Properties

Label 3700.1.cb.a.599.1
Level 37003700
Weight 11
Character 3700.599
Analytic conductor 1.8471.847
Analytic rank 00
Dimension 1212
Projective image D9D_{9}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3700,1,Mod(599,3700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3700.599");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3700=225237 3700 = 2^{2} \cdot 5^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3700.cb (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.846540546741.84654054674
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 148)
Projective image: D9D_{9}
Projective field: Galois closure of 9.1.899194740203776.1

Embedding invariants

Embedding label 599.1
Root 0.342020+0.939693i-0.342020 + 0.939693i of defining polynomial
Character χ\chi == 3700.599
Dual form 3700.1.cb.a.2199.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.3420200.939693i)q2+(0.766044+0.642788i)q4+(0.866025+0.500000i)q8+(0.7660440.642788i)q9+(0.642788+0.766044i)q13+(0.1736480.984808i)q16+(0.223238+0.266044i)q17+(0.342020+0.939693i)q18+(0.5000000.866025i)q26+(0.7660441.32683i)q29+(0.984808+0.173648i)q32+(0.326352+0.118782i)q34+1.00000q36+(0.642788+0.766044i)q37+(0.2660440.223238i)q41+(0.9396930.342020i)q49+(0.9848080.173648i)q52+(0.984808+0.173648i)q53+(1.508810.266044i)q58+(1.173650.984808i)q61+(0.500000+0.866025i)q640.347296iq68+(0.3420200.939693i)q72+1.00000iq73+(0.5000000.866025i)q74+(0.173648+0.984808i)q81+(0.3007670.173648i)q82+(0.0603074+0.342020i)q89+(1.326830.766044i)q97+(0.6427880.766044i)q98+O(q100)q+(-0.342020 - 0.939693i) q^{2} +(-0.766044 + 0.642788i) q^{4} +(0.866025 + 0.500000i) q^{8} +(-0.766044 - 0.642788i) q^{9} +(0.642788 + 0.766044i) q^{13} +(0.173648 - 0.984808i) q^{16} +(-0.223238 + 0.266044i) q^{17} +(-0.342020 + 0.939693i) q^{18} +(0.500000 - 0.866025i) q^{26} +(0.766044 - 1.32683i) q^{29} +(-0.984808 + 0.173648i) q^{32} +(0.326352 + 0.118782i) q^{34} +1.00000 q^{36} +(0.642788 + 0.766044i) q^{37} +(0.266044 - 0.223238i) q^{41} +(0.939693 - 0.342020i) q^{49} +(-0.984808 - 0.173648i) q^{52} +(0.984808 + 0.173648i) q^{53} +(-1.50881 - 0.266044i) q^{58} +(1.17365 - 0.984808i) q^{61} +(0.500000 + 0.866025i) q^{64} -0.347296i q^{68} +(-0.342020 - 0.939693i) q^{72} +1.00000i q^{73} +(0.500000 - 0.866025i) q^{74} +(0.173648 + 0.984808i) q^{81} +(-0.300767 - 0.173648i) q^{82} +(-0.0603074 + 0.342020i) q^{89} +(1.32683 - 0.766044i) q^{97} +(-0.642788 - 0.766044i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q26+6q34+12q366q41+12q61+6q64+6q7412q89+O(q100) 12 q + 6 q^{26} + 6 q^{34} + 12 q^{36} - 6 q^{41} + 12 q^{61} + 6 q^{64} + 6 q^{74} - 12 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3700Z)×\left(\mathbb{Z}/3700\mathbb{Z}\right)^\times.

