Properties

Label 374.2.g.f.103.3
Level $374$
Weight $2$
Character 374.103
Analytic conductor $2.986$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [374,2,Mod(69,374)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(374, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("374.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 374 = 2 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 374.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.98640503560\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 10 x^{14} - 8 x^{13} + 68 x^{12} + 28 x^{11} + 306 x^{10} + 228 x^{9} + 1035 x^{8} + \cdots + 3481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 103.3
Root \(1.51735 + 1.10242i\) of defining polynomial
Character \(\chi\) \(=\) 374.103
Dual form 374.2.g.f.69.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.270560 - 0.832698i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.0973285 - 0.0707133i) q^{5} +(-0.708335 + 0.514635i) q^{6} +(0.450819 + 1.38748i) q^{7} +(0.309017 - 0.951057i) q^{8} +(1.80687 + 1.31277i) q^{9} +O(q^{10})\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.270560 - 0.832698i) q^{3} +(0.309017 + 0.951057i) q^{4} +(0.0973285 - 0.0707133i) q^{5} +(-0.708335 + 0.514635i) q^{6} +(0.450819 + 1.38748i) q^{7} +(0.309017 - 0.951057i) q^{8} +(1.80687 + 1.31277i) q^{9} -0.120305 q^{10} +(1.80666 + 2.78137i) q^{11} +0.875550 q^{12} +(-0.107308 - 0.0779639i) q^{13} +(0.450819 - 1.38748i) q^{14} +(-0.0325496 - 0.100177i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(0.809017 - 0.587785i) q^{17} +(-0.690162 - 2.12410i) q^{18} +(0.832946 - 2.56354i) q^{19} +(0.0973285 + 0.0707133i) q^{20} +1.27732 q^{21} +(0.173231 - 3.31210i) q^{22} +7.64311 q^{23} +(-0.708335 - 0.514635i) q^{24} +(-1.54061 + 4.74152i) q^{25} +(0.0409881 + 0.126148i) q^{26} +(3.70701 - 2.69330i) q^{27} +(-1.18026 + 0.857508i) q^{28} +(-0.812453 - 2.50047i) q^{29} +(-0.0325496 + 0.100177i) q^{30} +(-7.68256 - 5.58170i) q^{31} +1.00000 q^{32} +(2.80485 - 0.751871i) q^{33} -1.00000 q^{34} +(0.141991 + 0.103162i) q^{35} +(-0.690162 + 2.12410i) q^{36} +(2.90334 + 8.93555i) q^{37} +(-2.18068 + 1.58436i) q^{38} +(-0.0939537 + 0.0682613i) q^{39} +(-0.0371762 - 0.114417i) q^{40} +(2.86616 - 8.82113i) q^{41} +(-1.03338 - 0.750792i) q^{42} -1.52139 q^{43} +(-2.08695 + 2.57772i) q^{44} +0.268690 q^{45} +(-6.18341 - 4.49251i) q^{46} +(2.35034 - 7.23359i) q^{47} +(0.270560 + 0.832698i) q^{48} +(3.94126 - 2.86349i) q^{49} +(4.03338 - 2.93042i) q^{50} +(-0.270560 - 0.832698i) q^{51} +(0.0409881 - 0.126148i) q^{52} +(8.48636 + 6.16570i) q^{53} -4.58211 q^{54} +(0.372519 + 0.142952i) q^{55} +1.45888 q^{56} +(-1.90929 - 1.38718i) q^{57} +(-0.812453 + 2.50047i) q^{58} +(0.200475 + 0.616999i) q^{59} +(0.0852160 - 0.0619131i) q^{60} +(-11.2033 + 8.13965i) q^{61} +(2.93448 + 9.03139i) q^{62} +(-1.00686 + 3.09881i) q^{63} +(-0.809017 - 0.587785i) q^{64} -0.0159572 q^{65} +(-2.71111 - 1.04037i) q^{66} -5.15478 q^{67} +(0.809017 + 0.587785i) q^{68} +(2.06792 - 6.36440i) q^{69} +(-0.0542356 - 0.166920i) q^{70} +(-8.93737 + 6.49338i) q^{71} +(1.80687 - 1.31277i) q^{72} +(0.431640 + 1.32845i) q^{73} +(2.90334 - 8.93555i) q^{74} +(3.53142 + 2.56573i) q^{75} +2.69547 q^{76} +(-3.04461 + 3.76059i) q^{77} +0.116133 q^{78} +(-3.84597 - 2.79426i) q^{79} +(-0.0371762 + 0.114417i) q^{80} +(0.830750 + 2.55679i) q^{81} +(-7.50370 + 5.45176i) q^{82} +(-10.3532 + 7.52201i) q^{83} +(0.394714 + 1.21481i) q^{84} +(0.0371762 - 0.114417i) q^{85} +(1.23083 + 0.894251i) q^{86} -2.30196 q^{87} +(3.20352 - 0.858742i) q^{88} -3.91389 q^{89} +(-0.217375 - 0.157932i) q^{90} +(0.0597967 - 0.184035i) q^{91} +(2.36185 + 7.26903i) q^{92} +(-6.72646 + 4.88706i) q^{93} +(-6.15326 + 4.47061i) q^{94} +(-0.100207 - 0.308406i) q^{95} +(0.270560 - 0.832698i) q^{96} +(6.07135 + 4.41109i) q^{97} -4.87167 q^{98} +(-0.386897 + 7.39728i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 5 q^{3} - 4 q^{4} - q^{5} + 2 q^{7} - 4 q^{8} - 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{2} + 5 q^{3} - 4 q^{4} - q^{5} + 2 q^{7} - 4 q^{8} - 13 q^{9} + 4 q^{10} - 4 q^{11} - 10 q^{12} - 10 q^{13} + 2 q^{14} - 6 q^{15} - 4 q^{16} + 4 q^{17} + 2 q^{18} + 10 q^{19} - q^{20} + 6 q^{22} - 24 q^{23} - 37 q^{25} + 15 q^{26} - 4 q^{27} - 13 q^{28} - 16 q^{29} - 6 q^{30} + 11 q^{31} + 16 q^{32} + 36 q^{33} - 16 q^{34} + 2 q^{36} + 5 q^{37} - 25 q^{38} - 30 q^{39} - q^{40} + 4 q^{41} + 35 q^{42} + 16 q^{43} + 6 q^{44} + 6 q^{45} - 14 q^{46} - 14 q^{47} + 5 q^{48} + 2 q^{49} + 13 q^{50} - 5 q^{51} + 15 q^{52} + 5 q^{53} - 34 q^{54} + 81 q^{55} + 22 q^{56} - 12 q^{57} - 16 q^{58} + 17 q^{59} + 4 q^{60} - 30 q^{61} - 4 q^{62} + 72 q^{63} - 4 q^{64} + 6 q^{65} + 11 q^{66} + 26 q^{67} + 4 q^{68} - 73 q^{69} - 10 q^{70} - q^{71} - 13 q^{72} - 43 q^{73} + 5 q^{74} + 67 q^{75} + 30 q^{76} + 40 q^{77} + 70 q^{78} - 13 q^{79} - q^{80} - 39 q^{81} - 21 q^{82} - 24 q^{83} - 35 q^{84} + q^{85} + 26 q^{86} - 92 q^{87} - 4 q^{88} + 24 q^{89} - 29 q^{90} - 10 q^{91} + 26 q^{92} + 11 q^{93} - 4 q^{94} - 39 q^{95} + 5 q^{96} + 3 q^{97} + 2 q^{98} + 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/374\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(309\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0.270560 0.832698i 0.156208 0.480758i −0.842073 0.539363i \(-0.818665\pi\)
0.998281 + 0.0586046i \(0.0186651\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.0973285 0.0707133i 0.0435266 0.0316240i −0.565809 0.824536i \(-0.691436\pi\)
0.609336 + 0.792912i \(0.291436\pi\)
\(6\) −0.708335 + 0.514635i −0.289177 + 0.210099i
\(7\) 0.450819 + 1.38748i 0.170393 + 0.524417i 0.999393 0.0348318i \(-0.0110896\pi\)
−0.829000 + 0.559249i \(0.811090\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 1.80687 + 1.31277i 0.602289 + 0.437589i
\(10\) −0.120305 −0.0380437
\(11\) 1.80666 + 2.78137i 0.544727 + 0.838613i
\(12\) 0.875550 0.252750
\(13\) −0.107308 0.0779639i −0.0297619 0.0216233i 0.572805 0.819692i \(-0.305855\pi\)
−0.602567 + 0.798068i \(0.705855\pi\)
\(14\) 0.450819 1.38748i 0.120486 0.370819i
\(15\) −0.0325496 0.100177i −0.00840428 0.0258657i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 0.809017 0.587785i 0.196215 0.142559i
\(18\) −0.690162 2.12410i −0.162673 0.500655i
\(19\) 0.832946 2.56354i 0.191091 0.588117i −0.808909 0.587934i \(-0.799942\pi\)
1.00000 0.000183454i \(-5.83952e-5\pi\)
\(20\) 0.0973285 + 0.0707133i 0.0217633 + 0.0158120i
\(21\) 1.27732 0.278735
\(22\) 0.173231 3.31210i 0.0369330 0.706142i
\(23\) 7.64311 1.59370 0.796850 0.604177i \(-0.206498\pi\)
0.796850 + 0.604177i \(0.206498\pi\)
\(24\) −0.708335 0.514635i −0.144588 0.105050i
\(25\) −1.54061 + 4.74152i −0.308123 + 0.948304i
\(26\) 0.0409881 + 0.126148i 0.00803842 + 0.0247397i
\(27\) 3.70701 2.69330i 0.713414 0.518326i
\(28\) −1.18026 + 0.857508i −0.223048 + 0.162054i
\(29\) −0.812453 2.50047i −0.150869 0.464326i 0.846850 0.531832i \(-0.178496\pi\)
−0.997719 + 0.0675052i \(0.978496\pi\)
\(30\) −0.0325496 + 0.100177i −0.00594272 + 0.0182898i
\(31\) −7.68256 5.58170i −1.37983 1.00250i −0.996896 0.0787271i \(-0.974914\pi\)
−0.382932 0.923777i \(-0.625086\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.80485 0.751871i 0.488261 0.130884i
\(34\) −1.00000 −0.171499
\(35\) 0.141991 + 0.103162i 0.0240008 + 0.0174376i
\(36\) −0.690162 + 2.12410i −0.115027 + 0.354017i
\(37\) 2.90334 + 8.93555i 0.477305 + 1.46899i 0.842823 + 0.538191i \(0.180892\pi\)
−0.365518 + 0.930804i \(0.619108\pi\)
\(38\) −2.18068 + 1.58436i −0.353753 + 0.257017i
\(39\) −0.0939537 + 0.0682613i −0.0150446 + 0.0109306i
\(40\) −0.0371762 0.114417i −0.00587807 0.0180908i
\(41\) 2.86616 8.82113i 0.447619 1.37763i −0.431967 0.901889i \(-0.642180\pi\)
0.879586 0.475740i \(-0.157820\pi\)
\(42\) −1.03338 0.750792i −0.159453 0.115850i
\(43\) −1.52139 −0.232010 −0.116005 0.993249i \(-0.537009\pi\)
