 0.345325 0.345325i
\(712\) −13.3347 3.57303i −0.499741 0.133905i
\(713\) 0.310863 + 0.310863i 0.0116419 + 0.0116419i
\(714\) −6.97660 −0.261093
\(715\) −0.255939 + 1.08278i −0.00957157 + 0.0404935i
\(716\) −3.26728 12.1937i −0.122104 0.455699i
\(717\) 41.5917 1.55327
\(718\) 17.6647 10.1987i 0.659243 0.380614i
\(719\) 32.0917 18.5282i 1.19682 0.690984i 0.236975 0.971516i \(-0.423844\pi\)
0.959845 + 0.280532i \(0.0905107\pi\)
\(720\) −1.29760 + 5.48965i −0.0483589 + 0.204587i
\(721\) 6.13533 1.64396i 0.228491 0.0612241i
\(722\) 16.4378 + 9.49035i 0.611750 + 0.353194i
\(723\) 7.40531 4.27546i 0.275406 0.159006i
\(724\) 8.68014 + 15.0344i 0.322595 + 0.558751i
\(725\) −1.82703 + 8.90207i −0.0678543 + 0.330615i
\(726\) 16.2907 16.2907i 0.604605 0.604605i
\(727\) −4.06077 + 7.03346i −0.150606 + 0.260856i −0.931450 0.363869i \(-0.881456\pi\)
0.780845 + 0.624725i \(0.214789\pi\)
\(728\) −0.450888 0.120815i −0.0167110 0.00447771i
\(729\) 17.8338i 0.660512i
\(730\) −0.131853 4.44018i −0.00488010 0.164338i
\(731\) −21.3604 + 12.3324i −0.790042 + 0.456131i
\(732\) −11.9349 −0.441126
\(733\) −12.9773 48.4318i −0.479326 1.78887i −0.604353 0.796717i \(-0.706568\pi\)
0.125027 0.992153i \(-0.460098\pi\)
\(734\) 9.43149 9.43149i 0.348122 0.348122i
\(735\) −14.8149 + 27.5154i −0.546457 + 1.01492i
\(736\) 0.195278 0.338232i 0.00719805 0.0124674i
\(737\) −3.61871 13.5052i −0.133297 0.497471i
\(738\) −8.90195 15.4186i −0.327685 0.567568i
\(739\) 12.7958 0.470701 0.235351 0.971911i \(-0.424376\pi\)
0.235351 + 0.971911i \(0.424376\pi\)
\(740\) −0.577715 13.5892i −0.0212372 0.499549i
\(741\) 0.148538 0.00545670
\(742\) 4.03106 + 6.98200i 0.147985 + 0.256317i
\(743\) 12.4148 + 46.3327i 0.455455 + 1.69978i 0.686746 + 0.726897i \(0.259038\pi\)
−0.231291 + 0.972885i \(0.574295\pi\)
\(744\) 1.32265 2.29090i 0.0484908 0.0839885i
\(745\) 5.59388 1.67834i 0.204944 0.0614897i
\(746\) −12.3383 + 12.3383i −0.451737 + 0.451737i
\(747\) 2.73387 + 10.2030i 0.100027 + 0.373307i
\(748\) −3.16448 −0.115705
\(749\) 6.80788 3.93053i 0.248754 0.143618i
\(750\) −26.1701 + 2.33690i −0.955598 + 0.0853314i
\(751\) 8.75628i 0.319521i −0.987156 0.159761i \(-0.948928\pi\)
0.987156 0.159761i \(-0.0510722\pi\)
\(752\) −9.14429 2.45020i −0.333458 0.0893498i
\(753\) 26.3034 45.5588i 0.958549 1.66026i
\(754\) 0.584603 0.584603i 0.0212900 0.0212900i
\(755\) −11.4874 + 48.5986i −0.418069 + 1.76868i
\(756\) −0.575531 0.996849i −0.0209319 0.0362551i
\(757\) −42.8500 + 24.7395i −1.55741 + 0.899172i −0.559908 + 0.828555i \(0.689163\pi\)
−0.997504 + 0.0706169i \(0.977503\pi\)
\(758\) −21.7843 12.5772i −0.791240 0.456823i
\(759\) −0.969765 + 0.259848i −0.0352003 + 0.00943188i
\(760\) −0.163272 0.264351i −0.00592251 0.00958902i