nn 10011001 17771777 18511851
χ(n)\chi(n) e(89)e\left(\frac{8}{9}\right) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.342020 0.939693i −0.342020 0.939693i
33 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
44 −0.766044 + 0.642788i −0.766044 + 0.642788i
55 0 0
66 0 0
77 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
88 0.866025 + 0.500000i 0.866025 + 0.500000i
99 −0.766044 0.642788i −0.766044 0.642788i
1010 0 0
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0 0
1313 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
1414 0 0
1515 0 0
1616 0.173648 0.984808i 0.173648 0.984808i
1717 −0.223238 + 0.266044i −0.223238 + 0.266044i −0.866025 0.500000i 0.833333π-0.833333\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
1818 −0.342020 + 0.939693i −0.342020 + 0.939693i
1919 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0 0
2525 0 0
2626 0.500000 0.866025i 0.500000 0.866025i
2727 0 0
2828 0 0
2929 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −0.984808 + 0.173648i −0.984808 + 0.173648i
3333 0 0
3434 0.326352 + 0.118782i 0.326352 + 0.118782i
3535 0 0
3636 1.00000 1.00000
3737 0.642788 + 0.766044i 0.642788 + 0.766044i
3838 0 0
3939 0 0
4040 0 0
4141 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i 0.666667π-0.666667\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4848 0 0
4949 0.939693 0.342020i 0.939693 0.342020i
5050 0 0
5151 0 0
5252 −0.984808 0.173648i −0.984808 0.173648i
5353 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i 0.277778π-0.277778\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −1.50881 0.266044i −1.50881 0.266044i
5959 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
6060 0 0
6161 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i 0.444444π-0.444444\pi
1.00000 00
6262 0 0
6363 0 0
6464 0.500000 + 0.866025i 0.500000 + 0.866025i
6565 0 0
6666 0 0
6767 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
6868 0.347296i 0.347296i
6969 0 0
7070 0 0
7171 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
7272 −0.342020 0.939693i −0.342020 0.939693i
7373 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
7474 0.500000 0.866025i 0.500000 0.866025i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8080 0 0
8181 0.173648 + 0.984808i 0.173648 + 0.984808i
8282 −0.300767 0.173648i −0.300767 0.173648i
8383 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i 0.111111π0.111111\pi
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.32683 0.766044i 1.32683 0.766044i 0.342020 0.939693i 0.388889π-0.388889\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
9898 −0.642788 0.766044i −0.642788 0.766044i
9999 0 0
100100 0 0
101101 −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i 0.888889π-0.888889\pi
0.173648 0.984808i 0.444444π-0.444444\pi
102102 0 0
103103 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
104104 0.173648 + 0.984808i 0.173648 + 0.984808i
105105 0 0
106106 −0.173648 0.984808i −0.173648 0.984808i
107107 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
108108 0 0
109109 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i 0.555556π-0.555556\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i 0.944444π-0.944444\pi
0.642788 0.766044i 0.277778π-0.277778\pi
114114 0 0
115115 0 0
116116 0.266044 + 1.50881i 0.266044 + 1.50881i
117117 1.00000i 1.00000i
118118 0 0
119119 0 0
120120 0 0
121121 −0.500000 0.866025i −0.500000 0.866025i
122122 −1.32683 0.766044i −1.32683 0.766044i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
128128 0.642788 0.766044i 0.642788 0.766044i
129129 0 0
130130 0 0
131131 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.326352 + 0.118782i −0.326352 + 0.118782i
137137 1.62760 + 0.939693i 1.62760 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
138138 0 0
139139 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −0.766044 + 0.642788i −0.766044 + 0.642788i
145145 0 0
146146 0.939693 0.342020i 0.939693 0.342020i
147147 0 0
