Properties

Label 3744.2.g.f.1873.23
Level $3744$
Weight $2$
Character 3744.1873
Analytic conductor $29.896$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1873,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1873");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1873.23
Character \(\chi\) \(=\) 3744.1873
Dual form 3744.2.g.f.1873.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.18566i q^{5} -2.70923 q^{7} +0.956799i q^{11} +1.00000i q^{13} -4.96511 q^{17} -5.59682i q^{19} +5.16007 q^{23} -12.5198 q^{25} +4.46122i q^{29} -6.37531 q^{31} +11.3399i q^{35} -1.66608i q^{37} +8.64689 q^{41} +7.67092i q^{43} -8.01021 q^{47} +0.339928 q^{49} -0.0797782i q^{53} +4.00484 q^{55} -4.70716i q^{59} +8.10132i q^{61} +4.18566 q^{65} -13.7670i q^{67} +1.15489 q^{71} +1.66608 q^{73} -2.59219i q^{77} -4.30121 q^{79} +14.0185i q^{83} +20.7823i q^{85} -11.6601 q^{89} -2.70923i q^{91} -23.4264 q^{95} -6.17018 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{7} - 24 q^{25} - 40 q^{31} + 24 q^{49} + 16 q^{55} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 4.18566i − 1.87189i −0.352152 0.935943i \(-0.614550\pi\)
0.352152 0.935943i \(-0.385450\pi\)
\(6\) 0 0
\(7\) −2.70923 −1.02399 −0.511996 0.858988i \(-0.671094\pi\)
−0.511996 + 0.858988i \(0.671094\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.956799i 0.288486i 0.989542 + 0.144243i \(0.0460747\pi\)
−0.989542 + 0.144243i \(0.953925\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.96511 −1.20422 −0.602108 0.798415i \(-0.705672\pi\)
−0.602108 + 0.798415i \(0.705672\pi\)
\(18\) 0 0
\(19\) − 5.59682i − 1.28400i −0.766705 0.641999i \(-0.778105\pi\)
0.766705 0.641999i \(-0.221895\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.16007 1.07595 0.537974 0.842961i \(-0.319190\pi\)
0.537974 + 0.842961i \(0.319190\pi\)
\(24\) 0 0
\(25\) −12.5198 −2.50396
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.46122i 0.828428i 0.910180 + 0.414214i \(0.135943\pi\)
−0.910180 + 0.414214i \(0.864057\pi\)
\(30\) 0 0
\(31\) −6.37531 −1.14504 −0.572519 0.819891i \(-0.694034\pi\)
−0.572519 + 0.819891i \(0.694034\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11.3399i 1.91680i
\(36\) 0 0
\(37\) − 1.66608i − 0.273901i −0.990578 0.136951i \(-0.956270\pi\)
0.990578 0.136951i \(-0.0437301\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.64689 1.35042 0.675208 0.737627i \(-0.264054\pi\)
0.675208 + 0.737627i \(0.264054\pi\)
\(42\) 0 0
\(43\) 7.67092i 1.16980i 0.811104 + 0.584902i \(0.198867\pi\)
−0.811104 + 0.584902i \(0.801133\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.01021 −1.16841 −0.584205 0.811606i \(-0.698593\pi\)
−0.584205 + 0.811606i \(0.698593\pi\)
\(48\) 0 0
\(49\) 0.339928 0.0485611
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 0.0797782i − 0.0109584i −0.999985 0.00547919i \(-0.998256\pi\)
0.999985 0.00547919i \(-0.00174409\pi\)
\(54\) 0 0
\(55\) 4.00484 0.540012
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 4.70716i − 0.612820i −0.951900 0.306410i \(-0.900872\pi\)
0.951900 0.306410i \(-0.0991278\pi\)
\(60\) 0 0
\(61\) 8.10132i 1.03727i 0.854996 + 0.518634i \(0.173559\pi\)
−0.854996 + 0.518634i \(0.826441\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.18566 0.519168
\(66\) 0 0
\(67\) − 13.7670i − 1.68191i −0.541108 0.840953i \(-0.681995\pi\)
0.541108 0.840953i \(-0.318005\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.15489 0.137061 0.0685303 0.997649i \(-0.478169\pi\)
0.0685303 + 0.997649i \(0.478169\pi\)
\(72\) 0 0
\(73\) 1.66608 0.194999 0.0974997 0.995236i \(-0.468916\pi\)
0.0974997 + 0.995236i \(0.468916\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.59219i − 0.295407i
\(78\) 0 0
\(79\) −4.30121 −0.483924 −0.241962 0.970286i \(-0.577791\pi\)
−0.241962 + 0.970286i \(0.577791\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.0185i 1.53873i 0.638810 + 0.769365i \(0.279427\pi\)
−0.638810 + 0.769365i \(0.720573\pi\)
\(84\) 0 0
