Properties

Label 3700.2.a.h.1.1
Level $3700$
Weight $2$
Character 3700.1
Self dual yes
Analytic conductor $29.545$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3700,2,Mod(1,3700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3700.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3700 = 2^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5446487479\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3700.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.732051 q^{3} -4.73205 q^{7} -2.46410 q^{9} +1.46410 q^{11} -4.00000 q^{13} +4.00000 q^{17} -4.19615 q^{19} +3.46410 q^{21} -4.92820 q^{23} +4.00000 q^{27} +0.535898 q^{29} -0.196152 q^{31} -1.07180 q^{33} -1.00000 q^{37} +2.92820 q^{39} -8.92820 q^{41} -6.00000 q^{43} -4.73205 q^{47} +15.3923 q^{49} -2.92820 q^{51} +0.928203 q^{53} +3.07180 q^{57} -13.6603 q^{59} +14.0000 q^{61} +11.6603 q^{63} +8.73205 q^{67} +3.60770 q^{69} +8.00000 q^{71} -10.3923 q^{73} -6.92820 q^{77} -4.19615 q^{79} +4.46410 q^{81} +15.6603 q^{83} -0.392305 q^{87} -2.00000 q^{89} +18.9282 q^{91} +0.143594 q^{93} +14.0000 q^{97} -3.60770 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 6 q^{7} + 2 q^{9} - 4 q^{11} - 8 q^{13} + 8 q^{17} + 2 q^{19} + 4 q^{23} + 8 q^{27} + 8 q^{29} + 10 q^{31} - 16 q^{33} - 2 q^{37} - 8 q^{39} - 4 q^{41} - 12 q^{43} - 6 q^{47} + 10 q^{49}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.732051 −0.422650 −0.211325 0.977416i \(-0.567778\pi\)
−0.211325 + 0.977416i \(0.567778\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.73205 −1.78855 −0.894274 0.447521i \(-0.852307\pi\)
−0.894274 + 0.447521i \(0.852307\pi\)
\(8\) 0 0
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) 1.46410 0.441443 0.220722 0.975337i \(-0.429159\pi\)
0.220722 + 0.975337i \(0.429159\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −4.19615 −0.962663 −0.481332 0.876539i \(-0.659847\pi\)
−0.481332 + 0.876539i \(0.659847\pi\)
\(20\) 0 0
\(21\) 3.46410 0.755929
\(22\) 0 0
\(23\) −4.92820 −1.02760 −0.513801 0.857910i \(-0.671763\pi\)
−0.513801 + 0.857910i \(0.671763\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 0.535898 0.0995138 0.0497569 0.998761i \(-0.484155\pi\)
0.0497569 + 0.998761i \(0.484155\pi\)
\(30\) 0 0
\(31\) −0.196152 −0.0352300 −0.0176150 0.999845i \(-0.505607\pi\)
−0.0176150 + 0.999845i \(0.505607\pi\)
\(32\) 0 0
\(33\) −1.07180 −0.186576
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 2.92820 0.468888
\(40\) 0 0
\(41\) −8.92820 −1.39435 −0.697176 0.716900i \(-0.745560\pi\)
−0.697176 + 0.716900i \(0.745560\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.73205 −0.690241 −0.345120 0.938558i \(-0.612162\pi\)
−0.345120 + 0.938558i \(0.612162\pi\)
\(48\) 0 0
\(49\) 15.3923 2.19890
\(50\) 0 0
\(51\) −2.92820 −0.410030
\(52\) 0 0
\(53\) 0.928203 0.127499 0.0637493 0.997966i \(-0.479694\pi\)
0.0637493 + 0.997966i \(0.479694\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.07180 0.406869
\(58\) 0 0
\(59\) −13.6603 −1.77841 −0.889207 0.457505i \(-0.848743\pi\)
−0.889207 + 0.457505i \(0.848743\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 11.6603 1.46905
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.73205 1.06679 0.533395 0.845866i \(-0.320916\pi\)
0.533395 + 0.845866i \(0.320916\pi\)
\(68\) 0 0
\(69\) 3.60770 0.434315
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −10.3923 −1.21633 −0.608164 0.793812i \(-0.708094\pi\)
−0.608164 + 0.793812i \(0.708094\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.92820 −0.789542
\(78\) 0 0
\(79\) −4.19615 −0.472104 −0.236052 0.971740i \(-0.575854\pi\)
−0.236052 + 0.971740i \(0.575854\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) 15.6603 1.71894 0.859468 0.511189i \(-0.170795\pi\)
0.859468 + 0.511189i \(0.170795\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.392305 −0.0420595