148148 −0.984808 0.173648i −0.984808 0.173648i
149149 1.87939 1.87939 0.939693 0.342020i 0.111111π-0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
150150 0 0
151151 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
152152 0 0
153153 0.342020 0.0603074i 0.342020 0.0603074i
154154 0 0
155155 0 0
156156 0 0
157157 −0.223238 + 0.266044i −0.223238 + 0.266044i −0.866025 0.500000i 0.833333π-0.833333\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0.866025 0.500000i 0.866025 0.500000i
163163 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
164164 −0.0603074 + 0.342020i −0.0603074 + 0.342020i
165165 0 0
166166 0 0
167167 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 −0.642788 1.76604i −0.642788 1.76604i −0.642788 0.766044i 0.722222π-0.722222\pi
1.00000i 0.5π-0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0.342020 0.0603074i 0.342020 0.0603074i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 1.32683 + 0.766044i 1.32683 + 0.766044i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
194194 −1.17365 0.984808i −1.17365 0.984808i
195195 0 0
196196 −0.500000 + 0.866025i −0.500000 + 0.866025i
197197 −0.118782 0.326352i −0.118782 0.326352i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0 0
202202 −0.984808 + 1.17365i −0.984808 + 1.17365i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0.866025 0.500000i 0.866025 0.500000i
209209 0 0
210210 0 0
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 −0.866025 + 0.500000i −0.866025 + 0.500000i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −0.223238 0.266044i −0.223238 0.266044i
219219 0 0
220220 0 0
221221 −0.347296 −0.347296
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 −0.766044 + 0.642788i −0.766044 + 0.642788i
227227 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
228228 0 0
229229 −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 0.866025i 0.333333π-0.333333\pi
230230 0 0
231231 0 0
232232 1.32683 0.766044i 1.32683 0.766044i
233233 −1.62760 0.939693i −1.62760 0.939693i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.642788 0.766044i 0.722222π-0.722222\pi
234234 −0.939693 + 0.342020i −0.939693 + 0.342020i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
240240 0 0
241241 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
242242 −0.642788 + 0.766044i −0.642788 + 0.766044i
243243 0 0
244244 −0.266044 + 1.50881i −0.266044 + 1.50881i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.939693 0.342020i −0.939693 0.342020i
257257 −0.524005 1.43969i −0.524005 1.43969i −0.866025 0.500000i 0.833333π-0.833333\pi
0.342020 0.939693i 0.388889π-0.388889\pi
258258 0 0
259259 0 0
260260 0 0
261261 −1.43969 + 0.524005i −1.43969 + 0.524005i
262262 0 0
263263 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
270270 0 0
271271 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
272272 0.223238 + 0.266044i 0.223238 + 0.266044i
273273 0 0
274274 0.326352 1.85083i 0.326352 1.85083i
275275 0 0
276276 0 0
277277 −0.642788 + 1.76604i −0.642788 + 1.76604i 1.00000i 0.5π0.5\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
278278 0 0
279279 0 0
280280 0 0
281281 −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.866025 + 0.500000i 0.866025 + 0.500000i
289289 0.152704 + 0.866025i 0.152704 + 0.866025i
290290 0 0
291291 0 0
292292 −0.642788 0.766044i −0.642788 0.766044i
293293 −0.524005 + 1.43969i −0.524005 + 1.43969i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 0 0
295295 0 0
296296 0.173648 + 0.984808i 0.173648 + 0.984808i
297297 0 0
298298 −0.642788 1.76604i −0.642788 1.76604i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 −0.173648 0.300767i −0.173648 0.300767i
307307 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
312312 0 0
313313 −1.20805 + 1.43969i −1.20805 + 1.43969i −0.342020 + 0.939693i 0.611111π0.611111\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
314314 0.326352 + 0.118782i 0.326352 + 0.118782i
315315 0 0
316316 0 0
