Properties

Label 3703.1.b.b.1588.4
Level $3703$
Weight $1$
Character 3703.1588
Self dual yes
Analytic conductor $1.848$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3703,1,Mod(1588,3703)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3703, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3703.1588");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3703 = 7 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3703.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.84803774178\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 1588.4
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 3703.1588

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.830830 q^{2} -0.309721 q^{4} -1.00000 q^{7} -1.08816 q^{8} +1.00000 q^{9} +0.284630 q^{11} -0.830830 q^{14} -0.594351 q^{16} +0.830830 q^{18} +0.236479 q^{22} +1.00000 q^{25} +0.309721 q^{28} +1.68251 q^{29} +0.594351 q^{32} -0.309721 q^{36} +1.30972 q^{37} +1.91899 q^{43} -0.0881559 q^{44} +1.00000 q^{49} +0.830830 q^{50} -1.68251 q^{53} +1.08816 q^{56} +1.39788 q^{58} -1.00000 q^{63} +1.08816 q^{64} -0.830830 q^{67} -0.284630 q^{71} -1.08816 q^{72} +1.08816 q^{74} -0.284630 q^{77} -1.68251 q^{79} +1.00000 q^{81} +1.59435 q^{86} -0.309721 q^{88} +0.830830 q^{98} +0.284630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + 4 q^{4} - 5 q^{7} - 2 q^{8} + 5 q^{9} + q^{11} + q^{14} + 3 q^{16} - q^{18} + 2 q^{22} + 5 q^{25} - 4 q^{28} - q^{29} - 3 q^{32} + 4 q^{36} + q^{37} + q^{43} + 3 q^{44} + 5 q^{49} - q^{50}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3703\mathbb{Z}\right)^\times\).

\(n\) \(2117\) \(3179\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.309721 −0.309721
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −1.00000 −1.00000
\(8\) −1.08816 −1.08816
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −0.830830 −0.830830
\(15\) 0 0
\(16\) −0.594351 −0.594351
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0.830830 0.830830
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.236479 0.236479
\(23\) 0 0
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0.309721 0.309721
\(29\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.594351 0.594351
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.309721 −0.309721
\(37\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(44\) −0.0881559 −0.0881559
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 0.830830 0.830830
\(51\) 0 0
\(52\) 0 0
\(53\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.08816 1.08816
\(57\) 0 0
\(58\) 1.39788 1.39788
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) 1.08816 1.08816
\(65\) 0 0
\(66\) 0 0
\(67\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(72\) −1.08816 −1.08816
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 1.08816 1.08816
\(75\) 0 0
\(76\) 0 0
\(77\) −0.284630 −0.284630
\(78\) 0 0
\(79\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.59435 1.59435
\(87\) 0 0
\(88\) −0.309721 −0.309721
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.830830 0.830830
\(99\) 0.284630 0.284630
\(100\) −0.309721 −0.309721
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.39788 −1.39788
\(107\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(108\) 0 0
\(109\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.594351 0.594351
\(113\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.521109 −0.521109
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.918986 −0.918986
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.830830 −0.830830
\(127\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(128\) 0.309721 0.309721
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.690279 −0.690279
\(135\) 0 0
\(136\) 0 0
\(137\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.236479 −0.236479
\(143\) 0 0
\(144\) −0.594351 −0.594351
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −0.405649 −0.405649
\(149\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(150\) 0 0
\(151\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.236479 −0.236479
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −1.39788 −1.39788
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.830830 0.830830
\(163\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −0.594351 −0.594351
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) −0.169170 −0.169170
\(177\) 0 0
\(178\) 0 0
\(179\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(192\) 0 0
\(193\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.309721 −0.309721
\(197\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(198\) 0.236479 0.236479
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −1.08816 −1.08816
\(201\) 0 0
\(202\) 0 0