\(85\) 20.7823i 2.25415i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.6601 −1.23596 −0.617981 0.786193i \(-0.712049\pi\)
−0.617981 + 0.786193i \(0.712049\pi\)
\(90\) 0 0
\(91\) − 2.70923i − 0.284004i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −23.4264 −2.40350
\(96\) 0 0
\(97\) −6.17018 −0.626487 −0.313243 0.949673i \(-0.601416\pi\)
−0.313243 + 0.949673i \(0.601416\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.2218i 1.81313i 0.422063 + 0.906567i \(0.361306\pi\)
−0.422063 + 0.906567i \(0.638694\pi\)
\(102\) 0 0
\(103\) 1.61651 0.159280 0.0796399 0.996824i \(-0.474623\pi\)
0.0796399 + 0.996824i \(0.474623\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6645i 1.03097i 0.856898 + 0.515487i \(0.172389\pi\)
−0.856898 + 0.515487i \(0.827611\pi\)
\(108\) 0 0
\(109\) − 15.0942i − 1.44576i −0.690972 0.722882i \(-0.742817\pi\)
0.690972 0.722882i \(-0.257183\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.5746 1.37106 0.685530 0.728044i \(-0.259570\pi\)
0.685530 + 0.728044i \(0.259570\pi\)
\(114\) 0 0
\(115\) − 21.5983i − 2.01405i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.4516 1.23311
\(120\) 0 0
\(121\) 10.0845 0.916776
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 31.4753i 2.81524i
\(126\) 0 0
\(127\) 16.1471 1.43283 0.716414 0.697676i \(-0.245782\pi\)
0.716414 + 0.697676i \(0.245782\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.42633i 0.823582i 0.911278 + 0.411791i \(0.135097\pi\)
−0.911278 + 0.411791i \(0.864903\pi\)
\(132\) 0 0
\(133\) 15.1631i 1.31480i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.68642 −0.400388 −0.200194 0.979756i \(-0.564157\pi\)
−0.200194 + 0.979756i \(0.564157\pi\)
\(138\) 0 0
\(139\) − 9.95019i − 0.843964i −0.906604 0.421982i \(-0.861334\pi\)
0.906604 0.421982i \(-0.138666\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.956799 −0.0800116
\(144\) 0 0
\(145\) 18.6732 1.55072
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.19106i 0.507191i 0.967310 + 0.253596i \(0.0816132\pi\)
−0.967310 + 0.253596i \(0.918387\pi\)
\(150\) 0 0
\(151\) 8.48441 0.690451 0.345226 0.938520i \(-0.387802\pi\)
0.345226 + 0.938520i \(0.387802\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 26.6849i 2.14338i
\(156\) 0 0
\(157\) 16.0239i 1.27885i 0.768855 + 0.639423i \(0.220827\pi\)
−0.768855 + 0.639423i \(0.779173\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.9798 −1.10176
\(162\) 0 0
\(163\) 16.6039i 1.30052i 0.759712 + 0.650260i \(0.225340\pi\)
−0.759712 + 0.650260i \(0.774660\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.35953 0.492115 0.246058 0.969255i \(-0.420865\pi\)
0.246058 + 0.969255i \(0.420865\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2.02859i − 0.154231i −0.997022 0.0771154i \(-0.975429\pi\)
0.997022 0.0771154i \(-0.0245710\pi\)
\(174\) 0 0
\(175\) 33.9190 2.56403
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 17.9220i − 1.33955i −0.742563 0.669777i \(-0.766390\pi\)
0.742563 0.669777i \(-0.233610\pi\)
\(180\) 0 0
\(181\) − 3.41179i − 0.253596i −0.991929 0.126798i \(-0.959530\pi\)
0.991929 0.126798i \(-0.0404701\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.97363 −0.512712
\(186\) 0 0
\(187\) − 4.75061i − 0.347399i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.0171 0.941886 0.470943 0.882164i \(-0.343914\pi\)
0.470943 + 0.882164i \(0.343914\pi\)
\(192\) 0 0
\(193\) 2.02198 0.145546 0.0727728 0.997349i \(-0.476815\pi\)
0.0727728 + 0.997349i \(0.476815\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.5454i 1.17881i 0.807838 + 0.589405i \(0.200638\pi\)
−0.807838 + 0.589405i \(0.799362\pi\)
\(198\) 0 0
\(199\) 1.11725 0.0791999 0.0395999 0.999216i \(-0.487392\pi\)
0.0395999 + 0.999216i \(0.487392\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 12.0865i − 0.848304i
\(204\) 0 0
\(205\) − 36.1930i − 2.52783i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.35503 0.370415
\(210\) 0 0
\(211\) 22.3717i 1.54013i 0.637964 + 0.770066i \(0.279777\pi\)