317317 0.342020 + 0.0603074i 0.342020 + 0.0603074i 0.342020 0.939693i 0.388889π-0.388889\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 −0.766044 0.642788i −0.766044 0.642788i
325325 0 0
326326 0 0
327327 0 0
328328 0.342020 0.0603074i 0.342020 0.0603074i
329329 0 0
330330 0 0
331331 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
332332 0 0
333333 1.00000i 1.00000i
334334 0 0
335335 0 0
336336 0 0
337337 0.984808 + 1.17365i 0.984808 + 1.17365i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −1.43969 + 1.20805i −1.43969 + 1.20805i
347347 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
348348 0 0
349349 −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.984808 1.17365i 0.984808 1.17365i 1.00000i 0.5π-0.5\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
354354 0 0
355355 0 0
356356 −0.173648 0.300767i −0.173648 0.300767i
357357 0 0
358358 0 0
359359 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 0.766044 + 0.642788i 0.766044 + 0.642788i
362362 1.62760 + 0.939693i 1.62760 + 0.939693i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
368368 0 0
369369 −0.347296 −0.347296
370370 0 0
371371 0 0
372372 0 0
373373 −0.118782 + 0.326352i −0.118782 + 0.326352i −0.984808 0.173648i 0.944444π-0.944444\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
374374 0 0
375375 0 0
376376 0 0
377377 1.50881 0.266044i 1.50881 0.266044i
378378 0 0
379379 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
384384 0 0
385385 0 0
386386 0.266044 1.50881i 0.266044 1.50881i
387387 0 0
388388 −0.524005 + 1.43969i −0.524005 + 1.43969i
389389 −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i 0.777778π-0.777778\pi
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0.984808 + 0.173648i 0.984808 + 0.173648i
393393 0 0
394394 −0.266044 + 0.223238i −0.266044 + 0.223238i
395395 0 0
396396 0 0
397397 −1.62760 + 0.939693i −1.62760 + 0.939693i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
398398 0 0
399399 0 0
400400 0 0
401401 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 0 0
404404 1.43969 + 0.524005i 1.43969 + 0.524005i
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i 0.777778π0.777778\pi
−1.00000 1.00000π1.00000\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −0.766044 0.642788i −0.766044 0.642788i
417417 0 0
418418 0 0
419419 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
420420 0 0
421421 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
422422 0 0
423423 0 0
424424 0.766044 + 0.642788i 0.766044 + 0.642788i
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
432432 0 0
433433 0.300767 + 0.173648i 0.300767 + 0.173648i 0.642788 0.766044i 0.277778π-0.277778\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
434434 0 0
435435 0 0
436436 −0.173648 + 0.300767i −0.173648 + 0.300767i
437437 0 0
438438 0 0
439439 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
440440 0 0
441441 −0.939693 0.342020i −0.939693 0.342020i
442442 0.118782 + 0.326352i 0.118782 + 0.326352i
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
450450 0 0
451451 0 0
452452 0.866025 + 0.500000i 0.866025 + 0.500000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.223238 + 0.266044i 0.223238 + 0.266044i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
458458 −1.32683 + 0.766044i −1.32683 + 0.766044i
459459 0 0
460460 0 0
461461 −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
462462 0 0
463463 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
464464 −1.17365 0.984808i −1.17365 0.984808i
465465 0 0
466466 −0.326352 + 1.85083i −0.326352 + 1.85083i
467467 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
468468 0.642788 + 0.766044i 0.642788 + 0.766044i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −0.642788 0.766044i −0.642788 0.766044i
478478 0 0
479479 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
480480 0 0
481481 −0.173648 + 0.984808i −0.173648 + 0.984808i
482482 1.00000i 1.00000i
483483 0 0
484484 0.939693 + 0.342020i 0.939693 + 0.342020i