−0.116005 + 0.993249i \(0.537009\pi\)
\(44\) −2.08695 + 2.57772i −0.314619 + 0.388606i
\(45\) 0.268690 0.0400539
\(46\) −6.18341 4.49251i −0.911694 0.662384i
\(47\) 2.35034 7.23359i 0.342832 1.05513i −0.619902 0.784679i \(-0.712828\pi\)
0.962734 0.270449i \(-0.0871722\pi\)
\(48\) 0.270560 + 0.832698i 0.0390520 + 0.120190i
\(49\) 3.94126 2.86349i 0.563038 0.409071i
\(50\) 4.03338 2.93042i 0.570405 0.414424i
\(51\) −0.270560 0.832698i −0.0378860 0.116601i
\(52\) 0.0409881 0.126148i 0.00568402 0.0174936i
\(53\) 8.48636 + 6.16570i 1.16569 + 0.846924i 0.990487 0.137608i \(-0.0439414\pi\)
0.175204 + 0.984532i \(0.443941\pi\)
\(54\) −4.58211 −0.623547
\(55\) 0.372519 + 0.142952i 0.0502304 + 0.0192756i
\(56\) 1.45888 0.194951
\(57\) −1.90929 1.38718i −0.252892 0.183737i
\(58\) −0.812453 + 2.50047i −0.106680 + 0.328328i
\(59\) 0.200475 + 0.616999i 0.0260996 + 0.0803264i 0.963258 0.268578i \(-0.0865537\pi\)
−0.937158 + 0.348905i \(0.886554\pi\)
\(60\) 0.0852160 0.0619131i 0.0110013 0.00799294i
\(61\) −11.2033 + 8.13965i −1.43443 + 1.04217i −0.445261 + 0.895401i \(0.646889\pi\)
−0.989170 + 0.146774i \(0.953111\pi\)
\(62\) 2.93448 + 9.03139i 0.372679 + 1.14699i
\(63\) −1.00686 + 3.09881i −0.126853 + 0.390413i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −0.0159572 −0.00197925
\(66\) −2.71111 1.04037i −0.333714 0.128061i
\(67\) −5.15478 −0.629757 −0.314878 0.949132i \(-0.601964\pi\)
−0.314878 + 0.949132i \(0.601964\pi\)
\(68\) 0.809017 + 0.587785i 0.0981077 + 0.0712794i
\(69\) 2.06792 6.36440i 0.248948 0.766184i
\(70\) −0.0542356 0.166920i −0.00648240 0.0199508i
\(71\) −8.93737 + 6.49338i −1.06067 + 0.770622i −0.974212 0.225633i \(-0.927555\pi\)
−0.0864580 + 0.996255i \(0.527555\pi\)
\(72\) 1.80687 1.31277i 0.212941 0.154711i
\(73\) 0.431640 + 1.32845i 0.0505196 + 0.155483i 0.973134 0.230241i \(-0.0739515\pi\)
−0.922614 + 0.385725i \(0.873952\pi\)
\(74\) 2.90334 8.93555i 0.337506 1.03874i
\(75\) 3.53142 + 2.56573i 0.407774 + 0.296265i
\(76\) 2.69547 0.309191
\(77\) −3.04461 + 3.76059i −0.346965 + 0.428558i
\(78\) 0.116133 0.0131495
\(79\) −3.84597 2.79426i −0.432706 0.314379i 0.350024 0.936741i \(-0.386173\pi\)
−0.782730 + 0.622362i \(0.786173\pi\)
\(80\) −0.0371762 + 0.114417i −0.00415643 + 0.0127922i
\(81\) 0.830750 + 2.55679i 0.0923056 + 0.284087i
\(82\) −7.50370 + 5.45176i −0.828645 + 0.602046i
\(83\) −10.3532 + 7.52201i −1.13641 + 0.825648i −0.986615 0.163070i \(-0.947860\pi\)
−0.149792 + 0.988718i \(0.547860\pi\)
\(84\) 0.394714 + 1.21481i 0.0430669 + 0.132546i
\(85\) 0.0371762 0.114417i 0.00403232 0.0124102i
\(86\) 1.23083 + 0.894251i 0.132724 + 0.0964296i
\(87\) −2.30196 −0.246796
\(88\) 3.20352 0.858742i 0.341497 0.0915422i
\(89\) −3.91389 −0.414871 −0.207436 0.978249i \(-0.566512\pi\)
−0.207436 + 0.978249i \(0.566512\pi\)
\(90\) −0.217375 0.157932i −0.0229133 0.0166475i
\(91\) 0.0597967 0.184035i 0.00626839 0.0192921i
\(92\) 2.36185 + 7.26903i 0.246240 + 0.757849i
\(93\) −6.72646 + 4.88706i −0.697502 + 0.506765i
\(94\) −6.15326 + 4.47061i −0.634660 + 0.461108i
\(95\) −0.100207 0.308406i −0.0102810 0.0316418i
\(96\) 0.270560 0.832698i 0.0276139 0.0849869i
\(97\) 6.07135 + 4.41109i 0.616452 + 0.447879i 0.851680 0.524061i \(-0.175584\pi\)
−0.235228 + 0.971940i \(0.575584\pi\)
\(98\) −4.87167 −0.492113
\(99\) −0.386897 + 7.39728i −0.0388846 + 0.743454i
\(100\) −4.98553 −0.498553
\(101\) 0.487754 + 0.354374i 0.0485334 + 0.0352616i 0.611787 0.791022i \(-0.290451\pi\)
−0.563254 + 0.826284i \(0.690451\pi\)
\(102\) −0.270560 + 0.832698i −0.0267894 + 0.0824494i
\(103\) −5.02220 15.4567i −0.494852 1.52300i −0.817188 0.576372i \(-0.804468\pi\)
0.322336 0.946625i \(-0.395532\pi\)
\(104\) −0.107308 + 0.0779639i −0.0105224 + 0.00764499i
\(105\) 0.124320 0.0903237i 0.0121324 0.00881470i
\(106\) −3.24150 9.97631i −0.314842 0.968985i
\(107\) 6.14373 18.9085i 0.593937 1.82795i 0.0339881 0.999422i \(-0.489179\pi\)
0.559949 0.828527i \(-0.310821\pi\)
\(108\) 3.70701 + 2.69330i 0.356707 + 0.259163i
\(109\) −18.5853 −1.78014 −0.890072 0.455819i \(-0.849346\pi\)
−0.890072 + 0.455819i \(0.849346\pi\)
\(110\) −0.217349 0.334611i −0.0207234 0.0319039i
\(111\) 8.22614 0.780790
\(112\) −1.18026 0.857508i −0.111524 0.0810269i
\(113\) −5.66949 + 17.4489i −0.533341 + 1.64146i 0.213865 + 0.976863i \(0.431395\pi\)
−0.747206 + 0.664592i \(0.768605\pi\)
\(114\) 0.729286 + 2.24451i 0.0683039 + 0.210218i
\(115\) 0.743893 0.540470i 0.0693684 0.0503991i
\(116\) 2.12703 1.54538i 0.197490 0.143485i
\(117\) −0.0915432 0.281741i −0.00846317 0.0260470i
\(118\) 0.200475 0.616999i 0.0184552 0.0567993i
\(119\) 1.18026 + 0.857508i 0.108194 + 0.0786077i
\(120\) −0.105333 −0.00961553
\(121\) −4.47199 + 10.0499i −0.406545 + 0.913631i
\(122\) 13.8480 1.25374
\(123\) −6.56987 4.77329i −0.592385 0.430393i
\(124\) 2.93448 9.03139i 0.263524 0.811043i
\(125\) 0.371224 + 1.14251i 0.0332033 + 0.102189i
\(126\) 2.63600 1.91517i 0.234834 0.170617i
\(127\) −7.07174 + 5.13792i −0.627515 + 0.455916i −0.855538 0.517739i \(-0.826774\pi\)
0.228023 + 0.973656i \(0.426774\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) −0.411627 + 1.26686i −0.0362418 + 0.111541i
\(130\) 0.0129097 + 0.00937943i 0.00113225 + 0.000822630i
\(131\) 2.90096 0.253458 0.126729 0.991937i \(-0.459552\pi\)
0.126729 + 0.991937i \(0.459552\pi\)
\(132\) 1.58182 + 2.43523i 0.137680 + 0.211959i
\(133\) 3.93237 0.340979
\(134\) 4.17031 + 3.02990i 0.360260 + 0.261744i
\(135\) 0.170346 0.524270i 0.0146610 0.0451220i
\(136\) −0.309017 0.951057i −0.0264980 0.0815524i
\(137\) 15.9104 11.5596i 1.35932 0.987604i 0.360832 0.932631i \(-0.382493\pi\)
0.998488 0.0549727i \(-0.0175072\pi\)
\(138\) −5.41389 + 3.93342i −0.460861 + 0.334835i
\(139\) 0.571091 + 1.75764i 0.0484393 + 0.149081i 0.972351 0.233526i \(-0.0750264\pi\)
−0.923911 + 0.382607i \(0.875026\pi\)
\(140\) −0.0542356 + 0.166920i −0.00458375 + 0.0141073i
\(141\) −5.38749 3.91424i −0.453708 0.329638i
\(142\) 11.0472 0.927060
\(143\) 0.0229774 0.439317i 0.00192147 0.0367375i
\(144\) −2.23341 −0.186118
\(145\) −0.255892 0.185916i −0.0212507 0.0154395i
\(146\) 0.431640 1.32845i 0.0357228 0.109943i
\(147\) −1.31808 4.05663i −0.108713 0.334585i
\(148\) −7.60103 + 5.52247i −0.624801 + 0.453944i
\(149\) −2.31022 + 1.67848i −0.189261 + 0.137506i −0.678381 0.734710i \(-0.737318\pi\)
0.489120 + 0.872217i \(0.337318\pi\)
\(150\) −1.34888 4.15144i −0.110136 0.338963i
\(151\) 5.95715 18.3342i 0.484786 1.49202i −0.347505 0.937678i \(-0.612971\pi\)
0.832291 0.554339i \(-0.187029\pi\)
\(152\) −2.18068 1.58436i −0.176877 0.128508i
\(153\) 2.23341 0.180561
\(154\) 4.67356 1.25280i 0.376606 0.100954i
\(155\) −1.14243 −0.0917624
\(156\) −0.0939537 0.0682613i −0.00752231 0.00546528i
\(157\) 1.65705 5.09988i 0.132247 0.407015i −0.862905 0.505367i \(-0.831357\pi\)
0.995152 + 0.0983521i \(0.0313572\pi\)
\(158\) 1.46903 + 4.52121i 0.116870 + 0.359688i
\(159\) 7.43023 5.39838i 0.589256 0.428119i
\(160\) 0.0973285 0.0707133i 0.00769450 0.00559038i
\(161\) 3.44566 + 10.6047i 0.271556 + 0.835764i
\(162\) 0.830750 2.55679i 0.0652699 0.200880i
\(163\) 6.59921 + 4.79461i 0.516890 + 0.375543i 0.815431 0.578854i \(-0.196500\pi\)
−0.298541 + 0.954397i \(0.596500\pi\)
\(164\) 9.27509 0.724263
\(165\) 0.219824 0.271519i 0.0171133 0.0211377i
\(166\) 12.7972 0.993256
\(167\) −6.66232 4.84046i −0.515546 0.374566i 0.299378 0.954135i \(-0.403221\pi\)
−0.814923 + 0.579569i \(0.803221\pi\)
\(168\) 0.394714 1.21481i 0.0304529 0.0937243i
\(169\) −4.01178 12.3470i −0.308599 0.949769i
\(170\) −0.0973285 + 0.0707133i −0.00746476 + 0.00542346i
\(171\) 4.87036 3.53852i 0.372445 0.270597i
\(172\) −0.470136 1.44693i −0.0358475 0.110327i
\(173\) 1.25556 3.86422i 0.0954586 0.293791i −0.891914 0.452204i \(-0.850638\pi\)
0.987373 + 0.158413i \(0.0506377\pi\)
\(174\) 1.86232 + 1.35306i 0.141182 + 0.102575i