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 18.9282 1.98421
\(92\) 0 0
\(93\) 0.143594 0.0148900
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) −3.60770 −0.362587
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) 14.3923 1.41812 0.709058 0.705150i \(-0.249120\pi\)
0.709058 + 0.705150i \(0.249120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.1962 −0.985699 −0.492850 0.870114i \(-0.664045\pi\)
−0.492850 + 0.870114i \(0.664045\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0.732051 0.0694832
\(112\) 0 0
\(113\) 9.85641 0.927213 0.463606 0.886041i \(-0.346555\pi\)
0.463606 + 0.886041i \(0.346555\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.85641 0.911225
\(118\) 0 0
\(119\) −18.9282 −1.73515
\(120\) 0 0
\(121\) −8.85641 −0.805128
\(122\) 0 0
\(123\) 6.53590 0.589322
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.6603 1.74457 0.872283 0.489002i \(-0.162639\pi\)
0.872283 + 0.489002i \(0.162639\pi\)
\(128\) 0 0
\(129\) 4.39230 0.386721
\(130\) 0 0
\(131\) −13.2679 −1.15923 −0.579613 0.814892i \(-0.696796\pi\)
−0.579613 + 0.814892i \(0.696796\pi\)
\(132\) 0 0
\(133\) 19.8564 1.72177
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.3205 −1.13805 −0.569024 0.822321i \(-0.692679\pi\)
−0.569024 + 0.822321i \(0.692679\pi\)
\(138\) 0 0
\(139\) −5.07180 −0.430184 −0.215092 0.976594i \(-0.569005\pi\)
−0.215092 + 0.976594i \(0.569005\pi\)
\(140\) 0 0
\(141\) 3.46410 0.291730
\(142\) 0 0
\(143\) −5.85641 −0.489737
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.2679 −0.929365
\(148\) 0 0
\(149\) 2.53590 0.207749 0.103874 0.994590i \(-0.466876\pi\)
0.103874 + 0.994590i \(0.466876\pi\)
\(150\) 0 0
\(151\) 8.39230 0.682956 0.341478 0.939890i \(-0.389073\pi\)
0.341478 + 0.939890i \(0.389073\pi\)
\(152\) 0 0
\(153\) −9.85641 −0.796843
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.535898 −0.0427693 −0.0213847 0.999771i \(-0.506807\pi\)
−0.0213847 + 0.999771i \(0.506807\pi\)
\(158\) 0 0
\(159\) −0.679492 −0.0538872
\(160\) 0 0
\(161\) 23.3205 1.83791
\(162\) 0 0
\(163\) −8.53590 −0.668583 −0.334292 0.942470i \(-0.608497\pi\)
−0.334292 + 0.942470i \(0.608497\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.3923 1.11371 0.556855 0.830610i \(-0.312008\pi\)
0.556855 + 0.830610i \(0.312008\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 10.3397 0.790700
\(172\) 0 0
\(173\) 11.4641 0.871600 0.435800 0.900044i \(-0.356466\pi\)
0.435800 + 0.900044i \(0.356466\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.0000 0.751646
\(178\) 0 0
\(179\) 1.26795 0.0947710 0.0473855 0.998877i \(-0.484911\pi\)
0.0473855 + 0.998877i \(0.484911\pi\)
\(180\) 0 0
\(181\) 19.3205 1.43608 0.718041 0.696001i \(-0.245039\pi\)
0.718041 + 0.696001i \(0.245039\pi\)
\(182\) 0 0
\(183\) −10.2487 −0.757607
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.85641 0.428263
\(188\) 0 0
\(189\) −18.9282 −1.37682
\(190\) 0 0
\(191\) −16.5885 −1.20030 −0.600149 0.799888i \(-0.704892\pi\)
−0.600149 + 0.799888i \(0.704892\pi\)
\(192\) 0 0
\(193\) 4.92820 0.354740 0.177370 0.984144i \(-0.443241\pi\)
0.177370 + 0.984144i \(0.443241\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.3205 1.80401 0.902006 0.431724i \(-0.142095\pi\)
0.902006 + 0.431724i \(0.142095\pi\)
\(198\) 0 0
\(199\) −11.1244 −0.788585 −0.394292 0.918985i \(-0.629010\pi\)
−0.394292 + 0.918985i \(0.629010\pi\)
\(200\) 0 0
\(201\) −6.39230 −0.450878
\(202\) 0 0
\(203\) −2.53590 −0.177985
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.1436 0.844038
\(208\) 0 0
\(209\) −6.14359 −0.424961
\(210\) 0 0
\(211\) 2.92820 0.201586 0.100793 0.994907i \(-0.467862\pi\)
0.100793 + 0.994907i \(0.467862\pi\)
\(212\) 0 0
\(213\) −5.85641 −0.401274
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.928203 0.0630105