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 1.50881 0.266044i 1.50881 0.266044i
489489 0 0
490490 0 0
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0.181985 + 0.500000i 0.181985 + 0.500000i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 −1.17365 + 0.984808i −1.17365 + 0.984808i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
522522 0.984808 + 1.17365i 0.984808 + 1.17365i
523523 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.500000 0.866025i 0.500000 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0.342020 + 0.0603074i 0.342020 + 0.0603074i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −0.642788 + 0.766044i −0.642788 + 0.766044i
539539 0 0
540540 0 0
541541 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
542542 0 0
543543 0 0
544544 0.173648 0.300767i 0.173648 0.300767i
545545 0 0
546546 0 0
547547 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
548548 −1.85083 + 0.326352i −1.85083 + 0.326352i
549549 −1.53209 −1.53209
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.87939 1.87939
555555 0 0
556556 0 0
557557 −0.118782 0.326352i −0.118782 0.326352i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.85083 0.326352i 1.85083 0.326352i
563563 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
570570 0 0
571571 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0.173648 0.984808i 0.173648 0.984808i
577577 −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
578578 0.761570 0.439693i 0.761570 0.439693i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 −0.500000 + 0.866025i −0.500000 + 0.866025i
585585 0 0
586586 1.53209 1.53209
587587 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.866025 0.500000i 0.866025 0.500000i
593593 1.53209i 1.53209i −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 0.766044i 0.277778π-0.277778\pi
594594 0 0
595595 0 0
596596 −1.43969 + 1.20805i −1.43969 + 1.20805i
597597 0 0
598598 0 0
599599 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
600600 0 0
601601 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 00
0.173648 + 0.984808i 0.444444π0.444444\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.223238 + 0.266044i −0.223238 + 0.266044i
613613 1.85083 + 0.326352i 1.85083 + 0.326352i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
618618 0 0
619619 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 1.76604 + 0.642788i 1.76604 + 0.642788i
627627 0 0
628628 0.347296i 0.347296i
629629 −0.347296 −0.347296
630630 0 0
631631 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
632632 0 0
633633 0 0
634634 −0.0603074 0.342020i −0.0603074 0.342020i
635635 0 0
636636 0 0
637637 0.866025 + 0.500000i 0.866025 + 0.500000i
638638 0 0
639639 0 0
640640 0 0
641641 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i 0.222222π-0.222222\pi
1.00000 00
642642 0 0
643643 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
648648 −0.342020 + 0.939693i −0.342020 + 0.939693i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.223238 0.266044i −0.223238 0.266044i 0.642788 0.766044i 0.277778π-0.277778\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0 0
655655 0 0
656656 −0.173648 0.300767i −0.173648 0.300767i
657657 0.642788 0.766044i 0.642788 0.766044i
658658 0 0
659659 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
660660 0 0
661661 −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 0.984808i 0.444444π-0.444444\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −0.939693 + 0.342020i −0.939693 + 0.342020i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
674674 0.766044 1.32683i 0.766044 1.32683i
675675 0 0
676676 0 0
677677 −1.32683 0.766044i −1.32683 0.766044i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0.500000 + 0.866025i 0.500000 + 0.866025i
690690 0 0
691691 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
692692 1.62760 + 0.939693i 1.62760 + 0.939693i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.120615i 0.120615i
698698 1.50881 0.266044i 1.50881 0.266044i