\(203\) −1.68251 −1.68251
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(212\) 0.521109 0.521109
\(213\) 0 0
\(214\) 1.08816 1.08816
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.690279 −0.690279
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −0.594351 −0.594351
\(225\) 1.00000 1.00000
\(226\) 1.59435 1.59435
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.83083 −1.83083
\(233\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.763521 −0.763521
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0.309721 0.309721
\(253\) 0 0
\(254\) −1.59435 −1.59435
\(255\) 0 0
\(256\) −0.830830 −0.830830
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −1.30972 −1.30972
\(260\) 0 0
\(261\) 1.68251 1.68251
\(262\) 0 0
\(263\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.257326 0.257326
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.690279 −0.690279
\(275\) 0.284630 0.284630
\(276\) 0 0
\(277\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0.0881559 0.0881559
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.594351 0.594351
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.42518 −1.42518
\(297\) 0 0
\(298\) 1.59435 1.59435
\(299\) 0 0
\(300\) 0 0
\(301\) −1.91899 −1.91899
\(302\) 1.39788 1.39788
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0.0881559 0.0881559
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.521109 0.521109
\(317\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(318\) 0 0
\(319\) 0.478891 0.478891
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.309721 −0.309721
\(325\) 0 0
\(326\) 1.39788 1.39788
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(332\) 0 0
\(333\) 1.30972 1.30972
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(338\) 0.830830 0.830830
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) −2.08816 −2.08816
\(345\) 0 0
\(346\) 0 0
\(347\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −0.830830 −0.830830
\(351\) 0 0
\(352\) 0.169170 0.169170
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.59435 −1.59435
\(359\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.68251 1.68251
\(372\) 0 0
\(373\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.08816 1.08816
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.236479 −0.236479
\(387\) 1.91899 1.91899
\(388\) 0 0
\(389\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.08816 −1.08816
\(393\) 0 0
\(394\) −1.59435 −1.59435
\(395\) 0 0
\(396\) −0.0881559 −0.0881559
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.594351 −0.594351
\(401\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −1.39788 −1.39788
\(407\) 0.372786 0.372786
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(422\) −0.236479 −0.236479
\(423\) 0 0
\(424\) 1.83083 1.83083
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.405649 −0.405649
\(429\) 0 0
\(430\) 0 0
\(431\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.257326 0.257326
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −1.08816 −1.08816
\(449\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(450\) 0.830830 0.830830
\(451\) 0 0
\(452\) −0.594351 −0.594351
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(464\) −1.00000 −1.00000
\(465\) 0 0
\(466\) −1.08816 −1.08816
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0.830830 0.830830
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.546200 0.546200
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.68251 −1.68251
\(478\) −1.08816 −1.08816
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.284630 0.284630
\(485\) 0 0
\(486\) 0 0
\(487\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.284630 0.284630
\(498\) 0 0
\(499\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 1.08816 1.08816
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0.594351 0.594351
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −1.08816 −1.08816
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 1.39788 1.39788
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.690279 −0.690279
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.904073 0.904073
\(537\) 0 0
\(538\) 0 0
\(539\) 0.284630 0.284630
\(540\) 0 0
\(541\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(548\) 0.257326 0.257326
\(549\) 0 0
\(550\) 0.236479 0.236479
\(551\) 0 0
\(552\) 0 0
\(553\) 1.68251 1.68251
\(554\) −1.08816 −1.08816
\(555\) 0 0
\(556\) 0 0
\(557\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −1.39788 −1.39788
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −1.00000
\(568\) 0.309721 0.309721
\(569\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(570\) 0 0
\(571\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.08816 1.08816
