Properties

Label 3700.2.a.g
Level $3700$
Weight $2$
Character orbit 3700.a
Self dual yes
Analytic conductor $29.545$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3700,2,Mod(1,3700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3700.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5446487479\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 148)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - \beta q^{7} + (\beta + 1) q^{9} + \beta q^{11} - 2 q^{13} + ( - 2 \beta - 2) q^{17} + ( - 2 \beta - 2) q^{19} + ( - \beta - 4) q^{21} + 2 q^{23} + ( - \beta + 4) q^{27} + ( - 4 \beta + 2) q^{29} + \cdots + (2 \beta + 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{7} + 3 q^{9} + q^{11} - 4 q^{13} - 6 q^{17} - 6 q^{19} - 9 q^{21} + 4 q^{23} + 7 q^{27} - 10 q^{31} + 9 q^{33} + 2 q^{37} - 2 q^{39} + 5 q^{41} - 17 q^{47} - 5 q^{49} - 20 q^{51} - 7 q^{53}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 −1.56155 0 0 0 1.56155 0 −0.561553 0
1.2 0 2.56155 0 0 0 −2.56155 0 3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3700.2.a.g 2
5.b even 2 1 148.2.a.b 2
5.c odd 4 2 3700.2.d.f 4
15.d odd 2 1 1332.2.a.f 2
20.d odd 2 1 592.2.a.h 2
35.c odd 2 1 7252.2.a.e 2
40.e odd 2 1 2368.2.a.t 2
40.f even 2 1 2368.2.a.x 2
60.h even 2 1 5328.2.a.z 2
185.d even 2 1 5476.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
148.2.a.b 2 5.b even 2 1
592.2.a.h 2 20.d odd 2 1
1332.2.a.f 2 15.d odd 2 1
2368.2.a.t 2 40.e odd 2 1
2368.2.a.x 2 40.f even 2 1
3700.2.a.g 2 1.a even 1 1 trivial
3700.2.d.f 4 5.c odd 4 2
5328.2.a.z 2 60.h even 2 1
5476.2.a.d 2 185.d even 2 1
7252.2.a.e 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3700))\):

\( T_{3}^{2} - T_{3} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - T - 4 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$23$ \( (T - 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 68 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 8 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$43$ \( T^{2} - 68 \) Copy content Toggle raw display
$47$ \( T^{2} + 17T + 68 \) Copy content Toggle raw display
$53$ \( T^{2} + 7T - 94 \) Copy content Toggle raw display
$59$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 14T + 32 \) Copy content Toggle raw display
$67$ \( T^{2} - 12T - 32 \) Copy content Toggle raw display
$71$ \( T^{2} - 15T + 52 \) Copy content Toggle raw display
$73$ \( T^{2} - 3T - 206 \) Copy content Toggle raw display
$79$ \( T^{2} - 6T - 144 \) Copy content Toggle raw display
$83$ \( T^{2} + 7T + 8 \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 64 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
show more
show less