\(175\) −7.27329 −0.549809
\(176\) −3.09646 1.18825i −0.233405 0.0895675i
\(177\) 0.568014 0.0426945
\(178\) 3.16640 + 2.30053i 0.237332 + 0.172432i
\(179\) 2.20193 6.77683i 0.164580 0.506524i −0.834425 0.551121i \(-0.814200\pi\)
0.999005 + 0.0445969i \(0.0142003\pi\)
\(180\) 0.0830298 + 0.255539i 0.00618867 + 0.0190468i
\(181\) −5.93788 + 4.31412i −0.441359 + 0.320666i −0.786175 0.618004i \(-0.787941\pi\)
0.344816 + 0.938670i \(0.387941\pi\)
\(182\) −0.156550 + 0.113740i −0.0116042 + 0.00843097i
\(183\) 3.74671 + 11.5312i 0.276965 + 0.852410i
\(184\) 2.36185 7.26903i 0.174118 0.535880i
\(185\) 0.914440 + 0.664379i 0.0672309 + 0.0488461i
\(186\) 8.31437 0.609639
\(187\) 3.09646 + 1.18825i 0.226436 + 0.0868932i
\(188\) 7.60585 0.554714
\(189\) 5.40808 + 3.92920i 0.393380 + 0.285807i
\(190\) −0.100207 + 0.308406i −0.00726980 + 0.0223741i
\(191\) −2.48728 7.65508i −0.179974 0.553902i 0.819852 0.572575i \(-0.194056\pi\)
−0.999826 + 0.0186737i \(0.994056\pi\)
\(192\) −0.708335 + 0.514635i −0.0511197 + 0.0371406i
\(193\) 9.58871 6.96661i 0.690210 0.501467i −0.186519 0.982451i \(-0.559721\pi\)
0.876729 + 0.480984i \(0.159721\pi\)
\(194\) −2.31905 7.13730i −0.166498 0.512428i
\(195\) −0.00431739 + 0.0132876i −0.000309175 + 0.000951541i
\(196\) 3.94126 + 2.86349i 0.281519 + 0.204535i
\(197\) −8.46442 −0.603065 −0.301533 0.953456i \(-0.597498\pi\)
−0.301533 + 0.953456i \(0.597498\pi\)
\(198\) 4.66102 5.75711i 0.331244 0.409140i
\(199\) −3.17230 −0.224879 −0.112439 0.993659i \(-0.535866\pi\)
−0.112439 + 0.993659i \(0.535866\pi\)
\(200\) 4.03338 + 2.93042i 0.285203 + 0.207212i
\(201\) −1.39468 + 4.29237i −0.0983729 + 0.302761i
\(202\) −0.186306 0.573390i −0.0131084 0.0403436i
\(203\) 3.10308 2.25452i 0.217794 0.158236i
\(204\) 0.708335 0.514635i 0.0495934 0.0360317i
\(205\) −0.344812 1.06122i −0.0240827 0.0741191i
\(206\) −5.02220 + 15.4567i −0.349913 + 1.07692i
\(207\) 13.8101 + 10.0336i 0.959868 + 0.697385i
\(208\) 0.132640 0.00919694
\(209\) 8.63500 2.31471i 0.597295 0.160112i
\(210\) −0.153668 −0.0106041
\(211\) 9.43788 + 6.85702i 0.649730 + 0.472057i 0.863179 0.504897i \(-0.168470\pi\)
−0.213449 + 0.976954i \(0.568470\pi\)
\(212\) −3.24150 + 9.97631i −0.222627 + 0.685176i
\(213\) 2.98893 + 9.19897i 0.204798 + 0.630303i
\(214\) −16.0845 + 11.6861i −1.09951 + 0.798843i
\(215\) −0.148075 + 0.107583i −0.0100986 + 0.00733707i
\(216\) −1.41595 4.35785i −0.0963433 0.296514i
\(217\) 4.28105 13.1757i 0.290617 0.894426i
\(218\) 15.0358 + 10.9241i 1.01835 + 0.739876i
\(219\) 1.22298 0.0826415
\(220\) −0.0208405 + 0.398461i −0.00140507 + 0.0268642i
\(221\) −0.132640 −0.00892234
\(222\) −6.65508 4.83520i −0.446660 0.324517i
\(223\) 1.31611 4.05058i 0.0881334 0.271247i −0.897270 0.441482i \(-0.854453\pi\)
0.985403 + 0.170236i \(0.0544528\pi\)
\(224\) 0.450819 + 1.38748i 0.0301216 + 0.0927047i
\(225\) −9.00819 + 6.54483i −0.600546 + 0.436322i
\(226\) 14.8429 10.7840i 0.987337 0.717342i
\(227\) −6.09936 18.7719i −0.404829 1.24593i −0.921038 0.389472i \(-0.872658\pi\)
0.516210 0.856462i \(-0.327342\pi\)
\(228\) 0.729286 2.24451i 0.0482981 0.148646i
\(229\) −0.463983 0.337103i −0.0306609 0.0222764i 0.572349 0.820010i \(-0.306032\pi\)
−0.603010 + 0.797734i \(0.706032\pi\)
\(230\) −0.919503 −0.0606302
\(231\) 2.30768 + 3.55270i 0.151834 + 0.233751i
\(232\) −2.62915 −0.172612
\(233\) 8.54497 + 6.20828i 0.559800 + 0.406718i 0.831386 0.555696i \(-0.187548\pi\)
−0.271586 + 0.962414i \(0.587548\pi\)
\(234\) −0.0915432 + 0.281741i −0.00598437 + 0.0184180i
\(235\) −0.282757 0.870235i −0.0184450 0.0567679i
\(236\) −0.524851 + 0.381326i −0.0341649 + 0.0248222i
\(237\) −3.36734 + 2.44652i −0.218732 + 0.158918i
\(238\) −0.450819 1.38748i −0.0292222 0.0899368i
\(239\) 6.04349 18.6000i 0.390921 1.20313i −0.541172 0.840912i \(-0.682019\pi\)
0.932093 0.362219i \(-0.117981\pi\)
\(240\) 0.0852160 + 0.0619131i 0.00550067 + 0.00399647i
\(241\) −20.0960 −1.29450 −0.647248 0.762280i \(-0.724080\pi\)
−0.647248 + 0.762280i \(0.724080\pi\)
\(242\) 9.52513 5.50200i 0.612298 0.353682i
\(243\) 16.1001 1.03282
\(244\) −11.2033 8.13965i −0.717215 0.521087i
\(245\) 0.181110 0.557400i 0.0115707 0.0356110i
\(246\) 2.50947 + 7.72334i 0.159998 + 0.492422i
\(247\) −0.289246 + 0.210149i −0.0184043 + 0.0133715i
\(248\) −7.68256 + 5.58170i −0.487843 + 0.354439i
\(249\) 3.46241 + 10.6562i 0.219421 + 0.675309i
\(250\) 0.371224 1.14251i 0.0234783 0.0722587i
\(251\) 2.30607 + 1.67546i 0.145558 + 0.105754i 0.658181 0.752860i \(-0.271326\pi\)
−0.512623 + 0.858614i \(0.671326\pi\)
\(252\) −3.25828 −0.205252
\(253\) 13.8085 + 21.2583i 0.868131 + 1.33650i
\(254\) 8.74115 0.548468
\(255\) −0.0852160 0.0619131i −0.00533643 0.00387715i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −6.26958 19.2958i −0.391086 1.20364i −0.931968 0.362540i \(-0.881910\pi\)
0.540883 0.841098i \(-0.318090\pi\)
\(258\) 1.07765 0.782962i 0.0670918 0.0487451i
\(259\) −11.0890 + 8.05663i −0.689037 + 0.500614i
\(260\) −0.00493106 0.0151762i −0.000305811 0.000941190i
\(261\) 1.81454 5.58459i 0.112317 0.345677i
\(262\) −2.34693 1.70514i −0.144994 0.105344i
\(263\) −20.8656 −1.28663 −0.643315 0.765602i \(-0.722441\pi\)
−0.643315 + 0.765602i \(0.722441\pi\)
\(264\) 0.151673 2.89991i 0.00933481 0.178477i
\(265\) 1.26196 0.0775217
\(266\) −3.18135 2.31139i −0.195061 0.141720i
\(267\) −1.05894 + 3.25909i −0.0648062 + 0.199453i
\(268\) −1.59292 4.90249i −0.0973028 0.299467i
\(269\) −12.9467 + 9.40634i −0.789376 + 0.573515i −0.907778 0.419451i \(-0.862223\pi\)
0.118402 + 0.992966i \(0.462223\pi\)
\(270\) −0.445971 + 0.324017i −0.0271409 + 0.0197190i
\(271\) −7.02095 21.6083i −0.426492 1.31261i −0.901558 0.432658i \(-0.857576\pi\)
0.475066 0.879950i \(-0.342424\pi\)
\(272\) −0.309017 + 0.951057i −0.0187369 + 0.0576663i
\(273\) −0.137067 0.0995851i −0.00829568 0.00602716i
\(274\) −19.6664 −1.18809
\(275\) −15.9713 + 4.28128i −0.963103 + 0.258171i
\(276\) 6.69193 0.402807
\(277\) −10.1559 7.37866i −0.610206 0.443341i 0.239281 0.970950i \(-0.423088\pi\)
−0.849487 + 0.527610i \(0.823088\pi\)
\(278\) 0.571091 1.75764i 0.0342518 0.105416i
\(279\) −6.55389 20.1708i −0.392371 1.20759i
\(280\) 0.141991 0.103162i 0.00848557 0.00616513i
\(281\) 6.47153 4.70184i 0.386059 0.280488i −0.377780 0.925895i \(-0.623312\pi\)
0.763839 + 0.645407i \(0.223312\pi\)
\(282\) 2.05784 + 6.33337i 0.122542 + 0.377147i
\(283\) −8.21736 + 25.2904i −0.488471 + 1.50336i 0.338419 + 0.940996i \(0.390108\pi\)
−0.826890 + 0.562364i \(0.809892\pi\)
\(284\) −8.93737 6.49338i −0.530335 0.385311i
\(285\) −0.283921 −0.0168180
\(286\) −0.276813 + 0.341909i −0.0163683 + 0.0202175i
\(287\) 13.5312 0.798724
\(288\) 1.80687 + 1.31277i 0.106471 + 0.0773555i
\(289\) 0.309017 0.951057i 0.0181775 0.0559445i
\(290\) 0.0977419 + 0.300819i 0.00573960 + 0.0176647i
\(291\) 5.31577 3.86213i 0.311616 0.226402i
\(292\) −1.13005 + 0.821027i −0.0661310 + 0.0480470i
\(293\) 9.31494 + 28.6684i 0.544185 + 1.67483i 0.722921 + 0.690931i \(0.242799\pi\)
−0.178736 + 0.983897i \(0.557201\pi\)
\(294\) −1.31808 + 4.05663i −0.0768719 + 0.236587i
\(295\) 0.0631420 + 0.0458753i 0.00367627 + 0.00267097i
\(296\) 9.39539 0.546096
\(297\) 14.1883 + 5.44469i 0.823291 + 0.315933i
\(298\) 2.85559 0.165420
\(299\) −0.820168 0.595887i −0.0474316 0.0344610i
\(300\) −1.34888 + 4.15144i −0.0778778 + 0.239683i
\(301\) −0.685872 2.11090i −0.0395330 0.121670i
\(302\) −15.5960 + 11.3312i −0.897450 + 0.652035i
\(303\) 0.427053 0.310272i 0.0245336 0.0178247i
\(304\) 0.832946 + 2.56354i 0.0477727 + 0.147029i
\(305\) −0.514816 + 1.58444i −0.0294783 + 0.0907248i
\(306\) −1.80687 1.31277i −0.103292 0.0750459i
\(307\) 15.1612 0.865297 0.432649 0.901563i \(-0.357579\pi\)
0.432649 + 0.901563i \(0.357579\pi\)
\(308\) −4.51737 1.73351i −0.257401 0.0987759i
\(309\) −14.2296 −0.809493
\(310\) 0.924248 + 0.671505i 0.0524937 + 0.0381389i