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.830830 0.830830
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.478891 −0.478891
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.778434 −0.778434
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.594351 −0.594351
\(597\) 0 0
\(598\) 0 0
\(599\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −1.59435 −1.59435
\(603\) −0.830830 −0.830830
\(604\) −0.521109 −0.521109
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.309721 0.309721
\(617\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(632\) 1.83083 1.83083
\(633\) 0 0
\(634\) −1.08816 −1.08816
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0.397877 0.397877
\(639\) −0.284630 −0.284630
\(640\) 0 0
\(641\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −1.08816 −1.08816
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.521109 −0.521109
\(653\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −1.59435 −1.59435
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.08816 1.08816
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(674\) 0.236479 0.236479
\(675\) 0 0
\(676\) −0.309721 −0.309721
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.830830 −0.830830
\(687\) 0 0
\(688\) −1.14055 −1.14055
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) −0.284630 −0.284630
\(694\) −1.08816 −1.08816
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.309721 0.309721
\(701\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.309721 0.309721
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(710\) 0 0
\(711\) −1.68251 −1.68251
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.594351 0.594351
\(717\) 0 0
\(718\) 1.59435 1.59435
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.830830 0.830830
\(723\) 0 0
\(724\) 0 0
\(725\) 1.68251 1.68251
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.236479 −0.236479
\(738\) 0 0
\(739\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.39788 1.39788
\(743\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.236479 0.236479
\(747\) 0 0
\(748\) 0 0
\(749\) −1.30972 −1.30972
\(750\) 0 0
\(751\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(758\) −1.39788 −1.39788
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0.830830 0.830830
\(764\) −0.405649 −0.405649
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.0881559 0.0881559
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 1.59435 1.59435
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0.236479 0.236479
\(779\) 0 0
\(780\) 0 0
\(781\) −0.0810141 −0.0810141
\(782\) 0 0
\(783\) 0 0
\(784\) −0.594351 −0.594351
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0.594351 0.594351
\(789\) 0 0
\(790\) 0 0
\(791\) −1.91899 −1.91899
\(792\) −0.309721 −0.309721
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.594351 0.594351
\(801\) 0 0
\(802\) 1.08816 1.08816
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0.521109 0.521109
\(813\) 0 0
\(814\) 0.309721 0.309721
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(822\) 0 0
\(823\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.83083 1.83083
\(842\) 1.59435 1.59435
\(843\) 0 0
\(844\) 0.0881559 0.0881559
\(845\) 0 0
\(846\) 0 0
\(847\) 0.918986 0.918986
\(848\) 1.00000 1.00000
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.42518 −1.42518
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.59435 1.59435
\(863\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.478891 −0.478891
\(870\) 0 0
\(871\) 0 0
\(872\) 0.904073 0.904073
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.830830 0.830830
\(883\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.236479 −0.236479
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 1.91899 1.91899
\(890\) 0 0
\(891\) 0.284630 0.284630
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −0.309721 −0.309721
\(897\) 0 0
\(898\) −1.08816 −1.08816
\(899\) 0 0
\(900\) −0.309721 −0.309721
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −2.08816 −2.08816
\(905\) 0 0
\(906\) 0 0
\(907\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.39788 −1.39788
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.30972 1.30972
\(926\) 0.690279 0.690279
\(927\) 0 0
\(928\) 1.00000 1.00000
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.405649 0.405649
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0.690279 0.690279
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.453800 0.453800
\(947\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(954\) −1.39788 −1.39788
\(955\) 0 0
\(956\) 0.405649 0.405649
\(957\) 0 0
\(958\) 0 0
\(959\) 0.830830 0.830830
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 1.30972 1.30972