\(761\) 3.14495 1.81574i 0.114004 0.0658204i −0.441914 0.897058i \(-0.645700\pi\)
0.555918 + 0.831237i \(0.312367\pi\)
\(762\) 42.8672 24.7494i 1.55291 0.896575i
\(763\) 0.575560 0.0208367
\(764\) 2.70902 + 10.1102i 0.0980090 + 0.365775i
\(765\) 15.8812 + 3.75389i 0.574186 + 0.135722i
\(766\) 10.7373 0.387953
\(767\) −1.16109 1.16109i −0.0419246 0.0419246i
\(768\) −2.26997 0.608236i −0.0819104 0.0219478i
\(769\) 36.4223 36.4223i 1.31342 1.31342i 0.394543 0.918877i \(-0.370903\pi\)
0.918877 0.394543i \(-0.129097\pi\)
\(770\) 1.18994 2.21004i 0.0428823 0.0796442i
\(771\) −36.3337 36.3337i −1.30852 1.30852i
\(772\) −2.73726 + 4.74108i −0.0985163 + 0.170635i
\(773\) 20.9607 5.61641i 0.753905 0.202008i 0.138656 0.990341i \(-0.455722\pi\)
0.615250 + 0.788332i \(0.289055\pi\)
\(774\) 18.6267 + 10.7541i 0.669522 + 0.386549i
\(775\) 5.51329 + 1.13153i 0.198043 + 0.0406458i
\(776\) 11.8906i 0.426849i
\(777\) −10.5046 10.2391i −0.376850 0.367324i
\(778\) −21.5625 21.5625i −0.773052 0.773052i
\(779\) 0.947243 + 0.253813i 0.0339385 + 0.00909379i
\(780\) 2.10464 + 1.13319i 0.0753583 + 0.0405747i
\(781\) −6.88907 3.97741i −0.246510 0.142323i
\(782\) −0.978483 0.564927i −0.0349905 0.0202018i
\(783\) 2.03868 0.0728566
\(784\) −5.15019 2.97346i −0.183935 0.106195i
\(785\) 0.212891 + 7.16914i 0.00759840 + 0.255878i
\(786\) −21.4253 37.1097i −0.764214 1.32366i
\(787\) −19.1328 + 19.1328i −0.682009 + 0.682009i −0.960453 0.278443i \(-0.910182\pi\)
0.278443 + 0.960453i \(0.410182\pi\)
\(788\) 3.96381 3.96381i 0.141205 0.141205i
\(789\) 17.5162 10.1130i 0.623592 0.360031i
\(790\) −5.47198 + 10.1630i −0.194684 + 0.361582i
\(791\) 3.61633 + 3.61633i 0.128582 + 0.128582i
\(792\) 1.37974 + 2.38979i 0.0490271 + 0.0849174i
\(793\) −0.597908 + 2.23142i −0.0212323 + 0.0792402i
\(794\) 5.16248 19.2666i 0.183210 0.683747i
\(795\) −11.8640 39.5425i −0.420773 1.40243i
\(796\) −3.97682 14.8417i −0.140955 0.526050i
\(797\) 27.7366 + 48.0413i 0.982482 + 1.70171i 0.652632 + 0.757675i \(0.273665\pi\)
0.329850 + 0.944033i \(0.393002\pi\)
\(798\) −0.323680 0.0867298i −0.0114582 0.00307020i
\(799\) −7.08828 + 26.4538i −0.250765 + 0.935869i
\(800\) −0.296693 4.99119i −0.0104897 0.176465i
\(801\) 33.6395 9.01368i 1.18859 0.318483i
\(802\) 3.50302 13.0735i 0.123696 0.461640i
\(803\) −1.53658 1.53658i −0.0542247 0.0542247i
\(804\) −30.0380 −1.05936
\(805\) 0.762478 0.470933i 0.0268738 0.0165982i
\(806\) −0.362060 0.362060i −0.0127530 0.0127530i
\(807\) −12.9994 + 3.48317i −0.457599 + 0.122613i
\(808\) 2.62938i 0.0925011i
\(809\) 5.75814 + 21.4897i 0.202445 + 0.755537i 0.990213 + 0.139564i \(0.0445701\pi\)
−0.787768 + 0.615973i \(0.788763\pi\)
\(810\) 6.55707 + 21.8546i 0.230392 + 0.767891i
\(811\) 18.3417 31.7688i 0.644066 1.11555i −0.340451 0.940262i \(-0.610580\pi\)