699699 0 0
700700 0 0
701701 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −1.43969 0.524005i −1.43969 0.524005i
707707 0 0
708708 0 0
709709 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 −0.223238 + 0.266044i −0.223238 + 0.266044i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
720720 0 0
721721 0 0
722722 0.342020 0.939693i 0.342020 0.939693i
723723 0 0
724724 0.326352 1.85083i 0.326352 1.85083i
725725 0 0
726726 0 0
727727 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
728728 0 0
729729 0.500000 0.866025i 0.500000 0.866025i
730730 0 0
731731 0 0
732732 0 0
733733 −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0.118782 + 0.326352i 0.118782 + 0.326352i
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
744744 0 0
745745 0 0
746746 0.347296 0.347296
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 0 0
754754 −0.766044 1.32683i −0.766044 1.32683i
755755 0 0
756756 0 0
757757 −0.984808 + 1.17365i −0.984808 + 1.17365i 1.00000i 0.5π0.5\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
758758 0 0
759759 0 0
760760 0 0
761761 −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
770770 0 0
771771 0 0
772772 −1.50881 + 0.266044i −1.50881 + 0.266044i
773773 −0.984808 1.17365i −0.984808 1.17365i −0.984808 0.173648i 0.944444π-0.944444\pi
1.00000i 0.5π-0.5\pi
774774 0 0
775775 0 0
776776 1.53209 1.53209
777777 0 0
778778 1.87939i 1.87939i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.173648 0.984808i −0.173648 0.984808i
785785 0 0
786786 0 0
787787 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
788788 0.300767 + 0.173648i 0.300767 + 0.173648i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 1.50881 + 0.266044i 1.50881 + 0.266044i
794794 1.43969 + 1.20805i 1.43969 + 1.20805i
795795 0 0
796796 0 0
797797 −1.28558 + 1.53209i −1.28558 + 1.53209i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
798798 0 0
799799 0 0
800800 0 0
801801 0.266044 0.223238i 0.266044 0.223238i
802802 0.342020 + 0.939693i 0.342020 + 0.939693i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 1.53209i 1.53209i
809809 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
810810 0 0
811811 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 1.20805 + 1.43969i 1.20805 + 1.43969i
819819 0 0
820820 0 0
821821 −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i 0.888889π-0.888889\pi
0.766044 0.642788i 0.222222π-0.222222\pi
822822 0 0
823823 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
828828 0 0
829829 −0.347296 + 1.96962i −0.347296 + 1.96962i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
830830 0 0
831831 0 0
832832 −0.342020 + 0.939693i −0.342020 + 0.939693i
833833 −0.118782 + 0.326352i −0.118782 + 0.326352i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
840840 0 0
841841 −0.673648 1.16679i −0.673648 1.16679i
842842 −0.223238 + 0.266044i −0.223238 + 0.266044i
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0.342020 0.939693i 0.342020 0.939693i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.118782 + 0.326352i 0.118782 + 0.326352i 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.87939i 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 0.939693i 0.388889π-0.388889\pi
858858 0 0
859859 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
864864 0 0
865865 0 0
866866 0.0603074 0.342020i 0.0603074 0.342020i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.342020 + 0.0603074i 0.342020 + 0.0603074i
873873 −1.50881 0.266044i −1.50881 0.266044i
874874 0 0
875875 0 0
876876 0 0
877877 −1.32683 0.766044i −1.32683 0.766044i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
878878 0 0
879879 0 0
880880 0 0
881881 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 1.00000i 1.00000i
883883 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
884884 0.266044 0.223238i 0.266044 0.223238i
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.866025 0.500000i 0.866025 0.500000i
899899 0 0
900900 0 0