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(968\) 1.00000 1.00000
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.59435 −1.59435
\(975\) 0 0
\(976\) 0 0
\(977\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.830830 −0.830830
\(982\) 0.690279 0.690279
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.236479 0.236479
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0.690279 0.690279
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3703.1.b.b.1588.4 5
7.6 odd 2 CM 3703.1.b.b.1588.4 5
23.2 even 11 3703.1.l.i.2603.1 10
23.3 even 11 3703.1.l.e.699.1 10
23.4 even 11 3703.1.l.d.706.1 10
23.5 odd 22 161.1.l.a.48.1 10
23.6 even 11 3703.1.l.d.2911.1 10
23.7 odd 22 3703.1.l.c.118.1 10
23.8 even 11 3703.1.l.e.2617.1 10
23.9 even 11 3703.1.l.f.1392.1 10
23.10 odd 22 3703.1.l.c.3044.1 10
23.11 odd 22 3703.1.l.h.2582.1 10
23.12 even 11 3703.1.l.i.2582.1 10
23.13 even 11 3703.1.l.g.3044.1 10
23.14 odd 22 161.1.l.a.104.1 yes 10
23.15 odd 22 3703.1.l.a.2617.1 10
23.16 even 11 3703.1.l.g.118.1 10
23.17 odd 22 3703.1.l.b.2911.1 10
23.18 even 11 3703.1.l.f.3429.1 10
23.19 odd 22 3703.1.l.b.706.1 10
23.20 odd 22 3703.1.l.a.699.1 10
23.21 odd 22 3703.1.l.h.2603.1 10
23.22 odd 2 3703.1.b.c.1588.4 5
69.5 even 22 1449.1.bq.a.370.1 10
69.14 even 22 1449.1.bq.a.748.1 10
92.51 even 22 2576.1.cj.a.209.1 10
92.83 even 22 2576.1.cj.a.1553.1 10
161.5 even 66 1127.1.v.a.1060.1 20
161.6 odd 22 3703.1.l.d.2911.1 10
161.13 odd 22 3703.1.l.g.3044.1 10
161.20 even 22 3703.1.l.a.699.1 10
161.27 odd 22 3703.1.l.d.706.1 10
161.34 even 22 3703.1.l.h.2582.1 10
161.37 odd 66 1127.1.v.a.472.1 20
161.41 odd 22 3703.1.l.f.3429.1 10
161.48 odd 22 3703.1.l.i.2603.1 10
161.51 odd 66 1127.1.v.a.1060.1 20
161.55 odd 22 3703.1.l.f.1392.1 10
161.60 odd 66 1127.1.v.a.656.1 20
161.62 odd 22 3703.1.l.g.118.1 10
161.74 odd 66 1127.1.v.a.117.1 20
161.76 even 22 3703.1.l.c.118.1 10
161.83 even 22 161.1.l.a.104.1 yes 10
161.90 even 22 3703.1.l.h.2603.1 10
161.97 even 22 161.1.l.a.48.1 10
161.104 odd 22 3703.1.l.i.2582.1 10
161.111 even 22 3703.1.l.b.706.1 10
161.118 odd 22 3703.1.l.e.699.1 10
161.125 even 22 3703.1.l.c.3044.1 10
161.129 even 66 1127.1.v.a.656.1 20
161.132 even 22 3703.1.l.b.2911.1 10
161.143 even 66 1127.1.v.a.117.1 20
161.146 odd 22 3703.1.l.e.2617.1 10
161.152 even 66 1127.1.v.a.472.1 20
161.153 even 22 3703.1.l.a.2617.1 10
161.160 even 2 3703.1.b.c.1588.4 5
483.83 odd 22 1449.1.bq.a.748.1 10
483.419 odd 22 1449.1.bq.a.370.1 10
644.83 odd 22 2576.1.cj.a.1553.1 10
644.419 odd 22 2576.1.cj.a.209.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.1.l.a.48.1 10 23.5 odd 22
161.1.l.a.48.1 10 161.97 even 22
161.1.l.a.104.1 yes 10 23.14 odd 22
161.1.l.a.104.1 yes 10 161.83 even 22
1127.1.v.a.117.1 20 161.74 odd 66
1127.1.v.a.117.1 20 161.143 even 66
1127.1.v.a.472.1 20 161.37 odd 66
1127.1.v.a.472.1 20 161.152 even 66
1127.1.v.a.656.1 20 161.60 odd 66
1127.1.v.a.656.1 20 161.129 even 66
1127.1.v.a.1060.1 20 161.5 even 66
1127.1.v.a.1060.1 20 161.51 odd 66
1449.1.bq.a.370.1 10 69.5 even 22
1449.1.bq.a.370.1 10 483.419 odd 22
1449.1.bq.a.748.1 10 69.14 even 22
1449.1.bq.a.748.1 10 483.83 odd 22
2576.1.cj.a.209.1 10 92.51 even 22
2576.1.cj.a.209.1 10 644.419 odd 22
2576.1.cj.a.1553.1 10 92.83 even 22
2576.1.cj.a.1553.1 10 644.83 odd 22
3703.1.b.b.1588.4 5 1.1 even 1 trivial
3703.1.b.b.1588.4 5 7.6 odd 2 CM
3703.1.b.c.1588.4 5 23.22 odd 2
3703.1.b.c.1588.4 5 161.160 even 2
3703.1.l.a.699.1 10 23.20 odd 22
3703.1.l.a.699.1 10 161.20 even 22
3703.1.l.a.2617.1 10 23.15 odd 22
3703.1.l.a.2617.1 10 161.153 even 22
3703.1.l.b.706.1 10 23.19 odd 22
3703.1.l.b.706.1 10 161.111 even 22
3703.1.l.b.2911.1 10 23.17 odd 22
3703.1.l.b.2911.1 10 161.132 even 22
3703.1.l.c.118.1 10 23.7 odd 22
3703.1.l.c.118.1 10 161.76 even 22
3703.1.l.c.3044.1 10 23.10 odd 22
3703.1.l.c.3044.1 10 161.125 even 22
3703.1.l.d.706.1 10 23.4 even 11
3703.1.l.d.706.1 10 161.27 odd 22
3703.1.l.d.2911.1 10 23.6 even 11
3703.1.l.d.2911.1 10 161.6 odd 22
3703.1.l.e.699.1 10 23.3 even 11
3703.1.l.e.699.1 10 161.118 odd 22
3703.1.l.e.2617.1 10 23.8 even 11
3703.1.l.e.2617.1 10 161.146 odd 22
3703.1.l.f.1392.1 10 23.9 even 11
3703.1.l.f.1392.1 10 161.55 odd 22
3703.1.l.f.3429.1 10 23.18 even 11
3703.1.l.f.3429.1 10 161.41 odd 22
3703.1.l.g.118.1 10 23.16 even 11
3703.1.l.g.118.1 10 161.62 odd 22
3703.1.l.g.3044.1 10 23.13 even 11
3703.1.l.g.3044.1 10 161.13 odd 22
3703.1.l.h.2582.1 10 23.11 odd 22
3703.1.l.h.2582.1 10 161.34 even 22
3703.1.l.h.2603.1 10 23.21 odd 22
3703.1.l.h.2603.1 10 161.90 even 22
3703.1.l.i.2582.1 10 23.12 even 11
3703.1.l.i.2582.1 10 161.104 odd 22
3703.1.l.i.2603.1 10 23.2 even 11
3703.1.l.i.2603.1 10 161.48 odd 22