0.984516 0.175292i \(-0.0560870\pi\)
\(812\) −1.61525 + 0.932566i −0.0566842 + 0.0327267i
\(813\) −10.9750 + 10.9750i −0.384910 + 0.384910i
\(814\) −4.76472 4.64428i −0.167004 0.162782i
\(815\) −32.6134 30.7323i −1.14240 1.07651i
\(816\) −1.75959 + 6.56687i −0.0615978 + 0.229886i
\(817\) −1.14433 + 0.306622i −0.0400350 + 0.0107273i
\(818\) 7.15628 + 26.7076i 0.250213 + 0.933809i
\(819\) 1.13746 0.304780i 0.0397459 0.0106499i
\(820\) 11.4852 + 10.8227i 0.401080 + 0.377946i
\(821\) 21.5031 37.2444i 0.750462 1.29984i −0.197137 0.980376i \(-0.563164\pi\)
0.947599 0.319462i \(-0.103502\pi\)
\(822\) 36.8387i 1.28490i
\(823\) −9.17050 + 34.2248i −0.319663 + 1.19300i 0.599905 + 0.800071i \(0.295205\pi\)
−0.919569 + 0.392929i \(0.871462\pi\)
\(824\) 6.18963i 0.215626i
\(825\) −8.53322 + 9.61182i −0.297089 + 0.334641i
\(826\) 1.85219 + 3.20809i 0.0644459 + 0.111624i
\(827\) −31.6761 18.2882i −1.10149 0.635943i −0.164875 0.986315i \(-0.552722\pi\)
−0.936611 + 0.350372i \(0.886055\pi\)
\(828\) 0.985256i 0.0342400i
\(829\) 19.8506 + 5.31896i 0.689440 + 0.184735i 0.586496 0.809952i \(-0.300507\pi\)
0.102944 + 0.994687i \(0.467174\pi\)
\(830\) −4.91997 7.96583i −0.170775 0.276498i
\(831\) −20.1929 5.41066i −0.700482 0.187694i
\(832\) −0.227440 + 0.393937i −0.00788505 + 0.0136573i
\(833\) −8.60204 + 14.8992i −0.298043 + 0.516225i
\(834\) −30.3202 8.12428i −1.04990 0.281321i
\(835\) −2.51041 + 10.6205i −0.0868762 + 0.367539i
\(836\) −0.146816 0.0393393i −0.00507775 0.00136058i
\(837\) 1.26261i 0.0436422i
\(838\) 0.732348 + 0.422822i 0.0252986 + 0.0146061i
\(839\) −23.8810 41.3632i −0.824465 1.42802i −0.902328 0.431051i \(-0.858143\pi\)
0.0778627 0.996964i \(-0.475190\pi\)
\(840\) −3.92457 3.69821i −0.135411 0.127600i
\(841\) 25.6966i 0.886090i
\(842\) −1.83382 + 6.84391i −0.0631976 + 0.235857i
\(843\) 3.87622i 0.133504i
\(844\) −2.30813 + 3.99779i −0.0794489 + 0.137610i
\(845\) −19.6183 + 20.8191i −0.674891 + 0.716200i
\(846\) 23.0683 6.18112i 0.793104 0.212511i
\(847\) 2.60378 + 9.71746i 0.0894671 + 0.333896i
\(848\) 7.58864 2.03337i 0.260595 0.0698262i
\(849\) 19.8405 74.0458i 0.680925 2.54125i
\(850\) −14.4392 + 0.858313i −0.495260 + 0.0294399i
\(851\) −0.644189 2.28666i −0.0220825 0.0783856i
\(852\) −12.0845 + 12.0845i −0.414007 + 0.414007i
\(853\) −8.69210 + 5.01838i −0.297612 + 0.171826i −0.641369 0.767232i \(-0.721633\pi\)
0.343758 + 0.939058i \(0.388300\pi\)
\(854\) 2.60580 4.51339i 0.0891688 0.154445i
\(855\) 0.690144 + 0.371590i 0.0236024 + 0.0127081i
\(856\) −1.98266 7.39938i −0.0677659 0.252906i
\(857\) 12.1187i 0.413968i 0.978344 + 0.206984i \(0.0663648\pi\)
−0.978344 + 0.206984i \(0.933635\pi\)
\(858\) 1.12948 0.302643i 0.0385598 0.0103321i
\(859\) −4.37193 4.37193i −0.149168 0.149168i 0.628578 0.777746i \(-0.283637\pi\)