−0.637964 + 0.770066i \(0.720223\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 32.1079 2.18974
\(216\) 0 0
\(217\) 17.2722 1.17251
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 4.96511i − 0.333989i
\(222\) 0 0
\(223\) −25.3166 −1.69532 −0.847661 0.530538i \(-0.821990\pi\)
−0.847661 + 0.530538i \(0.821990\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 0.936542i − 0.0621604i −0.999517 0.0310802i \(-0.990105\pi\)
0.999517 0.0310802i \(-0.00989474\pi\)
\(228\) 0 0
\(229\) 3.40878i 0.225259i 0.993637 + 0.112629i \(0.0359272\pi\)
−0.993637 + 0.112629i \(0.964073\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0000 −0.851656 −0.425828 0.904804i \(-0.640017\pi\)
−0.425828 + 0.904804i \(0.640017\pi\)
\(234\) 0 0
\(235\) 33.5280i 2.18713i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.91302 −0.382482 −0.191241 0.981543i \(-0.561251\pi\)
−0.191241 + 0.981543i \(0.561251\pi\)
\(240\) 0 0
\(241\) −12.0209 −0.774333 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.42282i − 0.0909008i
\(246\) 0 0
\(247\) 5.59682 0.356117
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 7.48790i − 0.472632i −0.971676 0.236316i \(-0.924060\pi\)
0.971676 0.236316i \(-0.0759400\pi\)
\(252\) 0 0
\(253\) 4.93715i 0.310396i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −19.5397 −1.21885 −0.609426 0.792843i \(-0.708600\pi\)
−0.609426 + 0.792843i \(0.708600\pi\)
\(258\) 0 0
\(259\) 4.51378i 0.280473i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.2733 −0.880130 −0.440065 0.897966i \(-0.645045\pi\)
−0.440065 + 0.897966i \(0.645045\pi\)
\(264\) 0 0
\(265\) −0.333925 −0.0205128
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.47978i 0.577992i 0.957330 + 0.288996i \(0.0933215\pi\)
−0.957330 + 0.288996i \(0.906679\pi\)
\(270\) 0 0
\(271\) −29.1684 −1.77185 −0.885926 0.463827i \(-0.846476\pi\)
−0.885926 + 0.463827i \(0.846476\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 11.9789i − 0.722356i
\(276\) 0 0
\(277\) 5.56665i 0.334468i 0.985917 + 0.167234i \(0.0534835\pi\)
−0.985917 + 0.167234i \(0.946516\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.67325 −0.0998179 −0.0499090 0.998754i \(-0.515893\pi\)
−0.0499090 + 0.998754i \(0.515893\pi\)
\(282\) 0 0
\(283\) − 20.4580i − 1.21610i −0.793897 0.608052i \(-0.791951\pi\)
0.793897 0.608052i \(-0.208049\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −23.4264 −1.38282
\(288\) 0 0
\(289\) 7.65230 0.450135
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.8221i 1.74223i 0.491083 + 0.871113i \(0.336601\pi\)
−0.491083 + 0.871113i \(0.663399\pi\)
\(294\) 0 0
\(295\) −19.7026 −1.14713
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.16007i 0.298415i
\(300\) 0 0
\(301\) − 20.7823i − 1.19787i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 33.9094 1.94165
\(306\) 0 0
\(307\) − 9.81086i − 0.559935i −0.960009 0.279968i \(-0.909676\pi\)
0.960009 0.279968i \(-0.0903237\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.24920 0.297655 0.148827 0.988863i \(-0.452450\pi\)
0.148827 + 0.988863i \(0.452450\pi\)
\(312\) 0 0
\(313\) 3.78596 0.213995 0.106998 0.994259i \(-0.465876\pi\)
0.106998 + 0.994259i \(0.465876\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.9601i − 0.896407i −0.893931 0.448204i \(-0.852064\pi\)
0.893931 0.448204i \(-0.147936\pi\)
\(318\) 0 0
\(319\) −4.26849 −0.238990
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 27.7888i 1.54621i
\(324\) 0 0
\(325\) − 12.5198i − 0.694473i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 21.7015 1.19644
\(330\) 0 0
\(331\) 30.6147i 1.68274i 0.540463 + 0.841368i \(0.318249\pi\)
−0.540463 + 0.841368i \(0.681751\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −57.6240 −3.14834
\(336\) 0 0
\(337\) −19.8679 −1.08227 −0.541137 0.840934i \(-0.682006\pi\)
−0.541137 + 0.840934i \(0.682006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 6.09989i − 0.330327i
\(342\) 0 0
\(343\) 18.0437 0.974267
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.59683i 0.193088i 0.995329 + 0.0965440i \(0.0307788\pi\)