\(218\) 0 0
\(219\) 7.60770 0.514080
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 0 0
\(223\) 2.19615 0.147065 0.0735326 0.997293i \(-0.476573\pi\)
0.0735326 + 0.997293i \(0.476573\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.46410 0.495410 0.247705 0.968836i \(-0.420324\pi\)
0.247705 + 0.968836i \(0.420324\pi\)
\(228\) 0 0
\(229\) 20.9282 1.38297 0.691487 0.722389i \(-0.256956\pi\)
0.691487 + 0.722389i \(0.256956\pi\)
\(230\) 0 0
\(231\) 5.07180 0.333700
\(232\) 0 0
\(233\) 11.4641 0.751038 0.375519 0.926815i \(-0.377464\pi\)
0.375519 + 0.926815i \(0.377464\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.07180 0.199535
\(238\) 0 0
\(239\) −30.4449 −1.96931 −0.984657 0.174500i \(-0.944169\pi\)
−0.984657 + 0.174500i \(0.944169\pi\)
\(240\) 0 0
\(241\) −23.4641 −1.51146 −0.755728 0.654886i \(-0.772717\pi\)
−0.755728 + 0.654886i \(0.772717\pi\)
\(242\) 0 0
\(243\) −15.2679 −0.979439
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.7846 1.06798
\(248\) 0 0
\(249\) −11.4641 −0.726508
\(250\) 0 0
\(251\) −13.2679 −0.837466 −0.418733 0.908110i \(-0.637526\pi\)
−0.418733 + 0.908110i \(0.637526\pi\)
\(252\) 0 0
\(253\) −7.21539 −0.453628
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.9282 −0.931196 −0.465598 0.884996i \(-0.654161\pi\)
−0.465598 + 0.884996i \(0.654161\pi\)
\(258\) 0 0
\(259\) 4.73205 0.294035
\(260\) 0 0
\(261\) −1.32051 −0.0817374
\(262\) 0 0
\(263\) −17.1244 −1.05593 −0.527967 0.849265i \(-0.677045\pi\)
−0.527967 + 0.849265i \(0.677045\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.46410 0.0896016
\(268\) 0 0
\(269\) 8.39230 0.511688 0.255844 0.966718i \(-0.417647\pi\)
0.255844 + 0.966718i \(0.417647\pi\)
\(270\) 0 0
\(271\) 21.8564 1.32768 0.663841 0.747874i \(-0.268925\pi\)
0.663841 + 0.747874i \(0.268925\pi\)
\(272\) 0 0
\(273\) −13.8564 −0.838628
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −12.7846 −0.768153 −0.384076 0.923301i \(-0.625480\pi\)
−0.384076 + 0.923301i \(0.625480\pi\)
\(278\) 0 0
\(279\) 0.483340 0.0289368
\(280\) 0 0
\(281\) 14.3923 0.858573 0.429286 0.903168i \(-0.358765\pi\)
0.429286 + 0.903168i \(0.358765\pi\)
\(282\) 0 0
\(283\) −15.4641 −0.919245 −0.459623 0.888114i \(-0.652015\pi\)
−0.459623 + 0.888114i \(0.652015\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.2487 2.49386
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −10.2487 −0.600790
\(292\) 0 0
\(293\) 12.9282 0.755274 0.377637 0.925954i \(-0.376737\pi\)
0.377637 + 0.925954i \(0.376737\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.85641 0.339823
\(298\) 0 0
\(299\) 19.7128 1.14002
\(300\) 0 0
\(301\) 28.3923 1.63651
\(302\) 0 0
\(303\) −6.92820 −0.398015
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.73205 −0.270072 −0.135036 0.990841i \(-0.543115\pi\)
−0.135036 + 0.990841i \(0.543115\pi\)
\(308\) 0 0
\(309\) −10.5359 −0.599366
\(310\) 0 0
\(311\) 15.8038 0.896154 0.448077 0.893995i \(-0.352109\pi\)
0.448077 + 0.893995i \(0.352109\pi\)
\(312\) 0 0
\(313\) −15.8564 −0.896257 −0.448129 0.893969i \(-0.647909\pi\)
−0.448129 + 0.893969i \(0.647909\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.53590 −0.479424 −0.239712 0.970844i \(-0.577053\pi\)
−0.239712 + 0.970844i \(0.577053\pi\)
\(318\) 0 0
\(319\) 0.784610 0.0439297
\(320\) 0 0
\(321\) 7.46410 0.416606
\(322\) 0 0
\(323\) −16.7846 −0.933921
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.46410 −0.0809650
\(328\) 0 0
\(329\) 22.3923 1.23453
\(330\) 0 0
\(331\) −5.66025 −0.311116 −0.155558 0.987827i \(-0.549718\pi\)
−0.155558 + 0.987827i \(0.549718\pi\)
\(332\) 0 0
\(333\) 2.46410 0.135032
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.53590 −0.247086 −0.123543 0.992339i \(-0.539426\pi\)
−0.123543 + 0.992339i \(0.539426\pi\)
\(338\) 0 0