\(311\) −0.614474 + 1.89116i −0.0348436 + 0.107238i −0.966966 0.254907i \(-0.917955\pi\)
0.932122 + 0.362144i \(0.117955\pi\)
\(312\) 0.0358871 + 0.110449i 0.00203171 + 0.00625295i
\(313\) −16.3021 + 11.8442i −0.921448 + 0.669471i −0.943884 0.330277i \(-0.892858\pi\)
0.0224359 + 0.999748i \(0.492858\pi\)
\(314\) −4.33822 + 3.15190i −0.244820 + 0.177872i
\(315\) 0.121130 + 0.372801i 0.00682493 + 0.0210050i
\(316\) 1.46903 4.52121i 0.0826394 0.254338i
\(317\) −13.1420 9.54826i −0.738131 0.536283i 0.153994 0.988072i \(-0.450786\pi\)
−0.892125 + 0.451788i \(0.850786\pi\)
\(318\) −9.18427 −0.515028
\(319\) 5.48691 6.77722i 0.307208 0.379452i
\(320\) −0.120305 −0.00672524
\(321\) −14.0828 10.2317i −0.786024 0.571080i
\(322\) 3.44566 10.6047i 0.192019 0.590974i
\(323\) −0.832946 2.56354i −0.0463463 0.142639i
\(324\) −2.17493 + 1.58018i −0.120830 + 0.0877878i
\(325\) 0.534988 0.388691i 0.0296758 0.0215607i
\(326\) −2.52067 7.75784i −0.139607 0.429667i
\(327\) −5.02842 + 15.4759i −0.278072 + 0.855819i
\(328\) −7.50370 5.45176i −0.414323 0.301023i
\(329\) 11.0960 0.611744
\(330\) −0.337436 + 0.0904537i −0.0185752 + 0.00497931i
\(331\) −16.0144 −0.880232 −0.440116 0.897941i \(-0.645063\pi\)
−0.440116 + 0.897941i \(0.645063\pi\)
\(332\) −10.3532 7.52201i −0.568203 0.412824i
\(333\) −6.48434 + 19.9568i −0.355340 + 1.09362i
\(334\) 2.54478 + 7.83203i 0.139244 + 0.428549i
\(335\) −0.501707 + 0.364512i −0.0274112 + 0.0199154i
\(336\) −1.03338 + 0.750792i −0.0563753 + 0.0409590i
\(337\) 0.380325 + 1.17052i 0.0207176 + 0.0637623i 0.960881 0.276962i \(-0.0893277\pi\)
−0.940163 + 0.340724i \(0.889328\pi\)
\(338\) −4.01178 + 12.3470i −0.218212 + 0.671588i
\(339\) 12.9957 + 9.44195i 0.705831 + 0.512816i
\(340\) 0.120305 0.00652444
\(341\) 1.64503 31.4522i 0.0890835 1.70323i
\(342\) −6.02009 −0.325529
\(343\) 14.0116 + 10.1801i 0.756558 + 0.549671i
\(344\) −0.470136 + 1.44693i −0.0253480 + 0.0780132i
\(345\) −0.248781 0.765668i −0.0133939 0.0412222i
\(346\) −3.28710 + 2.38822i −0.176716 + 0.128392i
\(347\) −17.1074 + 12.4293i −0.918376 + 0.667239i −0.943119 0.332455i \(-0.892123\pi\)
0.0247433 + 0.999694i \(0.492123\pi\)
\(348\) −0.711344 2.18929i −0.0381320 0.117358i
\(349\) 2.93236 9.02489i 0.156966 0.483091i −0.841389 0.540430i \(-0.818262\pi\)
0.998355 + 0.0573388i \(0.0182615\pi\)
\(350\) 5.88421 + 4.27513i 0.314524 + 0.228515i
\(351\) −0.607772 −0.0324405
\(352\) 1.80666 + 2.78137i 0.0962950 + 0.148247i
\(353\) 1.34305 0.0714833 0.0357417 0.999361i \(-0.488621\pi\)
0.0357417 + 0.999361i \(0.488621\pi\)
\(354\) −0.459533 0.333870i −0.0244239 0.0177450i
\(355\) −0.410693 + 1.26398i −0.0217973 + 0.0670852i
\(356\) −1.20946 3.72233i −0.0641012 0.197283i
\(357\) 1.03338 0.750792i 0.0546921 0.0397361i
\(358\) −5.76471 + 4.18831i −0.304675 + 0.221359i
\(359\) 7.94302 + 24.4461i 0.419216 + 1.29022i 0.908425 + 0.418048i \(0.137286\pi\)
−0.489208 + 0.872167i \(0.662714\pi\)
\(360\) 0.0830298 0.255539i 0.00437605 0.0134681i
\(361\) 9.49337 + 6.89734i 0.499651 + 0.363018i
\(362\) 7.33962 0.385762
\(363\) 7.15862 + 6.44293i 0.375730 + 0.338166i
\(364\) 0.193506 0.0101425
\(365\) 0.135950 + 0.0987735i 0.00711595 + 0.00517004i
\(366\) 3.74671 11.5312i 0.195844 0.602745i
\(367\) 7.72899 + 23.7874i 0.403450 + 1.24169i 0.922182 + 0.386755i \(0.126404\pi\)
−0.518732 + 0.854937i \(0.673596\pi\)
\(368\) −6.18341 + 4.49251i −0.322333 + 0.234188i
\(369\) 16.7589 12.1760i 0.872431 0.633858i
\(370\) −0.349285 1.07499i −0.0181585 0.0558860i
\(371\) −4.72896 + 14.5542i −0.245515 + 0.755619i
\(372\) −6.72646 4.88706i −0.348751 0.253382i
\(373\) 5.43001 0.281155 0.140578 0.990070i \(-0.455104\pi\)
0.140578 + 0.990070i \(0.455104\pi\)
\(374\) −1.80666 2.78137i −0.0934199 0.143821i
\(375\) 1.05180 0.0543149
\(376\) −6.15326 4.47061i −0.317330 0.230554i
\(377\) −0.107764 + 0.331663i −0.00555012 + 0.0170815i
\(378\) −2.06570 6.35758i −0.106248 0.326999i
\(379\) 2.98920 2.17178i 0.153545 0.111557i −0.508360 0.861144i \(-0.669748\pi\)
0.661905 + 0.749588i \(0.269748\pi\)
\(380\) 0.262346 0.190606i 0.0134581 0.00977786i
\(381\) 2.36500 + 7.27873i 0.121163 + 0.372901i
\(382\) −2.48728 + 7.65508i −0.127261 + 0.391668i
\(383\) 1.94548 + 1.41348i 0.0994096 + 0.0722253i 0.636380 0.771376i \(-0.280431\pi\)
−0.536970 + 0.843601i \(0.680431\pi\)
\(384\) 0.875550 0.0446802
\(385\) −0.0304039 + 0.581307i −0.00154952 + 0.0296261i
\(386\) −11.8523 −0.603266
\(387\) −2.74895 1.99723i −0.139737 0.101525i
\(388\) −2.31905 + 7.13730i −0.117732 + 0.362342i
\(389\) −8.61419 26.5118i −0.436757 1.34420i −0.891276 0.453462i \(-0.850189\pi\)
0.454519 0.890737i \(-0.349811\pi\)
\(390\) 0.0113031 0.00821216i 0.000572353 0.000415839i
\(391\) 6.18341 4.49251i 0.312708 0.227196i
\(392\) −1.50543 4.63323i −0.0760356 0.234014i
\(393\) 0.784884 2.41562i 0.0395921 0.121852i
\(394\) 6.84786 + 4.97526i 0.344990 + 0.250650i
\(395\) −0.571914 −0.0287761
\(396\) −7.15479 + 1.91792i −0.359542 + 0.0963793i
\(397\) −20.1130 −1.00944 −0.504722 0.863282i \(-0.668405\pi\)
−0.504722 + 0.863282i \(0.668405\pi\)
\(398\) 2.56645 + 1.86463i 0.128644 + 0.0934656i
\(399\) 1.06394 3.27447i 0.0532636 0.163929i
\(400\) −1.54061 4.74152i −0.0770306 0.237076i
\(401\) 5.49673 3.99361i 0.274494 0.199431i −0.442018 0.897006i \(-0.645737\pi\)
0.716512 + 0.697575i \(0.245737\pi\)
\(402\) 3.65131 2.65283i 0.182111 0.132311i
\(403\) 0.389229 + 1.19792i 0.0193889 + 0.0596729i
\(404\) −0.186306 + 0.573390i −0.00926905 + 0.0285272i
\(405\) 0.261655 + 0.190103i 0.0130017 + 0.00944630i
\(406\) −3.83562 −0.190359
\(407\) −19.6077 + 24.2187i −0.971918 + 1.20048i
\(408\) −0.875550 −0.0433462
\(409\) 13.6500 + 9.91730i 0.674949 + 0.490379i 0.871678 0.490079i \(-0.163032\pi\)
−0.196729 + 0.980458i \(0.563032\pi\)
\(410\) −0.344812 + 1.06122i −0.0170291 + 0.0524101i
\(411\) −5.32093 16.3761i −0.262462 0.807776i
\(412\) 13.1483 9.55279i 0.647769 0.470632i
\(413\) −0.765694 + 0.556309i −0.0376773 + 0.0273742i
\(414\) −5.27499 16.2347i −0.259252 0.797894i
\(415\) −0.475751 + 1.46421i −0.0233537 + 0.0718753i
\(416\) −0.107308 0.0779639i −0.00526121 0.00382250i
\(417\) 1.61810 0.0792385
\(418\) −8.34641 3.20288i −0.408236 0.156658i
\(419\) −19.9568 −0.974953 −0.487476 0.873136i \(-0.662082\pi\)
−0.487476 + 0.873136i \(0.662082\pi\)
\(420\) 0.124320 + 0.0903237i 0.00606619 + 0.00440735i
\(421\) −1.28919 + 3.96773i −0.0628314 + 0.193375i −0.977545 0.210728i \(-0.932416\pi\)
0.914713 + 0.404104i \(0.132416\pi\)
\(422\) −3.60495 11.0949i −0.175486 0.540091i
\(423\) 13.7428 9.98470i 0.668196 0.485473i
\(424\) 8.48636 6.16570i 0.412134 0.299433i
\(425\) 1.54061 + 4.74152i 0.0747307 + 0.229997i
\(426\) 2.98893 9.19897i 0.144814 0.445692i
\(427\) −16.3442 11.8748i −0.790952 0.574660i
\(428\) 19.8815 0.961010
\(429\) −0.359602 0.137995i −0.0173617 0.00666245i
\(430\) 0.183031 0.00882652
\(431\) −2.51732 1.82894i −0.121255 0.0880968i 0.525505 0.850791i \(-0.323876\pi\)
−0.646760 + 0.762694i \(0.723876\pi\)
\(432\) −1.41595 + 4.35785i −0.0681250 + 0.209667i
\(433\) 8.58966 + 26.4362i 0.412793 + 1.27044i 0.914210 + 0.405240i \(0.132812\pi\)
−0.501418 + 0.865205i \(0.667188\pi\)
\(434\) −11.2079 + 8.14304i −0.537998 + 0.390878i
\(435\) −0.224046 + 0.162779i −0.0107422 + 0.00780466i
\(436\) −5.74316 17.6756i −0.275047 0.846509i
\(437\) 6.36630 19.5935i 0.304541 0.937282i
\(438\) −0.989413 0.718851i −0.0472760 0.0343480i
\(439\) 17.0281 0.812705 0.406353 0.913716i \(-0.366800\pi\)
0.406353 + 0.913716i \(0.366800\pi\)
\(440\) 0.251070 0.310112i 0.0119693 0.0147840i
\(441\) 10.8804 0.518116
\(442\) 0.107308 + 0.0779639i 0.00510413 + 0.00370837i
\(443\) 7.07449 21.7730i 0.336119 1.03447i −0.630049 0.776555i \(-0.716965\pi\)
0.966168 0.257913i \(-0.0830347\pi\)
\(444\) 2.54202 + 7.82352i 0.120639 + 0.371288i
\(445\) −0.380933 + 0.276764i −0.0180580 + 0.0131199i
\(446\) −3.44563 + 2.50339i −0.163155 + 0.118539i