−0.995329 + 0.0965440i \(0.969221\pi\)
\(348\) 0 0
\(349\) − 31.9651i − 1.71105i −0.517758 0.855527i \(-0.673233\pi\)
0.517758 0.855527i \(-0.326767\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.7537 −0.891707 −0.445854 0.895106i \(-0.647100\pi\)
−0.445854 + 0.895106i \(0.647100\pi\)
\(354\) 0 0
\(355\) − 4.83399i − 0.256562i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.7820 1.67739 0.838694 0.544603i \(-0.183320\pi\)
0.838694 + 0.544603i \(0.183320\pi\)
\(360\) 0 0
\(361\) −12.3244 −0.648651
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 6.97363i − 0.365017i
\(366\) 0 0
\(367\) −27.8497 −1.45374 −0.726872 0.686773i \(-0.759027\pi\)
−0.726872 + 0.686773i \(0.759027\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.216137i 0.0112213i
\(372\) 0 0
\(373\) − 29.9442i − 1.55045i −0.631683 0.775227i \(-0.717635\pi\)
0.631683 0.775227i \(-0.282365\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.46122 −0.229765
\(378\) 0 0
\(379\) − 5.41028i − 0.277907i −0.990299 0.138954i \(-0.955626\pi\)
0.990299 0.138954i \(-0.0443739\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.35907 0.120543 0.0602714 0.998182i \(-0.480803\pi\)
0.0602714 + 0.998182i \(0.480803\pi\)
\(384\) 0 0
\(385\) −10.8500 −0.552969
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 34.2038i − 1.73420i −0.498131 0.867102i \(-0.665980\pi\)
0.498131 0.867102i \(-0.334020\pi\)
\(390\) 0 0
\(391\) −25.6203 −1.29567
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.0034i 0.905850i
\(396\) 0 0
\(397\) 16.8214i 0.844240i 0.906540 + 0.422120i \(0.138714\pi\)
−0.906540 + 0.422120i \(0.861286\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.03043 0.151333 0.0756663 0.997133i \(-0.475892\pi\)
0.0756663 + 0.997133i \(0.475892\pi\)
\(402\) 0 0
\(403\) − 6.37531i − 0.317577i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.59410 0.0790166
\(408\) 0 0
\(409\) −36.7145 −1.81542 −0.907708 0.419602i \(-0.862169\pi\)
−0.907708 + 0.419602i \(0.862169\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 12.7528i 0.627523i
\(414\) 0 0
\(415\) 58.6767 2.88033
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 18.2783i − 0.892956i −0.894795 0.446478i \(-0.852678\pi\)
0.894795 0.446478i \(-0.147322\pi\)
\(420\) 0 0
\(421\) 0.991796i 0.0483372i 0.999708 + 0.0241686i \(0.00769385\pi\)
−0.999708 + 0.0241686i \(0.992306\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 62.1621 3.01530
\(426\) 0 0
\(427\) − 21.9484i − 1.06216i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.05847 0.0509847 0.0254923 0.999675i \(-0.491885\pi\)
0.0254923 + 0.999675i \(0.491885\pi\)
\(432\) 0 0
\(433\) −26.5935 −1.27800 −0.639002 0.769205i \(-0.720652\pi\)
−0.639002 + 0.769205i \(0.720652\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 28.8800i − 1.38152i
\(438\) 0 0
\(439\) −28.5184 −1.36111 −0.680554 0.732698i \(-0.738261\pi\)
−0.680554 + 0.732698i \(0.738261\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.16454i 0.387909i 0.981011 + 0.193955i \(0.0621315\pi\)
−0.981011 + 0.193955i \(0.937869\pi\)
\(444\) 0 0
\(445\) 48.8051i 2.31358i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.19420 0.0563577 0.0281788 0.999603i \(-0.491029\pi\)
0.0281788 + 0.999603i \(0.491029\pi\)
\(450\) 0 0
\(451\) 8.27333i 0.389576i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3399 −0.531624
\(456\) 0 0
\(457\) −15.9989 −0.748397 −0.374198 0.927349i \(-0.622082\pi\)
−0.374198 + 0.927349i \(0.622082\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.35688i 0.296069i 0.988982 + 0.148035i \(0.0472947\pi\)
−0.988982 + 0.148035i \(0.952705\pi\)
\(462\) 0 0
\(463\) −17.3832 −0.807866 −0.403933 0.914789i \(-0.632357\pi\)
−0.403933 + 0.914789i \(0.632357\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.59410i − 0.0737661i −0.999320 0.0368831i \(-0.988257\pi\)
0.999320 0.0368831i \(-0.0117429\pi\)
\(468\) 0 0
\(469\) 37.2980i 1.72226i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.33952 −0.337472