−0.777746 + 0.628578i \(0.783637\pi\)
\(860\) −18.5532 4.38547i −0.632659 0.149543i
\(861\) 17.0198 0.580034
\(862\) −11.2437 11.2437i −0.382961 0.382961i
\(863\) 8.65353 32.2954i 0.294570 1.09935i −0.646989 0.762499i \(-0.723972\pi\)
0.941559 0.336849i \(-0.109361\pi\)
\(864\) −1.08346 + 0.290312i −0.0368601 + 0.00987663i
\(865\) 1.06040 + 35.7093i 0.0360548 + 1.21415i
\(866\) −7.03781 + 26.2655i −0.239154 + 0.892536i
\(867\) −19.5919 5.24964i −0.665376 0.178287i
\(868\) 0.577563 + 1.00037i 0.0196038 + 0.0339547i
\(869\) 1.46141 + 5.45406i 0.0495750 + 0.185016i
\(870\) 9.14795 2.74468i 0.310145 0.0930533i
\(871\) −1.50483 + 5.61610i −0.0509892 + 0.190294i
\(872\) 0.145164 0.541758i 0.00491586 0.0183462i
\(873\) −14.9983 25.9777i −0.507614 0.879213i
\(874\) −0.0383739 0.0383739i −0.00129802 0.00129802i
\(875\) 4.83012 10.4069i 0.163288 0.351818i
\(876\) −4.04309 + 2.33428i −0.136603 + 0.0788679i
\(877\) 8.44407 8.44407i 0.285136 0.285136i −0.550017 0.835153i \(-0.685379\pi\)
0.835153 + 0.550017i \(0.185379\pi\)
\(878\) 2.66610 2.66610i 0.0899765 0.0899765i
\(879\) −28.2029 48.8488i −0.951259 1.64763i
\(880\) −1.78013 1.67745i −0.0600080 0.0565469i
\(881\) −25.1839 14.5399i −0.848466 0.489862i 0.0116671 0.999932i \(-0.496286\pi\)
−0.860133 + 0.510070i \(0.829620\pi\)
\(882\) 15.0023 0.505154
\(883\) 12.0749 + 6.97147i 0.406354 + 0.234609i 0.689222 0.724550i \(-0.257953\pi\)
−0.282868 + 0.959159i \(0.591286\pi\)
\(884\) 1.13963 + 0.657968i 0.0383300 + 0.0221299i
\(885\) −5.45126 18.1689i −0.183242 0.610742i
\(886\) 21.9683 + 5.88638i 0.738038 + 0.197757i
\(887\) 13.4845 + 13.4845i 0.452766 + 0.452766i 0.896272 0.443506i \(-0.146265\pi\)
−0.443506 + 0.896272i \(0.646265\pi\)
\(888\) −12.2871 + 7.30525i −0.412328 + 0.245148i
\(889\) 21.6146i 0.724931i
\(890\) −26.2636 + 16.2213i −0.880359 + 0.543740i
\(891\) 9.66648 + 5.58094i 0.323839 + 0.186969i
\(892\) 18.2317 4.88516i 0.610441 0.163567i
\(893\) −0.657724 + 1.13921i −0.0220099 + 0.0381222i
\(894\) −4.34016 4.34016i −0.145157 0.145157i
\(895\) −24.8541 13.3820i −0.830780 0.447311i
\(896\) 0.725629 0.725629i 0.0242415 0.0242415i
\(897\) 0.403273 + 0.108057i 0.0134649 + 0.00360791i
\(898\) −2.21772 2.21772i −0.0740063 0.0740063i
\(899\) −2.04588 −0.0682340
\(900\) 6.94382 + 10.5301i 0.231461 + 0.351004i
\(901\) −5.88241 21.9534i −0.195971 0.731375i
\(902\) 7.71993 0.257046
\(903\) −17.8064 + 10.2805i −0.592558 + 0.342114i
\(904\) 4.31602 2.49186i 0.143549 0.0828780i
\(905\) 37.7778 + 8.92964i 1.25577 + 0.296831i
\(906\) 50.6948 13.5836i 1.68422 0.451286i
\(907\) −6.14368 3.54706i −0.203998 0.117778i 0.394521 0.918887i \(-0.370910\pi\)
−0.598519 + 0.801109i \(0.704244\pi\)
\(908\) 8.86763 5.11973i 0.294283 0.169904i