\(447\) 0.772609 + 2.37785i 0.0365431 + 0.112468i
\(448\) 0.450819 1.38748i 0.0212992 0.0655522i
\(449\) 8.17402 + 5.93877i 0.385756 + 0.280268i 0.763714 0.645555i \(-0.223374\pi\)
−0.377958 + 0.925823i \(0.623374\pi\)
\(450\) 11.1347 0.524896
\(451\) 29.7130 7.96490i 1.39913 0.375053i
\(452\) −18.3469 −0.862964
\(453\) −13.6551 9.92101i −0.641572 0.466130i
\(454\) −6.09936 + 18.7719i −0.286257 + 0.881008i
\(455\) −0.00719382 0.0221403i −0.000337252 0.00103795i
\(456\) −1.90929 + 1.38718i −0.0894109 + 0.0649608i
\(457\) 33.7417 24.5148i 1.57837 1.14675i 0.659834 0.751412i \(-0.270627\pi\)
0.918535 0.395340i \(-0.129373\pi\)
\(458\) 0.177226 + 0.545445i 0.00828121 + 0.0254870i
\(459\) 1.41595 4.35785i 0.0660909 0.203407i
\(460\) 0.743893 + 0.540470i 0.0346842 + 0.0251995i
\(461\) −12.0145 −0.559569 −0.279785 0.960063i \(-0.590263\pi\)
−0.279785 + 0.960063i \(0.590263\pi\)
\(462\) 0.221272 4.23062i 0.0102945 0.196826i
\(463\) −19.0604 −0.885813 −0.442907 0.896568i \(-0.646053\pi\)
−0.442907 + 0.896568i \(0.646053\pi\)
\(464\) 2.12703 + 1.54538i 0.0987449 + 0.0717424i
\(465\) −0.309097 + 0.951301i −0.0143340 + 0.0441155i
\(466\) −3.26389 10.0452i −0.151197 0.465336i
\(467\) 3.98263 2.89355i 0.184294 0.133897i −0.491813 0.870701i \(-0.663666\pi\)
0.676107 + 0.736803i \(0.263666\pi\)
\(468\) 0.239663 0.174126i 0.0110784 0.00804896i
\(469\) −2.32387 7.15214i −0.107306 0.330255i
\(470\) −0.282757 + 0.870235i −0.0130426 + 0.0401410i
\(471\) −3.79833 2.75965i −0.175018 0.127158i
\(472\) 0.648751 0.0298612
\(473\) −2.74863 4.23155i −0.126382 0.194567i
\(474\) 4.16226 0.191179
\(475\) 10.8718 + 7.89885i 0.498834 + 0.362424i
\(476\) −0.450819 + 1.38748i −0.0206632 + 0.0635949i
\(477\) 7.23961 + 22.2812i 0.331479 + 1.02019i
\(478\) −15.8221 + 11.4954i −0.723685 + 0.525788i
\(479\) −25.7430 + 18.7034i −1.17623 + 0.854580i −0.991741 0.128255i \(-0.959062\pi\)
−0.184487 + 0.982835i \(0.559062\pi\)
\(480\) −0.0325496 0.100177i −0.00148568 0.00457245i
\(481\) 0.385099 1.18521i 0.0175590 0.0540410i
\(482\) 16.2580 + 11.8121i 0.740531 + 0.538027i
\(483\) 9.76273 0.444219
\(484\) −10.9400 1.14752i −0.497272 0.0521599i
\(485\) 0.902839 0.0409958
\(486\) −13.0253 9.46343i −0.590839 0.429270i
\(487\) 5.09049 15.6669i 0.230672 0.709936i −0.766994 0.641654i \(-0.778248\pi\)
0.997666 0.0682814i \(-0.0217516\pi\)
\(488\) 4.27927 + 13.1702i 0.193713 + 0.596188i
\(489\) 5.77794 4.19792i 0.261288 0.189837i
\(490\) −0.474152 + 0.344492i −0.0214200 + 0.0155626i
\(491\) 10.8968 + 33.5370i 0.491767 + 1.51350i 0.821935 + 0.569582i \(0.192895\pi\)
−0.330167 + 0.943922i \(0.607105\pi\)
\(492\) 2.50947 7.72334i 0.113135 0.348195i
\(493\) −2.12703 1.54538i −0.0957966 0.0696003i
\(494\) 0.357527 0.0160859
\(495\) 0.485430 + 0.747325i 0.0218185 + 0.0335898i
\(496\) 9.49616 0.426390
\(497\) −13.0385 9.47306i −0.584859 0.424925i
\(498\) 3.46241 10.6562i 0.155154 0.477516i
\(499\) −9.87250 30.3844i −0.441954 1.36019i −0.885790 0.464086i \(-0.846383\pi\)
0.443836 0.896108i \(-0.353617\pi\)
\(500\) −0.971877 + 0.706110i −0.0434637 + 0.0315782i
\(501\) −5.83320 + 4.23806i −0.260608 + 0.189343i
\(502\) −0.880841 2.71095i −0.0393139 0.120996i
\(503\) −5.03560 + 15.4980i −0.224526 + 0.691020i 0.773813 + 0.633414i \(0.218347\pi\)
−0.998339 + 0.0576066i \(0.981653\pi\)
\(504\) 2.63600 + 1.91517i 0.117417 + 0.0853084i
\(505\) 0.0725314 0.00322761
\(506\) 1.32403 25.3147i 0.0588602 1.12538i
\(507\) −11.3667 −0.504815
\(508\) −7.07174 5.13792i −0.313758 0.227958i
\(509\) 0.551942 1.69870i 0.0244644 0.0752937i −0.938079 0.346422i \(-0.887397\pi\)
0.962543 + 0.271128i \(0.0873966\pi\)
\(510\) 0.0325496 + 0.100177i 0.00144132 + 0.00443593i
\(511\) −1.64860 + 1.19778i −0.0729299 + 0.0529867i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) −3.81665 11.7464i −0.168509 0.518618i
\(514\) −6.26958 + 19.2958i −0.276539 + 0.851100i
\(515\) −1.58180 1.14924i −0.0697024 0.0506418i
\(516\) −1.33205 −0.0586404
\(517\) 24.3655 6.53146i 1.07159 0.287253i
\(518\) 13.7068 0.602240
\(519\) −2.87802 2.09101i −0.126331 0.0917850i
\(520\) −0.00493106 + 0.0151762i −0.000216241 + 0.000665522i
\(521\) −3.51837 10.8284i −0.154142 0.474401i 0.843931 0.536452i \(-0.180236\pi\)
−0.998073 + 0.0620509i \(0.980236\pi\)
\(522\) −4.75053 + 3.45147i −0.207925 + 0.151067i
\(523\) 14.9594 10.8686i 0.654129 0.475253i −0.210546 0.977584i \(-0.567524\pi\)
0.864675 + 0.502331i \(0.167524\pi\)
\(524\) 0.896446 + 2.75898i 0.0391614 + 0.120527i
\(525\) −1.96786 + 6.05645i −0.0858844 + 0.264325i
\(526\) 16.8806 + 12.2645i 0.736031 + 0.534758i
\(527\) −9.49616 −0.413659
\(528\) −1.82723 + 2.25692i −0.0795199 + 0.0982200i
\(529\) 35.4172 1.53988
\(530\) −1.02095 0.741763i −0.0443472 0.0322201i
\(531\) −0.447743 + 1.37801i −0.0194304 + 0.0598007i
\(532\) 1.21517 + 3.73990i 0.0526842 + 0.162145i
\(533\) −0.995292 + 0.723122i −0.0431109 + 0.0313219i
\(534\) 2.77234 2.01423i 0.119971 0.0871641i
\(535\) −0.739120 2.27478i −0.0319549 0.0983472i
\(536\) −1.59292 + 4.90249i −0.0688035 + 0.211755i
\(537\) −5.04730 3.66708i −0.217807 0.158246i
\(538\) 16.0030 0.689940
\(539\) 15.0849 + 5.78875i 0.649754 + 0.249339i
\(540\) 0.551250 0.0237220
\(541\) 19.8982 + 14.4569i 0.855491 + 0.621551i 0.926655 0.375914i \(-0.122671\pi\)
−0.0711635 + 0.997465i \(0.522671\pi\)
\(542\) −7.02095 + 21.6083i −0.301576 + 0.928154i
\(543\) 1.98581 + 6.11168i 0.0852191 + 0.262277i
\(544\) 0.809017 0.587785i 0.0346863 0.0252011i
\(545\) −1.80888 + 1.31423i −0.0774837 + 0.0562952i
\(546\) 0.0523550 + 0.161132i 0.00224059 + 0.00689582i
\(547\) −2.26796 + 6.98005i −0.0969708 + 0.298445i −0.987762 0.155967i \(-0.950151\pi\)
0.890792 + 0.454412i \(0.150151\pi\)
\(548\) 15.9104 + 11.5596i 0.679660 + 0.493802i
\(549\) −30.9283 −1.31999
\(550\) 15.4375 + 5.92404i 0.658257 + 0.252602i
\(551\) −7.08680 −0.301908
\(552\) −5.41389 3.93342i −0.230430 0.167417i
\(553\) 2.14314 6.59591i 0.0911356 0.280486i
\(554\) 3.87919 + 11.9389i 0.164811 + 0.507236i
\(555\) 0.800638 0.581697i 0.0339852 0.0246917i
\(556\) −1.49514 + 1.08628i −0.0634079 + 0.0460685i
\(557\) −3.92884 12.0917i −0.166470 0.512342i 0.832672 0.553767i \(-0.186810\pi\)
−0.999142 + 0.0414249i \(0.986810\pi\)
\(558\) −6.55389 + 20.1708i −0.277448 + 0.853898i
\(559\) 0.163258 + 0.118614i 0.00690506 + 0.00501682i
\(560\) −0.175510 −0.00741666
\(561\) 1.82723 2.25692i 0.0771457 0.0952874i
\(562\) −7.99925 −0.337428
\(563\) 11.3548 + 8.24975i 0.478548 + 0.347686i 0.800763 0.598981i \(-0.204427\pi\)
−0.322215 + 0.946666i \(0.604427\pi\)
\(564\) 2.05784 6.33337i 0.0866506 0.266683i
\(565\) 0.682067 + 2.09919i 0.0286948 + 0.0883134i
\(566\) 21.5133 15.6303i 0.904272 0.656992i
\(567\) −3.17297 + 2.30529i −0.133252 + 0.0968133i
\(568\) 3.41377 + 10.5065i 0.143239 + 0.440843i
\(569\) 9.36764 28.8306i 0.392712 1.20864i −0.538017 0.842934i \(-0.680826\pi\)
0.930729 0.365709i \(-0.119174\pi\)
\(570\) 0.229697 + 0.166885i 0.00962095 + 0.00699003i
\(571\) 16.7495 0.700944 0.350472 0.936573i \(-0.386021\pi\)
0.350472 + 0.936573i \(0.386021\pi\)
\(572\) 0.424916 0.113904i 0.0177666 0.00476255i
\(573\) −7.04732 −0.294406
\(574\) −10.9470 7.95346i −0.456919 0.331971i
\(575\) −11.7751 + 36.2400i −0.491055 + 1.51131i
\(576\) −0.690162 2.12410i −0.0287568 0.0885042i
\(577\) 29.4291 21.3815i 1.22515 0.890125i 0.228634 0.973512i \(-0.426574\pi\)
0.996517 + 0.0833878i \(0.0265740\pi\)
\(578\) −0.809017 + 0.587785i −0.0336507 + 0.0244486i
\(579\) −3.20676 9.86938i −0.133268 0.410157i
\(580\) 0.0977419 0.300819i 0.00405851 0.0124908i
\(581\) −15.1040 10.9737i −0.626620 0.455266i
\(582\) −6.57066 −0.272362
\(583\) −1.81715 + 34.7430i −0.0752586 + 1.43891i
\(584\) 1.39682 0.0578006
\(585\) −0.0288326 0.0209481i −0.00119208 0.000866098i
\(586\) 9.31494 28.6684i 0.384797 1.18428i
\(587\) −9.46374 29.1264i −0.390610 1.20218i −0.932328 0.361615i \(-0.882226\pi\)
