Properties

Label 3724.1.e.d
Level 37243724
Weight 11
Character orbit 3724.e
Self dual yes
Analytic conductor 1.8591.859
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -19
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3724,1,Mod(1177,3724)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3724, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3724.1177");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3724=227219 3724 = 2^{2} \cdot 7^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3724.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.858518107051.85851810705
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 532)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.3724.2
Artin image: D6D_6
Artin field: Galois closure of 6.0.97077232.1
Stark unit: Root of x61013956x5+1000628315x41026107541220x3+1000628315x21013956x+1x^{6} - 1013956x^{5} + 1000628315x^{4} - 1026107541220x^{3} + 1000628315x^{2} - 1013956x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q5+q9+2q11+q17q19q23q43+q452q47+2q552q612q73+q81+q83+q85q95+2q99+O(q100) q + q^{5} + q^{9} + 2 q^{11} + q^{17} - q^{19} - q^{23} - q^{43} + q^{45} - 2 q^{47} + 2 q^{55} - 2 q^{61} - 2 q^{73} + q^{81} + q^{83} + q^{85} - q^{95} + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3724Z)×\left(\mathbb{Z}/3724\mathbb{Z}\right)^\times.

nn 18631863 30413041 31373137
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1177.1
0
0 0 0 1.00000 0 0 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3724.1.e.d 1
7.b odd 2 1 3724.1.e.b 1
7.c even 3 2 3724.1.bc.a 2
7.d odd 6 2 532.1.bc.b 2
19.b odd 2 1 CM 3724.1.e.d 1
28.f even 6 2 2128.1.cl.b 2
133.c even 2 1 3724.1.e.b 1
133.o even 6 2 532.1.bc.b 2
133.r odd 6 2 3724.1.bc.a 2
532.bh odd 6 2 2128.1.cl.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
532.1.bc.b 2 7.d odd 6 2
532.1.bc.b 2 133.o even 6 2
2128.1.cl.b 2 28.f even 6 2
2128.1.cl.b 2 532.bh odd 6 2
3724.1.e.b 1 7.b odd 2 1
3724.1.e.b 1 133.c even 2 1
3724.1.e.d 1 1.a even 1 1 trivial
3724.1.e.d 1 19.b odd 2 1 CM
3724.1.bc.a 2 7.c even 3 2
3724.1.bc.a 2 133.r odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3724,[χ])S_{1}^{\mathrm{new}}(3724, [\chi]):

T51 T_{5} - 1 Copy content Toggle raw display
T112 T_{11} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T2 T - 2 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T1 T - 1 Copy content Toggle raw display
1919 T+1 T + 1 Copy content Toggle raw display
2323 T+1 T + 1 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+1 T + 1 Copy content Toggle raw display
4747 T+2 T + 2 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+2 T + 2 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+2 T + 2 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T1 T - 1 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less