\(474\) 0 0
\(475\) 70.0710i 3.21508i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.9730 0.821206 0.410603 0.911814i \(-0.365318\pi\)
0.410603 + 0.911814i \(0.365318\pi\)
\(480\) 0 0
\(481\) 1.66608 0.0759665
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 25.8263i 1.17271i
\(486\) 0 0
\(487\) −27.5020 −1.24623 −0.623117 0.782129i \(-0.714134\pi\)
−0.623117 + 0.782129i \(0.714134\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 6.45310i − 0.291224i −0.989342 0.145612i \(-0.953485\pi\)
0.989342 0.145612i \(-0.0465152\pi\)
\(492\) 0 0
\(493\) − 22.1504i − 0.997606i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.12887 −0.140349
\(498\) 0 0
\(499\) − 37.8522i − 1.69450i −0.531197 0.847249i \(-0.678257\pi\)
0.531197 0.847249i \(-0.321743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.57973 0.204200 0.102100 0.994774i \(-0.467444\pi\)
0.102100 + 0.994774i \(0.467444\pi\)
\(504\) 0 0
\(505\) 76.2702 3.39398
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 13.7626i − 0.610016i −0.952350 0.305008i \(-0.901341\pi\)
0.952350 0.305008i \(-0.0986591\pi\)
\(510\) 0 0
\(511\) −4.51378 −0.199678
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 6.76618i − 0.298154i
\(516\) 0 0
\(517\) − 7.66416i − 0.337069i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −32.5790 −1.42731 −0.713656 0.700496i \(-0.752962\pi\)
−0.713656 + 0.700496i \(0.752962\pi\)
\(522\) 0 0
\(523\) 40.2919i 1.76184i 0.473264 + 0.880921i \(0.343076\pi\)
−0.473264 + 0.880921i \(0.656924\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 31.6541 1.37887
\(528\) 0 0
\(529\) 3.62631 0.157666
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.64689i 0.374538i
\(534\) 0 0
\(535\) 44.6379 1.92986
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.325242i 0.0140092i
\(540\) 0 0
\(541\) − 28.6390i − 1.23129i −0.788025 0.615643i \(-0.788896\pi\)
0.788025 0.615643i \(-0.211104\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −63.1793 −2.70630
\(546\) 0 0
\(547\) − 6.51086i − 0.278384i −0.990265 0.139192i \(-0.955549\pi\)
0.990265 0.139192i \(-0.0444505\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.9686 1.06370
\(552\) 0 0
\(553\) 11.6530 0.495534
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 6.44138i − 0.272930i −0.990645 0.136465i \(-0.956426\pi\)
0.990645 0.136465i \(-0.0435741\pi\)
\(558\) 0 0
\(559\) −7.67092 −0.324445
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.3919i 1.44945i 0.689040 + 0.724724i \(0.258033\pi\)
−0.689040 + 0.724724i \(0.741967\pi\)
\(564\) 0 0
\(565\) − 61.0043i − 2.56647i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −43.8071 −1.83649 −0.918244 0.396014i \(-0.870393\pi\)
−0.918244 + 0.396014i \(0.870393\pi\)
\(570\) 0 0
\(571\) 29.1661i 1.22056i 0.792185 + 0.610281i \(0.208944\pi\)
−0.792185 + 0.610281i \(0.791056\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −64.6030 −2.69413
\(576\) 0 0
\(577\) −10.5041 −0.437291 −0.218646 0.975804i \(-0.570164\pi\)
−0.218646 + 0.975804i \(0.570164\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 37.9793i − 1.57565i
\(582\) 0 0
\(583\) 0.0763317 0.00316134
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 39.6896i 1.63817i 0.573675 + 0.819083i \(0.305517\pi\)
−0.573675 + 0.819083i \(0.694483\pi\)
\(588\) 0 0
\(589\) 35.6814i 1.47023i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.9670 0.778882 0.389441 0.921051i \(-0.372668\pi\)
0.389441 + 0.921051i \(0.372668\pi\)
\(594\) 0 0
\(595\) − 56.3040i − 2.30824i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.68323 0.0687750 0.0343875 0.999409i \(-0.489052\pi\)
0.0343875 + 0.999409i \(0.489052\pi\)
\(600\) 0 0
\(601\) −7.76439 −0.316716 −0.158358 0.987382i \(-0.550620\pi\)
−0.158358 + 0.987382i \(0.550620\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 42.2105i − 1.71610i
\(606\) 0 0
\(607\) 4.45424 0.180792 0.0903961 0.995906i \(-0.471187\pi\)
0.0903961 + 0.995906i \(0.471187\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 8.01021i − 0.324058i