0.541717 0.840561i \(-0.317774\pi\)
\(588\) 3.45077 2.50713i 0.142307 0.103392i
\(589\) −20.7081 + 15.0453i −0.853262 + 0.619931i
\(590\) −0.0241181 0.0742279i −0.000992926 0.00305591i
\(591\) −2.29013 + 7.04831i −0.0942035 + 0.289929i
\(592\) −7.60103 5.52247i −0.312400 0.226972i
\(593\) 31.8601 1.30834 0.654168 0.756349i \(-0.273019\pi\)
0.654168 + 0.756349i \(0.273019\pi\)
\(594\) −8.27830 12.7445i −0.339663 0.522915i
\(595\) 0.175510 0.00719521
\(596\) −2.31022 1.67848i −0.0946304 0.0687530i
\(597\) −0.858298 + 2.64157i −0.0351278 + 0.108112i
\(598\) 0.313276 + 0.964166i 0.0128108 + 0.0394277i
\(599\) 29.1943 21.2109i 1.19284 0.866652i 0.199283 0.979942i \(-0.436139\pi\)
0.993562 + 0.113290i \(0.0361388\pi\)
\(600\) 3.53142 2.56573i 0.144170 0.104745i
\(601\) 5.27115 + 16.2229i 0.215015 + 0.661748i 0.999153 + 0.0411607i \(0.0131056\pi\)
−0.784138 + 0.620587i \(0.786894\pi\)
\(602\) −0.685872 + 2.11090i −0.0279540 + 0.0860337i
\(603\) −9.31401 6.76702i −0.379296 0.275575i
\(604\) 19.2777 0.784400
\(605\) 0.275412 + 1.29438i 0.0111971 + 0.0526238i
\(606\) −0.527867 −0.0214431
\(607\) 15.1590 + 11.0137i 0.615286 + 0.447032i 0.851272 0.524725i \(-0.175832\pi\)
−0.235985 + 0.971757i \(0.575832\pi\)
\(608\) 0.832946 2.56354i 0.0337804 0.103965i
\(609\) −1.03777 3.19391i −0.0420524 0.129424i
\(610\) 1.34781 0.979238i 0.0545710 0.0396482i
\(611\) −0.816170 + 0.592982i −0.0330187 + 0.0239895i
\(612\) 0.690162 + 2.12410i 0.0278982 + 0.0858617i
\(613\) −7.03316 + 21.6458i −0.284067 + 0.874267i 0.702610 + 0.711575i \(0.252018\pi\)
−0.986677 + 0.162692i \(0.947982\pi\)
\(614\) −12.2657 8.91155i −0.495003 0.359641i
\(615\) −0.976971 −0.0393953
\(616\) 2.63569 + 4.05768i 0.106195 + 0.163489i
\(617\) −2.57624 −0.103715 −0.0518577 0.998654i \(-0.516514\pi\)
−0.0518577 + 0.998654i \(0.516514\pi\)
\(618\) 11.5120 + 8.36394i 0.463080 + 0.336447i
\(619\) −8.53857 + 26.2790i −0.343194 + 1.05624i 0.619349 + 0.785116i \(0.287397\pi\)
−0.962543 + 0.271128i \(0.912603\pi\)
\(620\) −0.353031 1.08652i −0.0141781 0.0436356i
\(621\) 28.3331 20.5852i 1.13697 0.826056i
\(622\) 1.60871 1.16880i 0.0645035 0.0468645i
\(623\) −1.76445 5.43043i −0.0706914 0.217566i
\(624\) 0.0358871 0.110449i 0.00143663 0.00442150i
\(625\) −20.0500 14.5671i −0.801998 0.582686i
\(626\) 20.1505 0.805375
\(627\) 0.408829 7.81661i 0.0163271 0.312165i
\(628\) 5.36233 0.213980
\(629\) 7.60103 + 5.52247i 0.303073 + 0.220195i
\(630\) 0.121130 0.372801i 0.00482595 0.0148528i
\(631\) 10.2733 + 31.6181i 0.408975 + 1.25870i 0.917530 + 0.397666i \(0.130180\pi\)
−0.508555 + 0.861029i \(0.669820\pi\)
\(632\) −3.84597 + 2.79426i −0.152985 + 0.111150i
\(633\) 8.26334 6.00367i 0.328438 0.238624i
\(634\) 5.01982 + 15.4494i 0.199362 + 0.613574i
\(635\) −0.324963 + 1.00013i −0.0128957 + 0.0396890i
\(636\) 7.43023 + 5.39838i 0.294628 + 0.214060i
\(637\) −0.646179 −0.0256025
\(638\) −8.42256 + 2.25776i −0.333452 + 0.0893857i
\(639\) −24.6729 −0.976046
\(640\) 0.0973285 + 0.0707133i 0.00384725 + 0.00279519i
\(641\) 5.61222 17.2727i 0.221670 0.682229i −0.776943 0.629571i \(-0.783231\pi\)
0.998613 0.0526579i \(-0.0167693\pi\)
\(642\) 5.37914 + 16.5553i 0.212298 + 0.653386i
\(643\) −24.4701 + 17.7786i −0.965007 + 0.701118i −0.954308 0.298824i \(-0.903405\pi\)
−0.0106985 + 0.999943i \(0.503405\pi\)
\(644\) −9.02085 + 6.55403i −0.355471 + 0.258265i
\(645\) 0.0495207 + 0.152409i 0.00194988 + 0.00600110i
\(646\) −0.832946 + 2.56354i −0.0327718 + 0.100861i
\(647\) 13.4659 + 9.78353i 0.529398 + 0.384630i 0.820133 0.572173i \(-0.193900\pi\)
−0.290734 + 0.956804i \(0.593900\pi\)
\(648\) 2.68836 0.105609
\(649\) −1.35391 + 1.67230i −0.0531456 + 0.0656435i
\(650\) −0.661281 −0.0259376
\(651\) −9.81311 7.12964i −0.384606 0.279433i
\(652\) −2.52067 + 7.75784i −0.0987172 + 0.303820i
\(653\) −4.74718 14.6103i −0.185771 0.571745i 0.814189 0.580599i \(-0.197182\pi\)
−0.999961 + 0.00885387i \(0.997182\pi\)
\(654\) 13.1646 9.56463i 0.514776 0.374007i
\(655\) 0.282346 0.205137i 0.0110322 0.00801535i
\(656\) 2.86616 + 8.82113i 0.111905 + 0.344407i
\(657\) −0.964029 + 2.96698i −0.0376104 + 0.115753i
\(658\) −8.97687 6.52208i −0.349955 0.254257i
\(659\) 9.66950 0.376670 0.188335 0.982105i \(-0.439691\pi\)
0.188335 + 0.982105i \(0.439691\pi\)
\(660\) 0.326159 + 0.125161i 0.0126957 + 0.00487190i
\(661\) −50.0393 −1.94630 −0.973152 0.230164i \(-0.926074\pi\)
−0.973152 + 0.230164i \(0.926074\pi\)
\(662\) 12.9559 + 9.41304i 0.503547 + 0.365848i
\(663\) −0.0358871 + 0.110449i −0.00139374 + 0.00428949i
\(664\) 3.95455 + 12.1709i 0.153466 + 0.472321i
\(665\) 0.382731 0.278071i 0.0148417 0.0107831i
\(666\) 16.9762 12.3340i 0.657816 0.477931i
\(667\) −6.20967 19.1114i −0.240440 0.739997i
\(668\) 2.54478 7.83203i 0.0984605 0.303030i
\(669\) −3.01682 2.19185i −0.116637 0.0847417i
\(670\) 0.620144 0.0239583
\(671\) −42.8798 16.4548i −1.65536 0.635232i
\(672\) 1.27732 0.0492738
\(673\) 1.34053 + 0.973952i 0.0516736 + 0.0375431i 0.613322 0.789833i \(-0.289833\pi\)
−0.561649 + 0.827376i \(0.689833\pi\)
\(674\) 0.380325 1.17052i 0.0146496 0.0450868i
\(675\) 7.05926 + 21.7262i 0.271711 + 0.836241i
\(676\) 10.5030 7.63087i 0.403961 0.293495i
\(677\) 31.5488 22.9215i 1.21252 0.880946i 0.217061 0.976158i \(-0.430353\pi\)
0.995457 + 0.0952119i \(0.0303529\pi\)
\(678\) −4.96393 15.2774i −0.190638 0.586725i
\(679\) −3.38322 + 10.4125i −0.129836 + 0.399594i
\(680\) −0.0973285 0.0707133i −0.00373238 0.00271173i
\(681\) −17.2815 −0.662230
\(682\) −19.8180 + 24.4785i −0.758871 + 0.937328i
\(683\) −3.38675 −0.129590 −0.0647952 0.997899i \(-0.520639\pi\)
−0.0647952 + 0.997899i \(0.520639\pi\)
\(684\) 4.87036 + 3.53852i 0.186223 + 0.135299i
\(685\) 0.731121 2.25016i 0.0279347 0.0859741i
\(686\) −5.35197 16.4717i −0.204339 0.628891i
\(687\) −0.406240 + 0.295151i −0.0154990 + 0.0112607i
\(688\) 1.23083 0.894251i 0.0469250 0.0340930i
\(689\) −0.429953 1.32326i −0.0163799 0.0504122i
\(690\) −0.248781 + 0.765668i −0.00947091 + 0.0291485i
\(691\) 8.61274 + 6.25752i 0.327644 + 0.238047i 0.739430 0.673233i \(-0.235095\pi\)
−0.411786 + 0.911280i \(0.635095\pi\)
\(692\) 4.06308 0.154455
\(693\) −10.4380 + 2.79802i −0.396506 + 0.106288i
\(694\) 21.1460 0.802690
\(695\) 0.179872 + 0.130685i 0.00682293 + 0.00495715i
\(696\) −0.711344 + 2.18929i −0.0269634 + 0.0829848i
\(697\) −2.86616 8.82113i −0.108564 0.334124i
\(698\) −7.67703 + 5.57769i −0.290580 + 0.211119i
\(699\) 7.48155 5.43566i 0.282978 0.205596i
\(700\) −2.24757 6.91731i −0.0849501 0.261450i
\(701\) −11.3306 + 34.8720i −0.427950 + 1.31710i 0.472190 + 0.881497i \(0.343464\pi\)
−0.900141 + 0.435599i \(0.856536\pi\)
\(702\) 0.491698 + 0.357240i 0.0185580 + 0.0134831i
\(703\) 25.3250 0.955150
\(704\) 0.173231 3.31210i 0.00652890 0.124829i
\(705\) −0.801145 −0.0301729
\(706\) −1.08655 0.789425i −0.0408929 0.0297104i
\(707\) −0.271798 + 0.836507i −0.0102220 + 0.0314601i
\(708\) 0.175526 + 0.540213i 0.00659667 + 0.0203025i
\(709\) 0.0268237 0.0194886i 0.00100739 0.000731909i −0.587281 0.809383i \(-0.699802\pi\)
0.588289 + 0.808651i \(0.299802\pi\)
\(710\) 1.07521 0.781184i 0.0403518 0.0293173i
\(711\) −3.28095 10.0977i −0.123045 0.378694i
\(712\) −1.20946 + 3.72233i −0.0453264 + 0.139500i
\(713\) −58.7187 42.6616i −2.19903 1.59769i
\(714\) −1.27732 −0.0478026
\(715\) −0.0288292 0.0443829i −0.00107815 0.00165983i
\(716\) 7.12558 0.266295
\(717\) −13.8530 10.0648i −0.517350 0.375877i
\(718\) 7.94302 24.4461i 0.296431 0.912320i
\(719\) 4.15274 + 12.7808i 0.154871 + 0.476644i 0.998148 0.0608354i \(-0.0193765\pi\)
−0.843277 + 0.537480i \(0.819376\pi\)
\(720\) −0.217375 + 0.157932i −0.00810108 + 0.00588578i
\(721\) 19.1818 13.9364i 0.714366 0.519018i
\(722\) −3.62614 11.1601i −0.134951 0.415337i
\(723\) −5.43716 + 16.7339i −0.202210 + 0.622339i
\(724\) −5.93788 4.31412i −0.220679 0.160333i
\(725\) 13.1077 0.486808