901901 −0.266044 + 0.223238i −0.266044 + 0.223238i
902902 0 0
903903 0 0
904904 0.173648 0.984808i 0.173648 0.984808i
905905 0 0
906906 0 0
907907 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
908908 0 0
909909 −0.266044 + 1.50881i −0.266044 + 1.50881i
910910 0 0
911911 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
912912 0 0
913913 0 0
914914 0.173648 0.300767i 0.173648 0.300767i
915915 0 0
916916 1.17365 + 0.984808i 1.17365 + 0.984808i
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 −0.342020 + 0.939693i −0.342020 + 0.939693i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 −0.524005 + 1.43969i −0.524005 + 1.43969i
929929 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i 0.333333π-0.333333\pi
0.939693 0.342020i 0.111111π-0.111111\pi
930930 0 0
931931 0 0
932932 1.85083 0.326352i 1.85083 0.326352i
933933 0 0
934934 0 0
935935 0 0
936936 0.500000 0.866025i 0.500000 0.866025i
937937 −0.524005 1.43969i −0.524005 1.43969i −0.866025 0.500000i 0.833333π-0.833333\pi
0.342020 0.939693i 0.388889π-0.388889\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
1.00000 00
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
948948 0 0
949949 −0.766044 + 0.642788i −0.766044 + 0.642788i
950950 0 0
951951 0 0
952952 0 0
953953 −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i 0.944444π-0.944444\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
954954 −0.500000 + 0.866025i −0.500000 + 0.866025i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000 1.00000
962962 0.984808 0.173648i 0.984808 0.173648i
963963 0 0
964964 −0.939693 + 0.342020i −0.939693 + 0.342020i
965965 0 0
966966 0 0
967967 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
968968 1.00000i 1.00000i
969969 0 0
970970 0 0
971971 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −0.766044 1.32683i −0.766044 1.32683i
977977 −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.326352 0.118782i −0.326352 0.118782i
982982 0 0
983983 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
984984 0 0
985985 0 0
986986 0.407604 0.342020i 0.407604 0.342020i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.684040 1.87939i −0.684040 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3700.1.cb.a.599.1 12
4.3 odd 2 CM 3700.1.cb.a.599.1 12
5.2 odd 4 3700.1.ce.a.451.1 6
5.3 odd 4 148.1.p.a.7.1 6
5.4 even 2 inner 3700.1.cb.a.599.2 12
15.8 even 4 1332.1.cz.a.451.1 6
20.3 even 4 148.1.p.a.7.1 6
20.7 even 4 3700.1.ce.a.451.1 6
20.19 odd 2 inner 3700.1.cb.a.599.2 12
37.16 even 9 inner 3700.1.cb.a.2199.2 12
40.3 even 4 2368.1.ck.a.895.1 6
40.13 odd 4 2368.1.ck.a.895.1 6
60.23 odd 4 1332.1.cz.a.451.1 6
148.127 odd 18 inner 3700.1.cb.a.2199.2 12
185.53 odd 36 148.1.p.a.127.1 yes 6
185.127 odd 36 3700.1.ce.a.2051.1 6
185.164 even 18 inner 3700.1.cb.a.2199.1 12
555.53 even 36 1332.1.cz.a.127.1 6
740.127 even 36 3700.1.ce.a.2051.1 6
740.423 even 36 148.1.p.a.127.1 yes 6
740.719 odd 18 inner 3700.1.cb.a.2199.1 12
1480.53 odd 36 2368.1.ck.a.127.1 6
1480.1163 even 36 2368.1.ck.a.127.1 6
2220.1163 odd 36 1332.1.cz.a.127.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
148.1.p.a.7.1 6 5.3 odd 4
148.1.p.a.7.1 6 20.3 even 4
148.1.p.a.127.1 yes 6 185.53 odd 36
148.1.p.a.127.1 yes 6 740.423 even 36
1332.1.cz.a.127.1 6 555.53 even 36
1332.1.cz.a.127.1 6 2220.1163 odd 36
1332.1.cz.a.451.1 6 15.8 even 4
1332.1.cz.a.451.1 6 60.23 odd 4
2368.1.ck.a.127.1 6 1480.53 odd 36
2368.1.ck.a.127.1 6 1480.1163 even 36
2368.1.ck.a.895.1 6 40.3 even 4
2368.1.ck.a.895.1 6 40.13 odd 4
3700.1.cb.a.599.1 12 1.1 even 1 trivial
3700.1.cb.a.599.1 12 4.3 odd 2 CM
3700.1.cb.a.599.2 12 5.4 even 2 inner
3700.1.cb.a.599.2 12 20.19 odd 2 inner
3700.1.cb.a.2199.1 12 185.164 even 18 inner
3700.1.cb.a.2199.1 12 740.719 odd 18 inner
3700.1.cb.a.2199.2 12 37.16 even 9 inner
3700.1.cb.a.2199.2 12 148.127 odd 18 inner
3700.1.ce.a.451.1 6 5.2 odd 4
3700.1.ce.a.451.1 6 20.7 even 4
3700.1.ce.a.2051.1 6 185.127 odd 36
3700.1.ce.a.2051.1 6 740.127 even 36