\(909\) 3.31656 + 5.74445i 0.110003 + 0.190531i
\(910\) −0.888054 + 0.548493i −0.0294387 + 0.0181824i
\(911\) −0.294391 + 0.294391i −0.00975361 + 0.00975361i −0.711967 0.702213i \(-0.752195\pi\)
0.702213 + 0.711967i \(0.252195\pi\)
\(912\) −0.163272 + 0.282796i −0.00540649 + 0.00936432i
\(913\) −4.42409 1.18543i −0.146416 0.0392321i
\(914\) 36.9041i 1.22068i
\(915\) −18.3023 + 19.4225i −0.605054 + 0.642089i
\(916\) −0.542093 + 0.312978i −0.0179113 + 0.0103411i
\(917\) 18.7116 0.617910
\(918\) 0.839855 + 3.13438i 0.0277194 + 0.103450i
\(919\) −17.6615 + 17.6615i −0.582600 + 0.582600i −0.935617 0.353017i \(-0.885156\pi\)
0.353017 + 0.935617i \(0.385156\pi\)
\(920\) −0.250969 0.836473i −0.00827419 0.0275777i
\(921\) 23.7097 41.0664i 0.781260 1.35318i
\(922\) 6.37384 + 23.7875i 0.209911 + 0.783399i
\(923\) 1.65399 + 2.86480i 0.0544417 + 0.0942959i
\(924\) −2.63796 −0.0867825
\(925\) −23.0006 19.8990i −0.756256 0.654275i
\(926\) 1.62457 0.0533867
\(927\) 7.80728 + 13.5226i 0.256425 + 0.444141i
\(928\) 0.470410 + 1.75559i 0.0154420 + 0.0576302i
\(929\) 17.4188 30.1703i 0.571492 0.989854i −0.424921 0.905231i \(-0.639698\pi\)
0.996413 0.0846232i \(-0.0269687\pi\)
\(930\) −1.69985 5.66557i −0.0557403 0.185781i
\(931\) −0.584312 + 0.584312i −0.0191501 + 0.0191501i
\(932\) −1.64449 6.13733i −0.0538671 0.201035i
\(933\) 17.8627 0.584798
\(934\) 26.5154 15.3087i 0.867611 0.500915i
\(935\) −4.85276 + 5.14979i −0.158702 + 0.168416i
\(936\) 1.14752i 0.0375079i
\(937\) −32.1374 8.61118i −1.04988 0.281315i −0.307679 0.951490i \(-0.599552\pi\)
−0.742203 + 0.670175i \(0.766219\pi\)
\(938\) 6.55834 11.3594i 0.214138 0.370897i
\(939\) 54.1101 54.1101i 1.76581 1.76581i
\(940\) −18.0103 + 11.1238i −0.587430 + 0.362817i
\(941\) 5.33349 + 9.23787i 0.173867 + 0.301146i 0.939768 0.341812i \(-0.111040\pi\)
−0.765902 + 0.642958i \(0.777707\pi\)
\(942\) 6.52799 3.76894i 0.212694 0.122799i
\(943\) 2.38707 + 1.37817i 0.0777336 + 0.0448795i
\(944\) 3.48682 0.934291i 0.113486 0.0304086i
\(945\) −2.50483 0.592074i −0.0814821 0.0192602i
\(946\) −8.07669 + 4.66308i −0.262596 + 0.151610i
\(947\) −20.5826 + 11.8834i −0.668846 + 0.386158i −0.795639 0.605771i \(-0.792865\pi\)
0.126793 + 0.991929i \(0.459531\pi\)
\(948\) 12.1308 0.393989
\(949\) 0.233883 + 0.872864i 0.00759217 + 0.0283344i
\(950\) −0.680578 0.139680i −0.0220809 0.00453181i
\(951\) 61.4609 1.99301
\(952\) −2.09920 2.09920i −0.0680353 0.0680353i
\(953\) 47.8057 + 12.8095i 1.54858 + 0.414941i 0.929026 0.370014i \(-0.120647\pi\)
0.619553 + 0.784955i \(0.287314\pi\)
\(954\) −14.0143 + 14.0143i −0.453728 + 0.453728i
\(955\) 20.6074 + 11.0955i 0.666840 + 0.359043i
\(956\) 12.5146 + 12.5146i 0.404750 + 0.404750i
\(957\) 2.33609 4.04622i 0.0755150 0.130796i