\(339\) −7.21539 −0.391886
\(340\) 0 0
\(341\) −0.287187 −0.0155521
\(342\) 0 0
\(343\) −39.7128 −2.14429
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.7846 −0.793679 −0.396840 0.917888i \(-0.629893\pi\)
−0.396840 + 0.917888i \(0.629893\pi\)
\(348\) 0 0
\(349\) 26.2487 1.40506 0.702531 0.711653i \(-0.252053\pi\)
0.702531 + 0.711653i \(0.252053\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 13.8564 0.733359
\(358\) 0 0
\(359\) 1.46410 0.0772723 0.0386362 0.999253i \(-0.487699\pi\)
0.0386362 + 0.999253i \(0.487699\pi\)
\(360\) 0 0
\(361\) −1.39230 −0.0732792
\(362\) 0 0
\(363\) 6.48334 0.340287
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −24.0526 −1.25553 −0.627767 0.778402i \(-0.716031\pi\)
−0.627767 + 0.778402i \(0.716031\pi\)
\(368\) 0 0
\(369\) 22.0000 1.14527
\(370\) 0 0
\(371\) −4.39230 −0.228037
\(372\) 0 0
\(373\) 32.2487 1.66977 0.834887 0.550421i \(-0.185533\pi\)
0.834887 + 0.550421i \(0.185533\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.14359 −0.110401
\(378\) 0 0
\(379\) 20.3923 1.04748 0.523741 0.851877i \(-0.324536\pi\)
0.523741 + 0.851877i \(0.324536\pi\)
\(380\) 0 0
\(381\) −14.3923 −0.737340
\(382\) 0 0
\(383\) 15.8564 0.810225 0.405112 0.914267i \(-0.367232\pi\)
0.405112 + 0.914267i \(0.367232\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14.7846 0.751544
\(388\) 0 0
\(389\) 7.07180 0.358554 0.179277 0.983799i \(-0.442624\pi\)
0.179277 + 0.983799i \(0.442624\pi\)
\(390\) 0 0
\(391\) −19.7128 −0.996920
\(392\) 0 0
\(393\) 9.71281 0.489947
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −29.7128 −1.49124 −0.745622 0.666370i \(-0.767847\pi\)
−0.745622 + 0.666370i \(0.767847\pi\)
\(398\) 0 0
\(399\) −14.5359 −0.727705
\(400\) 0 0
\(401\) 23.8564 1.19133 0.595666 0.803232i \(-0.296888\pi\)
0.595666 + 0.803232i \(0.296888\pi\)
\(402\) 0 0
\(403\) 0.784610 0.0390842
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.46410 −0.0725728
\(408\) 0 0
\(409\) 7.46410 0.369076 0.184538 0.982825i \(-0.440921\pi\)
0.184538 + 0.982825i \(0.440921\pi\)
\(410\) 0 0
\(411\) 9.75129 0.480996
\(412\) 0 0
\(413\) 64.6410 3.18078
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.71281 0.181817
\(418\) 0 0
\(419\) −13.4641 −0.657764 −0.328882 0.944371i \(-0.606672\pi\)
−0.328882 + 0.944371i \(0.606672\pi\)
\(420\) 0 0
\(421\) 18.7846 0.915506 0.457753 0.889079i \(-0.348654\pi\)
0.457753 + 0.889079i \(0.348654\pi\)
\(422\) 0 0
\(423\) 11.6603 0.566941
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −66.2487 −3.20600
\(428\) 0 0
\(429\) 4.28719 0.206987
\(430\) 0 0
\(431\) 19.5167 0.940084 0.470042 0.882644i \(-0.344239\pi\)
0.470042 + 0.882644i \(0.344239\pi\)
\(432\) 0 0
\(433\) −25.3205 −1.21683 −0.608413 0.793621i \(-0.708194\pi\)
−0.608413 + 0.793621i \(0.708194\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.6795 0.989234
\(438\) 0 0
\(439\) −27.1244 −1.29457 −0.647287 0.762246i \(-0.724097\pi\)
−0.647287 + 0.762246i \(0.724097\pi\)
\(440\) 0 0
\(441\) −37.9282 −1.80610
\(442\) 0 0
\(443\) −14.1962 −0.674480 −0.337240 0.941419i \(-0.609493\pi\)
−0.337240 + 0.941419i \(0.609493\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.85641 −0.0878050
\(448\) 0 0
\(449\) 15.4641 0.729796 0.364898 0.931047i \(-0.381104\pi\)
0.364898 + 0.931047i \(0.381104\pi\)
\(450\) 0 0
\(451\) −13.0718 −0.615527
\(452\) 0 0
\(453\) −6.14359 −0.288651
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 24.9282 1.16609 0.583046 0.812439i \(-0.301861\pi\)
0.583046 + 0.812439i \(0.301861\pi\)
\(458\) 0 0
\(459\) 16.0000 0.746816
\(460\) 0 0
\(461\) 39.4641 1.83803 0.919013 0.394227i \(-0.128988\pi\)
0.919013 + 0.394227i \(0.128988\pi\)
\(462\) 0 0
\(463\) −11.0718 −0.514550 −0.257275 0.966338i \(-0.582825\pi\)