\(612\) 0 0
\(613\) − 20.7056i − 0.836293i −0.908380 0.418147i \(-0.862680\pi\)
0.908380 0.418147i \(-0.137320\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.2889 1.25964 0.629821 0.776740i \(-0.283128\pi\)
0.629821 + 0.776740i \(0.283128\pi\)
\(618\) 0 0
\(619\) 13.1646i 0.529129i 0.964368 + 0.264565i \(0.0852282\pi\)
−0.964368 + 0.264565i \(0.914772\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.5898 1.26562
\(624\) 0 0
\(625\) 69.1461 2.76584
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.27224i 0.329836i
\(630\) 0 0
\(631\) 6.38498 0.254182 0.127091 0.991891i \(-0.459436\pi\)
0.127091 + 0.991891i \(0.459436\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 67.5865i − 2.68209i
\(636\) 0 0
\(637\) 0.339928i 0.0134684i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.671299 0.0265147 0.0132574 0.999912i \(-0.495780\pi\)
0.0132574 + 0.999912i \(0.495780\pi\)
\(642\) 0 0
\(643\) − 2.22333i − 0.0876794i −0.999039 0.0438397i \(-0.986041\pi\)
0.999039 0.0438397i \(-0.0139591\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.6075 0.849480 0.424740 0.905315i \(-0.360366\pi\)
0.424740 + 0.905315i \(0.360366\pi\)
\(648\) 0 0
\(649\) 4.50380 0.176790
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.85741i 0.190085i 0.995473 + 0.0950426i \(0.0302987\pi\)
−0.995473 + 0.0950426i \(0.969701\pi\)
\(654\) 0 0
\(655\) 39.4554 1.54165
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 28.1414i − 1.09623i −0.836402 0.548116i \(-0.815345\pi\)
0.836402 0.548116i \(-0.184655\pi\)
\(660\) 0 0
\(661\) − 25.8016i − 1.00356i −0.864994 0.501782i \(-0.832678\pi\)
0.864994 0.501782i \(-0.167322\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 63.4675 2.46116
\(666\) 0 0
\(667\) 23.0202i 0.891346i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.75134 −0.299237
\(672\) 0 0
\(673\) 13.6803 0.527336 0.263668 0.964613i \(-0.415068\pi\)
0.263668 + 0.964613i \(0.415068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 18.7430i − 0.720351i −0.932885 0.360175i \(-0.882717\pi\)
0.932885 0.360175i \(-0.117283\pi\)
\(678\) 0 0
\(679\) 16.7164 0.641518
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.0389i 1.14941i 0.818362 + 0.574704i \(0.194883\pi\)
−0.818362 + 0.574704i \(0.805117\pi\)
\(684\) 0 0
\(685\) 19.6158i 0.749480i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.0797782 0.00303931
\(690\) 0 0
\(691\) − 33.8302i − 1.28696i −0.765462 0.643481i \(-0.777490\pi\)
0.765462 0.643481i \(-0.222510\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −41.6482 −1.57981
\(696\) 0 0
\(697\) −42.9327 −1.62619
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.20542i 0.347684i 0.984774 + 0.173842i \(0.0556182\pi\)
−0.984774 + 0.173842i \(0.944382\pi\)
\(702\) 0 0
\(703\) −9.32472 −0.351689
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 49.3670i − 1.85664i
\(708\) 0 0
\(709\) 42.5563i 1.59824i 0.601174 + 0.799119i \(0.294700\pi\)
−0.601174 + 0.799119i \(0.705300\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −32.8970 −1.23200
\(714\) 0 0
\(715\) 4.00484i 0.149773i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −25.0205 −0.933107 −0.466554 0.884493i \(-0.654505\pi\)
−0.466554 + 0.884493i \(0.654505\pi\)
\(720\) 0 0
\(721\) −4.37951 −0.163101
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 55.8535i − 2.07435i
\(726\) 0 0
\(727\) −17.7041 −0.656609 −0.328305 0.944572i \(-0.606477\pi\)
−0.328305 + 0.944572i \(0.606477\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 38.0869i − 1.40870i
\(732\) 0 0
\(733\) − 20.1480i − 0.744183i −0.928196 0.372092i \(-0.878641\pi\)
0.928196 0.372092i \(-0.121359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.1722 0.485206
\(738\) 0 0
\(739\) − 12.9725i − 0.477202i −0.971118 0.238601i \(-0.923311\pi\)
0.971118 0.238601i \(-0.0766888\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.3522 1.15020 0.575100 0.818083i \(-0.304963\pi\)
0.575100 + 0.818083i \(0.304963\pi\)
\(744\) 0 0