\(958\) −4.02643 + 1.07888i −0.130088 + 0.0348570i
\(959\) −13.9312 8.04319i −0.449863 0.259728i
\(960\) −4.47084 + 2.76135i −0.144296 + 0.0891221i
\(961\) 29.7329i 0.959127i
\(962\) 0.750284 + 2.66326i 0.0241901 + 0.0858668i
\(963\) 13.6648 + 13.6648i 0.440341 + 0.440341i
\(964\) 3.51464 + 0.941745i 0.113199 + 0.0303316i
\(965\) 3.51789 + 11.7251i 0.113245 + 0.377443i
\(966\) −0.815680 0.470933i −0.0262441 0.0151520i
\(967\) −47.6596 27.5163i −1.53263 0.884863i −0.999239 0.0389927i \(-0.987585\pi\)
−0.533388 0.845870i \(-0.679082\pi\)
\(968\) 9.80346 0.315095
\(969\) 0.818111 + 0.472337i 0.0262815 + 0.0151736i
\(970\) 19.3505 + 18.2344i 0.621308 + 0.585472i
\(971\) −18.4759 32.0011i −0.592919 1.02697i −0.993837 0.110852i \(-0.964642\pi\)
0.400918 0.916114i \(-0.368691\pi\)
\(972\) 14.5770 14.5770i 0.467558 0.467558i
\(973\) 9.69232 9.69232i 0.310721 0.310721i
\(974\) −7.28152 + 4.20399i −0.233315 + 0.134704i
\(975\) 5.07162 1.68728i 0.162422 0.0540363i
\(976\) −3.59110 3.59110i −0.114948 0.114948i
\(977\) 8.53326 + 14.7800i 0.273003 + 0.472855i 0.969629 0.244579i \(-0.0786497\pi\)
−0.696626 + 0.717434i \(0.745316\pi\)
\(978\) −12.1894 + 45.4913i −0.389773 + 1.45465i
\(979\) −3.90841 + 14.5864i −0.124913 + 0.466183i
\(980\) −12.7368 + 3.82145i −0.406862 + 0.122072i
\(981\) 0.366204 + 1.36669i 0.0116920 + 0.0436351i
\(982\) 5.44899 + 9.43792i 0.173884 + 0.301176i
\(983\) −25.8979 6.93932i −0.826014 0.221330i −0.179040 0.983842i \(-0.557299\pi\)
−0.646974 + 0.762512i \(0.723966\pi\)
\(984\) 4.29262 16.0203i 0.136844 0.510707i
\(985\) −0.372059 12.5292i −0.0118548 0.399212i
\(986\) 5.07882 1.36087i 0.161743 0.0433388i
\(987\) −5.90891 + 22.0524i −0.188083 + 0.701934i
\(988\) 0.0446939 + 0.0446939i 0.00142190 + 0.00142190i
\(989\) −3.32984 −0.105883
\(990\) 6.00493 + 1.41940i 0.190849 + 0.0451116i
\(991\) 21.3229 + 21.3229i 0.677345 + 0.677345i 0.959399 0.282053i \(-0.0910155\pi\)
−0.282053 + 0.959399i \(0.591015\pi\)
\(992\) 1.08729 0.291337i 0.0345214 0.00924997i
\(993\) 41.2991i 1.31059i
\(994\) −1.93149 7.20842i −0.0612632 0.228637i
\(995\) −30.2515 16.2881i −0.959037 0.516369i
\(996\) −4.91997 + 8.52165i −0.155895 + 0.270019i
\(997\) 6.93928 4.00639i 0.219769 0.126884i −0.386074 0.922468i \(-0.626169\pi\)
0.605843 + 0.795584i \(0.292836\pi\)
\(998\) 10.8657 10.8657i 0.343949 0.343949i
\(999\) −3.33555 + 5.95201i −0.105532 + 0.188313i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.q.d.103.3 yes 12
5.2 odd 4 370.2.r.d.177.3 yes 12
37.23 odd 12 370.2.r.d.23.3 yes 12
185.97 even 12 inner 370.2.q.d.97.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.q.d.97.3 12 185.97 even 12 inner
370.2.q.d.103.3 yes 12 1.1 even 1 trivial
370.2.r.d.23.3 yes 12 37.23 odd 12
370.2.r.d.177.3 yes 12 5.2 odd 4