−0.257275 + 0.966338i \(0.582825\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.6077 −0.629689 −0.314845 0.949143i \(-0.601952\pi\)
−0.314845 + 0.949143i \(0.601952\pi\)
\(468\) 0 0
\(469\) −41.3205 −1.90800
\(470\) 0 0
\(471\) 0.392305 0.0180765
\(472\) 0 0
\(473\) −8.78461 −0.403917
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.28719 −0.104723
\(478\) 0 0
\(479\) 27.1244 1.23934 0.619672 0.784861i \(-0.287266\pi\)
0.619672 + 0.784861i \(0.287266\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) −17.0718 −0.776794
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.53590 −0.386798 −0.193399 0.981120i \(-0.561951\pi\)
−0.193399 + 0.981120i \(0.561951\pi\)
\(488\) 0 0
\(489\) 6.24871 0.282576
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 2.14359 0.0965426
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −37.8564 −1.69809
\(498\) 0 0
\(499\) −2.33975 −0.104741 −0.0523707 0.998628i \(-0.516678\pi\)
−0.0523707 + 0.998628i \(0.516678\pi\)
\(500\) 0 0
\(501\) −10.5359 −0.470709
\(502\) 0 0
\(503\) 31.8564 1.42041 0.710203 0.703996i \(-0.248603\pi\)
0.710203 + 0.703996i \(0.248603\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.19615 −0.0975346
\(508\) 0 0
\(509\) −15.8564 −0.702823 −0.351411 0.936221i \(-0.614298\pi\)
−0.351411 + 0.936221i \(0.614298\pi\)
\(510\) 0 0
\(511\) 49.1769 2.17546
\(512\) 0 0
\(513\) −16.7846 −0.741059
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.92820 −0.304702
\(518\) 0 0
\(519\) −8.39230 −0.368381
\(520\) 0 0
\(521\) −38.5359 −1.68829 −0.844144 0.536116i \(-0.819891\pi\)
−0.844144 + 0.536116i \(0.819891\pi\)
\(522\) 0 0
\(523\) 10.7846 0.471578 0.235789 0.971804i \(-0.424233\pi\)
0.235789 + 0.971804i \(0.424233\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.784610 −0.0341781
\(528\) 0 0
\(529\) 1.28719 0.0559647
\(530\) 0 0
\(531\) 33.6603 1.46073
\(532\) 0 0
\(533\) 35.7128 1.54689
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.928203 −0.0400549
\(538\) 0 0
\(539\) 22.5359 0.970690
\(540\) 0 0
\(541\) −10.3923 −0.446800 −0.223400 0.974727i \(-0.571716\pi\)
−0.223400 + 0.974727i \(0.571716\pi\)
\(542\) 0 0
\(543\) −14.1436 −0.606960
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.92820 0.210715 0.105357 0.994434i \(-0.466401\pi\)
0.105357 + 0.994434i \(0.466401\pi\)
\(548\) 0 0
\(549\) −34.4974 −1.47231
\(550\) 0 0
\(551\) −2.24871 −0.0957983
\(552\) 0 0
\(553\) 19.8564 0.844380
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.8564 −1.09557 −0.547786 0.836619i \(-0.684529\pi\)
−0.547786 + 0.836619i \(0.684529\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −4.28719 −0.181005
\(562\) 0 0
\(563\) −11.0718 −0.466621 −0.233310 0.972402i \(-0.574956\pi\)
−0.233310 + 0.972402i \(0.574956\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −21.1244 −0.887140
\(568\) 0 0
\(569\) −21.3205 −0.893802 −0.446901 0.894583i \(-0.647472\pi\)
−0.446901 + 0.894583i \(0.647472\pi\)
\(570\) 0 0
\(571\) 39.7128 1.66193 0.830965 0.556325i \(-0.187789\pi\)
0.830965 + 0.556325i \(0.187789\pi\)
\(572\) 0 0
\(573\) 12.1436 0.507306
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 42.6410 1.77517 0.887584 0.460645i \(-0.152382\pi\)
0.887584 + 0.460645i \(0.152382\pi\)
\(578\) 0 0
\(579\) −3.60770 −0.149931
\(580\) 0 0
\(581\) −74.1051 −3.07440
\(582\) 0 0
\(583\) 1.35898 0.0562834
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.9282 0.533604 0.266802 0.963751i \(-0.414033\pi\)
0.266802 + 0.963751i \(0.414033\pi\)
\(588\) 0 0
\(589\) 0.823085 0.0339146
\(590\) 0 0
\(591\) −18.5359 −0.762465
\(592\) 0 0
\(593\) 26.0000 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.14359 0.333295
\(598\) 0 0
\(599\) 14.5359 0.593921 0.296960 0.954890i \(-0.404027\pi\)
0.296960 + 0.954890i \(0.404027\pi\)
\(600\) 0 0
\(601\) 31.3205 1.27759 0.638795 0.769377i \(-0.279433\pi\)