\(726\) −2.00438 9.42017i −0.0743897 0.349615i
\(727\) 33.5724 1.24513 0.622565 0.782568i \(-0.286091\pi\)
0.622565 + 0.782568i \(0.286091\pi\)
\(728\) −0.156550 0.113740i −0.00580212 0.00421549i
\(729\) 1.86380 5.73619i 0.0690297 0.212452i
\(730\) −0.0519283 0.159819i −0.00192195 0.00591516i
\(731\) −1.23083 + 0.894251i −0.0455239 + 0.0330751i
\(732\) −9.80902 + 7.12667i −0.362552 + 0.263409i
\(733\) −3.70710 11.4093i −0.136925 0.421411i 0.858960 0.512043i \(-0.171111\pi\)
−0.995884 + 0.0906320i \(0.971111\pi\)
\(734\) 7.72899 23.7874i 0.285282 0.878009i
\(735\) −0.415144 0.301620i −0.0153128 0.0111254i
\(736\) 7.64311 0.281729
\(737\) −9.31291 14.3373i −0.343046 0.528123i
\(738\) −20.7151 −0.762533
\(739\) 23.8190 + 17.3055i 0.876194 + 0.636592i 0.932242 0.361836i \(-0.117850\pi\)
−0.0560475 + 0.998428i \(0.517850\pi\)
\(740\) −0.349285 + 1.07499i −0.0128400 + 0.0395174i
\(741\) 0.0967326 + 0.297712i 0.00355356 + 0.0109367i
\(742\) 12.3806 8.99502i 0.454505 0.330218i
\(743\) 0.551182 0.400457i 0.0202209 0.0146913i −0.577629 0.816299i \(-0.696022\pi\)
0.597850 + 0.801608i \(0.296022\pi\)
\(744\) 2.56928 + 7.90743i 0.0941944 + 0.289901i
\(745\) −0.106160 + 0.326727i −0.00388940 + 0.0119704i
\(746\) −4.39297 3.19168i −0.160838 0.116856i
\(747\) −28.5814 −1.04574
\(748\) −0.173231 + 3.31210i −0.00633397 + 0.121102i
\(749\) 29.0048 1.05981
\(750\) −0.850927 0.618235i −0.0310715 0.0225747i
\(751\) 4.56152 14.0389i 0.166452 0.512287i −0.832688 0.553742i \(-0.813199\pi\)
0.999140 + 0.0414551i \(0.0131994\pi\)
\(752\) 2.35034 + 7.23359i 0.0857080 + 0.263782i
\(753\) 2.01908 1.46695i 0.0735794 0.0534586i
\(754\) 0.282130 0.204979i 0.0102746 0.00746490i
\(755\) −0.716673 2.20569i −0.0260824 0.0802734i
\(756\) −2.06570 + 6.35758i −0.0751289 + 0.231223i
\(757\) −12.9518 9.41007i −0.470743 0.342015i 0.326988 0.945029i \(-0.393966\pi\)
−0.797731 + 0.603014i \(0.793966\pi\)
\(758\) −3.69485 −0.134203
\(759\) 21.4378 5.74664i 0.778141 0.208590i
\(760\) −0.324278 −0.0117628
\(761\) −24.1567 17.5509i −0.875681 0.636219i 0.0564246 0.998407i \(-0.482030\pi\)
−0.932105 + 0.362188i \(0.882030\pi\)
\(762\) 2.36500 7.27873i 0.0856750 0.263681i
\(763\) −8.37858 25.7866i −0.303325 0.933538i
\(764\) 6.51180 4.73110i 0.235589 0.171165i
\(765\) 0.217375 0.157932i 0.00785920 0.00571004i
\(766\) −0.743109 2.28705i −0.0268496 0.0826346i
\(767\) 0.0265910 0.0818388i 0.000960147 0.00295503i
\(768\) −0.708335 0.514635i −0.0255598 0.0185703i
\(769\) −20.6198 −0.743570 −0.371785 0.928319i \(-0.621254\pi\)
−0.371785 + 0.928319i \(0.621254\pi\)
\(770\) 0.366281 0.452416i 0.0131998 0.0163039i
\(771\) −17.7638 −0.639749
\(772\) 9.58871 + 6.96661i 0.345105 + 0.250734i
\(773\) −13.4134 + 41.2822i −0.482446 + 1.48482i 0.353200 + 0.935548i \(0.385094\pi\)
−0.835646 + 0.549269i \(0.814906\pi\)
\(774\) 1.05001 + 3.23159i 0.0377417 + 0.116157i
\(775\) 38.3016 27.8277i 1.37583 0.999602i
\(776\) 6.07135 4.41109i 0.217949 0.158349i
\(777\) 3.70850 + 11.4136i 0.133042 + 0.409460i
\(778\) −8.61419 + 26.5118i −0.308834 + 0.950492i
\(779\) −20.2260 14.6950i −0.724671 0.526505i
\(780\) −0.0139714 −0.000500255
\(781\) −34.2072 13.1268i −1.22403 0.469714i
\(782\) −7.64311 −0.273317
\(783\) −9.74630 7.08110i −0.348304 0.253058i
\(784\) −1.50543 + 4.63323i −0.0537653 + 0.165473i
\(785\) −0.199351 0.613540i −0.00711515 0.0218982i
\(786\) −2.05485 + 1.49294i −0.0732942 + 0.0532513i
\(787\) −26.8283 + 19.4919i −0.956327 + 0.694812i −0.952295 0.305180i \(-0.901284\pi\)
−0.00403230 + 0.999992i \(0.501284\pi\)
\(788\) −2.61565 8.05014i −0.0931787 0.286775i
\(789\) −5.64540 + 17.3748i −0.200982 + 0.618558i
\(790\) 0.462688 + 0.336163i 0.0164617 + 0.0119601i
\(791\) −26.7659 −0.951685
\(792\) 6.91567 + 2.65385i 0.245738 + 0.0943003i
\(793\) 1.83680 0.0652267
\(794\) 16.2718 + 11.8221i 0.577464 + 0.419552i
\(795\) 0.341436 1.05083i 0.0121095 0.0372692i
\(796\) −0.980296 3.01704i −0.0347457 0.106936i
\(797\) −11.3576 + 8.25178i −0.402307 + 0.292293i −0.770480 0.637464i \(-0.779983\pi\)
0.368173 + 0.929757i \(0.379983\pi\)
\(798\) −2.78543 + 2.02374i −0.0986032 + 0.0716394i
\(799\) −2.35034 7.23359i −0.0831489 0.255906i
\(800\) −1.54061 + 4.74152i −0.0544689 + 0.167638i
\(801\) −7.07188 5.13802i −0.249873 0.181543i
\(802\) −6.79434 −0.239916
\(803\) −2.91508 + 3.60060i −0.102871 + 0.127062i
\(804\) −4.51327 −0.159171
\(805\) 1.08525 + 0.788481i 0.0382501 + 0.0277903i
\(806\) 0.389229 1.19792i 0.0137100 0.0421951i
\(807\) 4.32978 + 13.3257i 0.152415 + 0.469086i
\(808\) 0.487754 0.354374i 0.0171591 0.0124668i
\(809\) −7.63221 + 5.54513i −0.268334 + 0.194956i −0.713813 0.700336i \(-0.753033\pi\)
0.445479 + 0.895292i \(0.353033\pi\)
\(810\) −0.0999432 0.307593i −0.00351164 0.0108077i
\(811\) −6.44652 + 19.8404i −0.226368 + 0.696689i 0.771782 + 0.635887i \(0.219366\pi\)
−0.998150 + 0.0608017i \(0.980634\pi\)
\(812\) 3.10308 + 2.25452i 0.108897 + 0.0791182i
\(813\) −19.8927 −0.697669
\(814\) 30.0984 8.06821i 1.05495 0.282791i
\(815\) 0.981334 0.0343746
\(816\) 0.708335 + 0.514635i 0.0247967 + 0.0180158i
\(817\) −1.26724 + 3.90015i −0.0443350 + 0.136449i
\(818\) −5.21384 16.0465i −0.182297 0.561054i
\(819\) 0.349640 0.254028i 0.0122174 0.00887647i
\(820\) 0.902731 0.655872i 0.0315247 0.0229041i
\(821\) 9.81626 + 30.2113i 0.342590 + 1.05438i 0.962862 + 0.269996i \(0.0870223\pi\)
−0.620272 + 0.784387i \(0.712978\pi\)
\(822\) −5.32093 + 16.3761i −0.185589 + 0.571184i
\(823\) 4.45237 + 3.23484i 0.155200 + 0.112759i 0.662675 0.748907i \(-0.269421\pi\)
−0.507475 + 0.861666i \(0.669421\pi\)
\(824\) −16.2522 −0.566171
\(825\) −0.756168 + 14.4576i −0.0263264 + 0.503348i
\(826\) 0.946450 0.0329312
\(827\) −5.26769 3.82720i −0.183175 0.133085i 0.492419 0.870358i \(-0.336113\pi\)
−0.675594 + 0.737274i \(0.736113\pi\)
\(828\) −5.27499 + 16.2347i −0.183319 + 0.564196i
\(829\) 2.02955 + 6.24632i 0.0704893 + 0.216944i 0.980095 0.198529i \(-0.0636163\pi\)
−0.909606 + 0.415472i \(0.863616\pi\)
\(830\) 1.24553 0.904933i 0.0432331 0.0314107i
\(831\) −8.89196 + 6.46039i −0.308459 + 0.224108i
\(832\) 0.0409881 + 0.126148i 0.00142101 + 0.00437340i
\(833\) 1.50543 4.63323i 0.0521600 0.160532i
\(834\) −1.30907 0.951093i −0.0453293 0.0329337i
\(835\) −0.990719 −0.0342852
\(836\) 4.86978 + 7.49709i 0.168425 + 0.259292i
\(837\) −43.5125 −1.50401
\(838\) 16.1454 + 11.7303i 0.557733 + 0.405217i
\(839\) −10.1446 + 31.2220i −0.350232 + 1.07790i 0.608491 + 0.793560i \(0.291775\pi\)
−0.958723 + 0.284342i \(0.908225\pi\)
\(840\) −0.0474860 0.146147i −0.00163842 0.00504255i
\(841\) 17.8692 12.9827i 0.616179 0.447681i
\(842\) 3.37515 2.45219i 0.116315 0.0845081i
\(843\) −2.16427 6.66095i −0.0745416 0.229415i
\(844\) −3.60495 + 11.0949i −0.124087 + 0.381902i
\(845\) −1.26356 0.918029i −0.0434677 0.0315812i
\(846\) −16.9870 −0.584025
\(847\) −15.9601 1.67409i −0.548396 0.0575225i
\(848\) −10.4897 −0.360218
\(849\) 18.8360 + 13.6851i 0.646449 + 0.469673i
\(850\) 1.54061 4.74152i 0.0528426 0.162633i
\(851\) 22.1905 + 68.2954i 0.760681 + 2.34114i
\(852\) −7.82511 + 5.68528i −0.268084 + 0.194774i
\(853\) 13.9292 10.1201i 0.476926 0.346507i −0.323208 0.946328i \(-0.604762\pi\)
0.800134 + 0.599821i \(0.204762\pi\)
\(854\) 6.24294 + 19.2138i 0.213629 + 0.657482i
\(855\) 0.223804 0.688798i 0.00765394 0.0235564i
\(856\) −16.0845 11.6861i −0.549757 0.399422i
\(857\) 3.96083 0.135300 0.0676498 0.997709i \(-0.478450\pi\)
0.0676498 + 0.997709i \(0.478450\pi\)
\(858\) 0.209812 + 0.323009i 0.00716288 + 0.0110273i
\(859\) −11.6086 −0.396079 −0.198040 0.980194i \(-0.563457\pi\)
−0.198040 + 0.980194i \(0.563457\pi\)
\(860\) −0.148075 0.107583i −0.00504931 0.00366854i
\(861\) 3.66101 11.2674i 0.124767 0.383993i
\(862\) 0.961530 + 2.95928i 0.0327498 + 0.100794i
\(863\) −16.0178 + 11.6376i −0.545253 + 0.396150i −0.826032 0.563623i \(-0.809407\pi\)