\(745\) 25.9137 0.949404
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 28.8925i − 1.05571i
\(750\) 0 0
\(751\) 13.4231 0.489814 0.244907 0.969547i \(-0.421243\pi\)
0.244907 + 0.969547i \(0.421243\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 35.5129i − 1.29245i
\(756\) 0 0
\(757\) − 9.49056i − 0.344940i −0.985015 0.172470i \(-0.944825\pi\)
0.985015 0.172470i \(-0.0551748\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.4197 −0.486466 −0.243233 0.969968i \(-0.578208\pi\)
−0.243233 + 0.969968i \(0.578208\pi\)
\(762\) 0 0
\(763\) 40.8937i 1.48045i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.70716 0.169966
\(768\) 0 0
\(769\) 6.84250 0.246747 0.123373 0.992360i \(-0.460629\pi\)
0.123373 + 0.992360i \(0.460629\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.6355i 0.742207i 0.928591 + 0.371104i \(0.121021\pi\)
−0.928591 + 0.371104i \(0.878979\pi\)
\(774\) 0 0
\(775\) 79.8174 2.86713
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 48.3950i − 1.73393i
\(780\) 0 0
\(781\) 1.10500i 0.0395400i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 67.0706 2.39385
\(786\) 0 0
\(787\) − 4.33162i − 0.154406i −0.997015 0.0772028i \(-0.975401\pi\)
0.997015 0.0772028i \(-0.0245989\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −39.4859 −1.40396
\(792\) 0 0
\(793\) −8.10132 −0.287686
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 26.9591i − 0.954941i −0.878648 0.477471i \(-0.841554\pi\)
0.878648 0.477471i \(-0.158446\pi\)
\(798\) 0 0
\(799\) 39.7716 1.40702
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.59410i 0.0562545i
\(804\) 0 0
\(805\) 58.5148i 2.06238i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.217636 0.00765166 0.00382583 0.999993i \(-0.498782\pi\)
0.00382583 + 0.999993i \(0.498782\pi\)
\(810\) 0 0
\(811\) − 10.9498i − 0.384501i −0.981346 0.192251i \(-0.938421\pi\)
0.981346 0.192251i \(-0.0615786\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 69.4984 2.43442
\(816\) 0 0
\(817\) 42.9327 1.50203
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 10.6224i − 0.370725i −0.982670 0.185362i \(-0.940654\pi\)
0.982670 0.185362i \(-0.0593459\pi\)
\(822\) 0 0
\(823\) −28.0573 −0.978017 −0.489008 0.872279i \(-0.662641\pi\)
−0.489008 + 0.872279i \(0.662641\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.91954i 0.101522i 0.998711 + 0.0507611i \(0.0161647\pi\)
−0.998711 + 0.0507611i \(0.983835\pi\)
\(828\) 0 0
\(829\) 33.7216i 1.17120i 0.810600 + 0.585600i \(0.199141\pi\)
−0.810600 + 0.585600i \(0.800859\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.68778 −0.0584780
\(834\) 0 0
\(835\) − 26.6189i − 0.921183i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.6980 −0.680050 −0.340025 0.940416i \(-0.610436\pi\)
−0.340025 + 0.940416i \(0.610436\pi\)
\(840\) 0 0
\(841\) 9.09751 0.313707
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.18566i 0.143991i
\(846\) 0 0
\(847\) −27.3213 −0.938772
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 8.59706i − 0.294704i
\(852\) 0 0
\(853\) − 11.3421i − 0.388347i −0.980967 0.194174i \(-0.937798\pi\)
0.980967 0.194174i \(-0.0622025\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.8724 −0.542192 −0.271096 0.962552i \(-0.587386\pi\)
−0.271096 + 0.962552i \(0.587386\pi\)
\(858\) 0 0
\(859\) − 23.4990i − 0.801776i −0.916127 0.400888i \(-0.868702\pi\)
0.916127 0.400888i \(-0.131298\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.45060 0.219581 0.109790 0.993955i \(-0.464982\pi\)
0.109790 + 0.993955i \(0.464982\pi\)
\(864\) 0 0
\(865\) −8.49099 −0.288702
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 4.11539i − 0.139605i
\(870\) 0 0
\(871\) 13.7670 0.466477
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 85.2738i − 2.88278i
\(876\) 0 0
\(877\) 43.8038i 1.47915i 0.673074 + 0.739575i \(0.264973\pi\)
−0.673074 + 0.739575i \(0.735027\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 54.1923 1.82579 0.912893 0.408199i \(-0.133843\pi\)
0.912893 + 0.408199i \(0.133843\pi\)