0.638795 + 0.769377i \(0.279433\pi\)
\(602\) 0 0
\(603\) −21.5167 −0.876226
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.9282 1.33651 0.668257 0.743930i \(-0.267041\pi\)
0.668257 + 0.743930i \(0.267041\pi\)
\(608\) 0 0
\(609\) 1.85641 0.0752254
\(610\) 0 0
\(611\) 18.9282 0.765753
\(612\) 0 0
\(613\) −44.6410 −1.80303 −0.901517 0.432744i \(-0.857545\pi\)
−0.901517 + 0.432744i \(0.857545\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.7846 1.56141 0.780705 0.624900i \(-0.214860\pi\)
0.780705 + 0.624900i \(0.214860\pi\)
\(618\) 0 0
\(619\) −9.07180 −0.364626 −0.182313 0.983241i \(-0.558358\pi\)
−0.182313 + 0.983241i \(0.558358\pi\)
\(620\) 0 0
\(621\) −19.7128 −0.791048
\(622\) 0 0
\(623\) 9.46410 0.379171
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4.49742 0.179610
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −47.5167 −1.89161 −0.945804 0.324737i \(-0.894724\pi\)
−0.945804 + 0.324737i \(0.894724\pi\)
\(632\) 0 0
\(633\) −2.14359 −0.0852002
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −61.5692 −2.43946
\(638\) 0 0
\(639\) −19.7128 −0.779827
\(640\) 0 0
\(641\) −20.3923 −0.805448 −0.402724 0.915322i \(-0.631936\pi\)
−0.402724 + 0.915322i \(0.631936\pi\)
\(642\) 0 0
\(643\) 26.3923 1.04081 0.520405 0.853919i \(-0.325781\pi\)
0.520405 + 0.853919i \(0.325781\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.00000 0.0786281 0.0393141 0.999227i \(-0.487483\pi\)
0.0393141 + 0.999227i \(0.487483\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) −0.679492 −0.0266314
\(652\) 0 0
\(653\) −0.928203 −0.0363234 −0.0181617 0.999835i \(-0.505781\pi\)
−0.0181617 + 0.999835i \(0.505781\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 25.6077 0.999051
\(658\) 0 0
\(659\) 29.0718 1.13248 0.566238 0.824242i \(-0.308398\pi\)
0.566238 + 0.824242i \(0.308398\pi\)
\(660\) 0 0
\(661\) −48.6410 −1.89192 −0.945958 0.324289i \(-0.894875\pi\)
−0.945958 + 0.324289i \(0.894875\pi\)
\(662\) 0 0
\(663\) 11.7128 0.454888
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.64102 −0.102261
\(668\) 0 0
\(669\) −1.60770 −0.0621571
\(670\) 0 0
\(671\) 20.4974 0.791294
\(672\) 0 0
\(673\) −13.7128 −0.528590 −0.264295 0.964442i \(-0.585139\pi\)
−0.264295 + 0.964442i \(0.585139\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −45.0333 −1.73077 −0.865386 0.501107i \(-0.832926\pi\)
−0.865386 + 0.501107i \(0.832926\pi\)
\(678\) 0 0
\(679\) −66.2487 −2.54239
\(680\) 0 0
\(681\) −5.46410 −0.209385
\(682\) 0 0
\(683\) −28.9282 −1.10691 −0.553453 0.832880i \(-0.686690\pi\)
−0.553453 + 0.832880i \(0.686690\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.3205 −0.584514
\(688\) 0 0
\(689\) −3.71281 −0.141447
\(690\) 0 0
\(691\) 11.6077 0.441578 0.220789 0.975322i \(-0.429137\pi\)
0.220789 + 0.975322i \(0.429137\pi\)
\(692\) 0 0
\(693\) 17.0718 0.648504
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −35.7128 −1.35272
\(698\) 0 0
\(699\) −8.39230 −0.317426
\(700\) 0 0
\(701\) −11.8564 −0.447810 −0.223905 0.974611i \(-0.571881\pi\)
−0.223905 + 0.974611i \(0.571881\pi\)
\(702\) 0 0
\(703\) 4.19615 0.158261
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −44.7846 −1.68430
\(708\) 0 0
\(709\) 24.2487 0.910679 0.455340 0.890318i \(-0.349518\pi\)
0.455340 + 0.890318i \(0.349518\pi\)
\(710\) 0 0
\(711\) 10.3397 0.387771
\(712\) 0 0
\(713\) 0.966679 0.0362024
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 22.2872 0.832330
\(718\) 0 0
\(719\) 22.2487 0.829737 0.414868 0.909881i \(-0.363828\pi\)
0.414868 + 0.909881i \(0.363828\pi\)
\(720\) 0 0
\(721\) −68.1051 −2.53637
\(722\) 0 0
\(723\) 17.1769 0.638816
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6.00000 −0.222528 −0.111264 0.993791i \(-0.535490\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(728\) 0 0