0.280779 + 0.959772i \(0.409407\pi\)
\(864\) 3.70701 2.69330i 0.126115 0.0916279i
\(865\) −0.151050 0.464884i −0.00513585 0.0158065i
\(866\) 8.58966 26.4362i 0.291888 0.898340i
\(867\) −0.708335 0.514635i −0.0240563 0.0174779i
\(868\) 13.8538 0.470227
\(869\) 0.823521 15.7453i 0.0279361 0.534124i
\(870\) 0.276936 0.00938902
\(871\) 0.553150 + 0.401887i 0.0187428 + 0.0136174i
\(872\) −5.74316 + 17.6756i −0.194488 + 0.598572i
\(873\) 5.17939 + 15.9405i 0.175296 + 0.539505i
\(874\) −16.6672 + 12.1094i −0.563776 + 0.409607i
\(875\) −1.41785 + 1.03013i −0.0479321 + 0.0348247i
\(876\) 0.377922 + 1.16312i 0.0127688 + 0.0392983i
\(877\) 9.98466 30.7296i 0.337158 1.03767i −0.628491 0.777817i \(-0.716327\pi\)
0.965649 0.259849i \(-0.0836729\pi\)
\(878\) −13.7760 10.0088i −0.464917 0.337782i
\(879\) 26.3924 0.890193
\(880\) −0.385399 + 0.103311i −0.0129918 + 0.00348260i
\(881\) 58.1195 1.95810 0.979048 0.203631i \(-0.0652743\pi\)
0.979048 + 0.203631i \(0.0652743\pi\)
\(882\) −8.80246 6.39536i −0.296394 0.215343i
\(883\) −6.48904 + 19.9712i −0.218374 + 0.672085i 0.780523 + 0.625127i \(0.214953\pi\)
−0.998897 + 0.0469582i \(0.985047\pi\)
\(884\) −0.0409881 0.126148i −0.00137858 0.00424283i
\(885\) 0.0552840 0.0401662i 0.00185835 0.00135017i
\(886\) −18.5213 + 13.4565i −0.622234 + 0.452079i
\(887\) −1.68504 5.18601i −0.0565780 0.174129i 0.918774 0.394784i \(-0.129181\pi\)
−0.975352 + 0.220655i \(0.929181\pi\)
\(888\) 2.54202 7.82352i 0.0853045 0.262540i
\(889\) −10.3168 7.49560i −0.346015 0.251395i
\(890\) 0.470859 0.0157832
\(891\) −5.61048 + 6.92985i −0.187958 + 0.232159i
\(892\) 4.25903 0.142603
\(893\) −16.5859 12.0504i −0.555027 0.403251i
\(894\) 0.772609 2.37785i 0.0258399 0.0795271i
\(895\) −0.264902 0.815284i −0.00885469 0.0272519i
\(896\) −1.18026 + 0.857508i −0.0394297 + 0.0286473i
\(897\) −0.718099 + 0.521729i −0.0239766 + 0.0174200i
\(898\) −3.12220 9.60914i −0.104189 0.320661i
\(899\) −7.71519 + 23.7449i −0.257316 + 0.791937i
\(900\) −9.00819 6.54483i −0.300273 0.218161i
\(901\) 10.4897 0.349463
\(902\) −28.7199 11.0211i −0.956269 0.366962i
\(903\) −1.94331 −0.0646692
\(904\) 14.8429 + 10.7840i 0.493668 + 0.358671i
\(905\) −0.272859 + 0.839774i −0.00907015 + 0.0279150i
\(906\) 5.21578 + 16.0525i 0.173283 + 0.533309i
\(907\) −36.3901 + 26.4389i −1.20831 + 0.877890i −0.995076 0.0991107i \(-0.968400\pi\)
−0.213236 + 0.977001i \(0.568400\pi\)
\(908\) 15.9683 11.6017i 0.529927 0.385015i
\(909\) 0.416097 + 1.28062i 0.0138011 + 0.0424753i
\(910\) −0.00719382 + 0.0221403i −0.000238473 + 0.000733944i
\(911\) −5.97174 4.33872i −0.197853 0.143748i 0.484448 0.874820i \(-0.339020\pi\)
−0.682301 + 0.731072i \(0.739020\pi\)
\(912\) 2.36002 0.0781480
\(913\) −39.6260 15.2062i −1.31143 0.503253i
\(914\) −41.7070 −1.37954
\(915\) 1.18007 + 0.857372i 0.0390119 + 0.0283438i
\(916\) 0.177226 0.545445i 0.00585570 0.0180220i
\(917\) 1.30781 + 4.02502i 0.0431876 + 0.132918i
\(918\) −3.70701 + 2.69330i −0.122350 + 0.0888921i
\(919\) −17.4934 + 12.7097i −0.577053 + 0.419254i −0.837661 0.546191i \(-0.816077\pi\)
0.260607 + 0.965445i \(0.416077\pi\)
\(920\) −0.284142 0.874499i −0.00936788 0.0288314i
\(921\) 4.10202 12.6247i 0.135166 0.415999i
\(922\) 9.71990 + 7.06192i 0.320108 + 0.232572i
\(923\) 1.46530 0.0482310
\(924\) −2.66571 + 3.29258i −0.0876954 + 0.108318i
\(925\) −46.8410 −1.54012
\(926\) 15.4202 + 11.2034i 0.506739 + 0.368168i
\(927\) 11.2166 34.5212i 0.368403 1.13383i
\(928\) −0.812453 2.50047i −0.0266701 0.0820821i
\(929\) 0.815623 0.592584i 0.0267597 0.0194421i −0.574325 0.818627i \(-0.694735\pi\)
0.601085 + 0.799185i \(0.294735\pi\)
\(930\) 0.809225 0.587937i 0.0265355 0.0192792i
\(931\) −4.05783 12.4887i −0.132990 0.409302i
\(932\) −3.26389 + 10.0452i −0.106912 + 0.329042i
\(933\) 1.40851 + 1.02334i 0.0461125 + 0.0335027i
\(934\) −4.92280 −0.161079
\(935\) 0.385399 0.103311i 0.0126039 0.00337862i
\(936\) −0.296240 −0.00968291
\(937\) 49.0182 + 35.6138i 1.60135 + 1.16345i 0.884858 + 0.465862i \(0.154256\pi\)
0.716497 + 0.697590i \(0.245744\pi\)
\(938\) −2.32387 + 7.15214i −0.0758771 + 0.233526i
\(939\) 5.45191 + 16.7793i 0.177916 + 0.547570i
\(940\) 0.740266 0.537835i 0.0241448 0.0175422i
\(941\) 17.3359 12.5953i 0.565134 0.410594i −0.268200 0.963363i \(-0.586429\pi\)
0.833334 + 0.552769i \(0.186429\pi\)
\(942\) 1.45083 + 4.46520i 0.0472707 + 0.145484i
\(943\) 21.9064 67.4209i 0.713370 2.19553i
\(944\) −0.524851 0.381326i −0.0170824 0.0124111i
\(945\) 0.804208 0.0261609
\(946\) −0.263553 + 5.03900i −0.00856884 + 0.163832i
\(947\) 23.8595 0.775330 0.387665 0.921800i \(-0.373282\pi\)
0.387665 + 0.921800i \(0.373282\pi\)
\(948\) −3.36734 2.44652i −0.109366 0.0794592i
\(949\) 0.0572528 0.176206i 0.00185850 0.00571988i
\(950\) −4.15267 12.7806i −0.134730 0.414658i
\(951\) −11.5065 + 8.35998i −0.373125 + 0.271091i
\(952\) 1.18026 0.857508i 0.0382524 0.0277920i
\(953\) 4.38759 + 13.5036i 0.142128 + 0.437425i 0.996630 0.0820225i \(-0.0261379\pi\)
−0.854503 + 0.519447i \(0.826138\pi\)
\(954\) 7.23961 22.2812i 0.234391 0.721381i
\(955\) −0.783400 0.569173i −0.0253502 0.0184180i
\(956\) 19.5572 0.632524
\(957\) −4.15884 6.40258i −0.134436 0.206966i
\(958\) 31.8201 1.02806
\(959\) 23.2114 + 16.8641i 0.749536 + 0.544569i
\(960\) −0.0325496 + 0.100177i −0.00105053 + 0.00323321i
\(961\) 18.2867 + 56.2808i 0.589895 + 1.81551i
\(962\) −1.00820 + 0.732502i −0.0325057 + 0.0236168i
\(963\) 35.9233 26.0998i 1.15761 0.841054i
\(964\) −6.21000 19.1124i −0.200011 0.615569i
\(965\) 0.440623 1.35610i 0.0141842 0.0436544i
\(966\) −7.89821 5.73839i −0.254121 0.184630i
\(967\) 17.7926 0.572170 0.286085 0.958204i \(-0.407646\pi\)
0.286085 + 0.958204i \(0.407646\pi\)
\(968\) 8.17614 + 7.35872i 0.262791 + 0.236518i
\(969\) −2.36002 −0.0758147
\(970\) −0.730412 0.530675i −0.0234521 0.0170390i
\(971\) 18.1375 55.8216i 0.582061 1.79140i −0.0287038 0.999588i \(-0.509138\pi\)
0.610765 0.791812i \(-0.290862\pi\)
\(972\) 4.97522 + 15.3121i 0.159580 + 0.491137i
\(973\) −2.18123 + 1.58475i −0.0699269 + 0.0508048i
\(974\) −13.3271 + 9.68268i −0.427027 + 0.310253i
\(975\) −0.178916 0.550647i −0.00572990 0.0176348i
\(976\) 4.27927 13.1702i 0.136976 0.421569i
\(977\) −23.8540 17.3309i −0.763157 0.554466i 0.136720 0.990610i \(-0.456344\pi\)
−0.899877 + 0.436144i \(0.856344\pi\)
\(978\) −7.14193 −0.228374
\(979\) −7.07105 10.8860i −0.225992 0.347917i
\(980\) 0.586085 0.0187218
\(981\) −33.5811 24.3981i −1.07216 0.778971i
\(982\) 10.8968 33.5370i 0.347732 1.07021i
\(983\) −18.2887 56.2869i −0.583320 1.79527i −0.605914 0.795530i \(-0.707193\pi\)
0.0225942 0.999745i \(-0.492807\pi\)
\(984\) −6.56987 + 4.77329i −0.209440 + 0.152167i
\(985\) −0.823830 + 0.598547i −0.0262494 + 0.0190713i
\(986\) 0.812453 + 2.50047i 0.0258738 + 0.0796313i
\(987\) 3.00214 9.23963i 0.0955591 0.294101i
\(988\) −0.289246 0.210149i −0.00920213 0.00668574i
\(989\) −11.6282 −0.369754
\(990\) 0.0465455 0.889927i 0.00147931 0.0282837i
\(991\) −17.2675 −0.548519 −0.274260 0.961656i \(-0.588433\pi\)
−0.274260 + 0.961656i \(0.588433\pi\)
\(992\) −7.68256 5.58170i −0.243921 0.177219i
\(993\) −4.33286 + 13.3352i −0.137499 + 0.423179i
\(994\) 4.98028 + 15.3277i 0.157965 + 0.486166i
\(995\) −0.308756 + 0.224324i −0.00978822 + 0.00711155i
\(996\) −9.06471 + 6.58589i −0.287226 + 0.208682i
\(997\) 13.6603 + 42.0421i 0.432626 + 1.33149i 0.895500 + 0.445062i \(0.146818\pi\)
−0.462874 + 0.886424i \(0.653182\pi\)
\(998\) −9.87250 + 30.3844i −0.312509 + 0.961803i
\(999\) 34.8288 + 25.3046i 1.10193 + 0.800602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 374.2.g.f.103.3 yes 16
11.3 even 5 inner 374.2.g.f.69.3 16
11.5 even 5 4114.2.a.bi.1.6 8
11.6 odd 10 4114.2.a.bg.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
374.2.g.f.69.3 16 11.3 even 5 inner
374.2.g.f.103.3 yes 16 1.1 even 1 trivial
4114.2.a.bg.1.6 8 11.6 odd 10
4114.2.a.bi.1.6 8 11.5 even 5