\(882\) 0 0
\(883\) − 32.4922i − 1.09345i −0.837312 0.546725i \(-0.815874\pi\)
0.837312 0.546725i \(-0.184126\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.3801 −1.02006 −0.510032 0.860156i \(-0.670366\pi\)
−0.510032 + 0.860156i \(0.670366\pi\)
\(888\) 0 0
\(889\) −43.7463 −1.46720
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 44.8317i 1.50024i
\(894\) 0 0
\(895\) −75.0155 −2.50749
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 28.4416i − 0.948582i
\(900\) 0 0
\(901\) 0.396107i 0.0131962i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.2806 −0.474703
\(906\) 0 0
\(907\) 29.0224i 0.963671i 0.876262 + 0.481836i \(0.160030\pi\)
−0.876262 + 0.481836i \(0.839970\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.1729 1.59604 0.798019 0.602632i \(-0.205881\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(912\) 0 0
\(913\) −13.4129 −0.443902
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 25.5381i − 0.843342i
\(918\) 0 0
\(919\) −25.1063 −0.828180 −0.414090 0.910236i \(-0.635900\pi\)
−0.414090 + 0.910236i \(0.635900\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.15489i 0.0380138i
\(924\) 0 0
\(925\) 20.8589i 0.685837i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −45.7495 −1.50099 −0.750497 0.660874i \(-0.770186\pi\)
−0.750497 + 0.660874i \(0.770186\pi\)
\(930\) 0 0
\(931\) − 1.90251i − 0.0623523i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −19.8845 −0.650291
\(936\) 0 0
\(937\) −41.4498 −1.35411 −0.677053 0.735934i \(-0.736743\pi\)
−0.677053 + 0.735934i \(0.736743\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.6008i 0.899760i 0.893089 + 0.449880i \(0.148533\pi\)
−0.893089 + 0.449880i \(0.851467\pi\)
\(942\) 0 0
\(943\) 44.6185 1.45298
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 60.4406i 1.96405i 0.188740 + 0.982027i \(0.439560\pi\)
−0.188740 + 0.982027i \(0.560440\pi\)
\(948\) 0 0
\(949\) 1.66608i 0.0540831i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23.3201 −0.755412 −0.377706 0.925926i \(-0.623287\pi\)
−0.377706 + 0.925926i \(0.623287\pi\)
\(954\) 0 0
\(955\) − 54.4853i − 1.76310i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.6966 0.409994
\(960\) 0 0
\(961\) 9.64452 0.311114
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 8.46334i − 0.272445i
\(966\) 0 0
\(967\) 28.4046 0.913432 0.456716 0.889613i \(-0.349026\pi\)
0.456716 + 0.889613i \(0.349026\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 32.3884i − 1.03939i −0.854351 0.519697i \(-0.826045\pi\)
0.854351 0.519697i \(-0.173955\pi\)
\(972\) 0 0
\(973\) 26.9574i 0.864213i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.7641 1.30416 0.652079 0.758151i \(-0.273897\pi\)
0.652079 + 0.758151i \(0.273897\pi\)
\(978\) 0 0
\(979\) − 11.1563i − 0.356558i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −44.1753 −1.40897 −0.704486 0.709718i \(-0.748822\pi\)
−0.704486 + 0.709718i \(0.748822\pi\)
\(984\) 0 0
\(985\) 69.2534 2.20660
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 39.5825i 1.25865i
\(990\) 0 0
\(991\) −27.7306 −0.880893 −0.440446 0.897779i \(-0.645180\pi\)
−0.440446 + 0.897779i \(0.645180\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 4.67644i − 0.148253i
\(996\) 0 0
\(997\) 15.5011i 0.490925i 0.969406 + 0.245463i \(0.0789398\pi\)
−0.969406 + 0.245463i \(0.921060\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.g.f.1873.23 24
3.2 odd 2 inner 3744.2.g.f.1873.12 24
4.3 odd 2 936.2.g.f.469.23 yes 24
8.3 odd 2 936.2.g.f.469.24 yes 24
8.5 even 2 inner 3744.2.g.f.1873.24 24
12.11 even 2 936.2.g.f.469.2 yes 24
24.5 odd 2 inner 3744.2.g.f.1873.11 24
24.11 even 2 936.2.g.f.469.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.1 24 24.11 even 2
936.2.g.f.469.2 yes 24 12.11 even 2
936.2.g.f.469.23 yes 24 4.3 odd 2
936.2.g.f.469.24 yes 24 8.3 odd 2
3744.2.g.f.1873.11 24 24.5 odd 2 inner
3744.2.g.f.1873.12 24 3.2 odd 2 inner
3744.2.g.f.1873.23 24 1.1 even 1 trivial
3744.2.g.f.1873.24 24 8.5 even 2 inner