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.7846 0.470927
\(738\) 0 0
\(739\) 3.21539 0.118280 0.0591400 0.998250i \(-0.481164\pi\)
0.0591400 + 0.998250i \(0.481164\pi\)
\(740\) 0 0
\(741\) −12.2872 −0.451381
\(742\) 0 0
\(743\) −10.8756 −0.398989 −0.199494 0.979899i \(-0.563930\pi\)
−0.199494 + 0.979899i \(0.563930\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −38.5885 −1.41188
\(748\) 0 0
\(749\) 48.2487 1.76297
\(750\) 0 0
\(751\) −16.6795 −0.608643 −0.304322 0.952569i \(-0.598430\pi\)
−0.304322 + 0.952569i \(0.598430\pi\)
\(752\) 0 0
\(753\) 9.71281 0.353955
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 5.28203 0.191726
\(760\) 0 0
\(761\) −41.7128 −1.51209 −0.756044 0.654521i \(-0.772870\pi\)
−0.756044 + 0.654521i \(0.772870\pi\)
\(762\) 0 0
\(763\) −9.46410 −0.342623
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 54.6410 1.97297
\(768\) 0 0
\(769\) 39.8564 1.43726 0.718629 0.695393i \(-0.244770\pi\)
0.718629 + 0.695393i \(0.244770\pi\)
\(770\) 0 0
\(771\) 10.9282 0.393570
\(772\) 0 0
\(773\) 13.6077 0.489435 0.244717 0.969594i \(-0.421305\pi\)
0.244717 + 0.969594i \(0.421305\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −3.46410 −0.124274
\(778\) 0 0
\(779\) 37.4641 1.34229
\(780\) 0 0
\(781\) 11.7128 0.419117
\(782\) 0 0
\(783\) 2.14359 0.0766058
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −34.1962 −1.21896 −0.609481 0.792801i \(-0.708622\pi\)
−0.609481 + 0.792801i \(0.708622\pi\)
\(788\) 0 0
\(789\) 12.5359 0.446290
\(790\) 0 0
\(791\) −46.6410 −1.65836
\(792\) 0 0
\(793\) −56.0000 −1.98862
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.8564 −1.19926 −0.599628 0.800279i \(-0.704685\pi\)
−0.599628 + 0.800279i \(0.704685\pi\)
\(798\) 0 0
\(799\) −18.9282 −0.669632
\(800\) 0 0
\(801\) 4.92820 0.174129
\(802\) 0 0
\(803\) −15.2154 −0.536939
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.14359 −0.216265
\(808\) 0 0
\(809\) −3.07180 −0.107999 −0.0539993 0.998541i \(-0.517197\pi\)
−0.0539993 + 0.998541i \(0.517197\pi\)
\(810\) 0 0
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25.1769 0.880829
\(818\) 0 0
\(819\) −46.6410 −1.62977
\(820\) 0 0
\(821\) 31.8564 1.11180 0.555898 0.831250i \(-0.312374\pi\)
0.555898 + 0.831250i \(0.312374\pi\)
\(822\) 0 0
\(823\) −30.1962 −1.05257 −0.526286 0.850308i \(-0.676416\pi\)
−0.526286 + 0.850308i \(0.676416\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.3923 1.19594 0.597969 0.801519i \(-0.295975\pi\)
0.597969 + 0.801519i \(0.295975\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 9.35898 0.324660
\(832\) 0 0
\(833\) 61.5692 2.13325
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.784610 −0.0271201
\(838\) 0 0
\(839\) −5.07180 −0.175098 −0.0875489 0.996160i \(-0.527903\pi\)
−0.0875489 + 0.996160i \(0.527903\pi\)
\(840\) 0 0
\(841\) −28.7128 −0.990097
\(842\) 0 0
\(843\) −10.5359 −0.362876
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 41.9090 1.44001
\(848\) 0 0
\(849\) 11.3205 0.388519
\(850\) 0 0
\(851\) 4.92820 0.168937
\(852\) 0 0
\(853\) 9.71281 0.332560 0.166280 0.986079i \(-0.446824\pi\)
0.166280 + 0.986079i \(0.446824\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −31.8564 −1.08819 −0.544097 0.839022i \(-0.683128\pi\)
−0.544097 + 0.839022i \(0.683128\pi\)
\(858\) 0 0
\(859\) −48.5885 −1.65782 −0.828908 0.559384i \(-0.811038\pi\)
−0.828908 + 0.559384i \(0.811038\pi\)
\(860\) 0 0
\(861\) −30.9282 −1.05403
\(862\) 0 0
\(863\) −39.3731 −1.34027 −0.670137 0.742237i \(-0.733765\pi\)
−0.670137 + 0.742237i \(0.733765\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.732051 0.0248617
\(868\) 0 0
\(869\) −6.14359 −0.208407
\(870\) 0 0
\(871\) −34.9282 −1.18350
\(872\) 0 0
\(873\) −34.4974 −1.16756
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27.4641 −0.927397 −0.463698 0.885993i \(-0.653478\pi\)
−0.463698 + 0.885993i \(0.653478\pi\)
\(878\) 0 0
\(879\) −9.46410 −0.319216
\(880\) 0 0
\(881\) −12.6795 −0.427183 −0.213591 0.976923i \(-0.568516\pi\)
−0.213591 + 0.976923i \(0.568516\pi\)
\(882\) 0 0
\(883\) 23.1769 0.779965 0.389983 0.920822i \(-0.372481\pi\)
0.389983 + 0.920822i \(0.372481\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.9090 −1.81009 −0.905043 0.425320i \(-0.860161\pi\)
−0.905043 + 0.425320i \(0.860161\pi\)
\(888\) 0 0
\(889\) −93.0333 −3.12024
\(890\) 0 0
\(891\) 6.53590 0.218961
\(892\) 0 0
\(893\) 19.8564 0.664469
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −14.4308 −0.481830
\(898\) 0 0
\(899\) −0.105118 −0.00350587
\(900\) 0 0
\(901\) 3.71281 0.123692
\(902\) 0 0
\(903\) −20.7846 −0.691669
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5.32051 0.176665 0.0883323 0.996091i \(-0.471846\pi\)
0.0883323 + 0.996091i \(0.471846\pi\)
\(908\) 0 0
\(909\) −23.3205 −0.773492
\(910\) 0 0
\(911\) 11.1244 0.368566 0.184283 0.982873i \(-0.441004\pi\)
0.184283 + 0.982873i \(0.441004\pi\)
\(912\) 0 0
\(913\) 22.9282 0.758813
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 62.7846 2.07333
\(918\) 0 0
\(919\) −8.87564 −0.292780 −0.146390 0.989227i \(-0.546766\pi\)
−0.146390 + 0.989227i \(0.546766\pi\)
\(920\) 0 0
\(921\) 3.46410 0.114146
\(922\) 0 0
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −35.4641 −1.16479
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −64.5885 −2.11680
\(932\) 0 0
\(933\) −11.5692 −0.378759
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.3205 0.696511 0.348255 0.937400i \(-0.386774\pi\)
0.348255 + 0.937400i \(0.386774\pi\)
\(938\) 0 0
\(939\) 11.6077 0.378803
\(940\) 0 0
\(941\) 31.6077 1.03038 0.515191 0.857076i \(-0.327721\pi\)
0.515191 + 0.857076i \(0.327721\pi\)
\(942\) 0 0
\(943\) 44.0000 1.43284
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.1051 −0.588337 −0.294169 0.955754i \(-0.595043\pi\)
−0.294169 + 0.955754i \(0.595043\pi\)
\(948\) 0 0
\(949\) 41.5692 1.34939
\(950\) 0 0
\(951\) 6.24871 0.202628
\(952\) 0 0
\(953\) 16.9282 0.548358 0.274179 0.961679i \(-0.411594\pi\)
0.274179 + 0.961679i \(0.411594\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.574374 −0.0185669
\(958\) 0 0
\(959\) 63.0333 2.03545
\(960\) 0 0
\(961\) −30.9615 −0.998759
\(962\) 0 0
\(963\) 25.1244 0.809621
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 17.6077 0.566225 0.283113 0.959087i \(-0.408633\pi\)
0.283113 + 0.959087i \(0.408633\pi\)
\(968\) 0 0
\(969\) 12.2872 0.394721
\(970\) 0 0
\(971\) −16.0000 −0.513464 −0.256732 0.966483i \(-0.582646\pi\)
−0.256732 + 0.966483i \(0.582646\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.78461 0.217059 0.108529 0.994093i \(-0.465386\pi\)
0.108529 + 0.994093i \(0.465386\pi\)
\(978\) 0 0
\(979\) −2.92820 −0.0935858
\(980\) 0 0
\(981\) −4.92820 −0.157345
\(982\) 0 0
\(983\) 27.3731 0.873065 0.436533 0.899688i \(-0.356206\pi\)
0.436533 + 0.899688i \(0.356206\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −16.3923 −0.521773
\(988\) 0 0
\(989\) 29.5692 0.940246
\(990\) 0 0
\(991\) 39.9090 1.26775 0.633875 0.773435i \(-0.281463\pi\)
0.633875 + 0.773435i \(0.281463\pi\)
\(992\) 0 0
\(993\) 4.14359 0.131493
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −33.7128 −1.06770 −0.533848 0.845581i \(-0.679254\pi\)
−0.533848 + 0.845581i \(0.679254\pi\)
\(998\) 0 0
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3700.2.a.h.1.1 2
5.2 odd 4 3700.2.d.g.149.3 4
5.3 odd 4 3700.2.d.g.149.2 4
5.4 even 2 740.2.a.d.1.2 2
15.14 odd 2 6660.2.a.i.1.2 2
20.19 odd 2 2960.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.a.d.1.2 2 5.4 even 2
2960.2.a.p.1.1 2 20.19 odd 2
3700.2.a.h.1.1 2 1.1 even 1 trivial
3700.2.d.g.149.2 4 5.3 odd 4
3700.2.d.g.149.3 4 5.2 odd 4
6660.2.a.i.1.2 2 15.14 odd 2