Properties

Label 936.2.g.f.469.2
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.2
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40752 + 0.137446i) q^{2} +(1.96222 - 0.386915i) q^{4} +4.18566i q^{5} +2.70923 q^{7} +(-2.70868 + 0.814289i) q^{8} +(-0.575302 - 5.89140i) q^{10} +0.956799i q^{11} +1.00000i q^{13} +(-3.81329 + 0.372372i) q^{14} +(3.70059 - 1.51842i) q^{16} +4.96511 q^{17} +5.59682i q^{19} +(1.61950 + 8.21318i) q^{20} +(-0.131508 - 1.34671i) q^{22} +5.16007 q^{23} -12.5198 q^{25} +(-0.137446 - 1.40752i) q^{26} +(5.31610 - 1.04824i) q^{28} -4.46122i q^{29} +6.37531 q^{31} +(-4.99995 + 2.64584i) q^{32} +(-6.98848 + 0.682433i) q^{34} +11.3399i q^{35} -1.66608i q^{37} +(-0.769259 - 7.87763i) q^{38} +(-3.40834 - 11.3376i) q^{40} -8.64689 q^{41} -7.67092i q^{43} +(0.370200 + 1.87745i) q^{44} +(-7.26289 + 0.709230i) q^{46} -8.01021 q^{47} +0.339928 q^{49} +(17.6218 - 1.72079i) q^{50} +(0.386915 + 1.96222i) q^{52} +0.0797782i q^{53} -4.00484 q^{55} +(-7.33843 + 2.20610i) q^{56} +(0.613176 + 6.27925i) q^{58} -4.70716i q^{59} +8.10132i q^{61} +(-8.97336 + 0.876259i) q^{62} +(6.67387 - 4.41129i) q^{64} -4.18566 q^{65} +13.7670i q^{67} +(9.74262 - 1.92108i) q^{68} +(-1.55863 - 15.9612i) q^{70} +1.15489 q^{71} +1.66608 q^{73} +(0.228995 + 2.34503i) q^{74} +(2.16549 + 10.9822i) q^{76} +2.59219i q^{77} +4.30121 q^{79} +(6.35561 + 15.4894i) q^{80} +(12.1707 - 1.18848i) q^{82} +14.0185i q^{83} +20.7823i q^{85} +(1.05434 + 10.7970i) q^{86} +(-0.779111 - 2.59166i) q^{88} +11.6601 q^{89} +2.70923i q^{91} +(10.1252 - 1.99651i) q^{92} +(11.2745 - 1.10097i) q^{94} -23.4264 q^{95} -6.17018 q^{97} +(-0.478454 + 0.0467216i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40752 + 0.137446i −0.995266 + 0.0971889i
\(3\) 0 0
\(4\) 1.96222 0.386915i 0.981109 0.193458i
\(5\) 4.18566i 1.87189i 0.352152 + 0.935943i \(0.385450\pi\)
−0.352152 + 0.935943i \(0.614550\pi\)
\(6\) 0 0
\(7\) 2.70923 1.02399 0.511996 0.858988i \(-0.328906\pi\)
0.511996 + 0.858988i \(0.328906\pi\)
\(8\) −2.70868 + 0.814289i −0.957662 + 0.287895i
\(9\) 0 0
\(10\) −0.575302 5.89140i −0.181927 1.86302i
\(11\) 0.956799i 0.288486i 0.989542 + 0.144243i \(0.0460747\pi\)
−0.989542 + 0.144243i \(0.953925\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −3.81329 + 0.372372i −1.01915 + 0.0995207i
\(15\) 0 0
\(16\) 3.70059 1.51842i 0.925148 0.379606i
\(17\) 4.96511 1.20422 0.602108 0.798415i \(-0.294328\pi\)
0.602108 + 0.798415i \(0.294328\pi\)
\(18\) 0 0
\(19\) 5.59682i 1.28400i 0.766705 + 0.641999i \(0.221895\pi\)
−0.766705 + 0.641999i \(0.778105\pi\)
\(20\) 1.61950 + 8.21318i 0.362131 + 1.83652i
\(21\) 0 0
\(22\) −0.131508 1.34671i −0.0280376 0.287120i
\(23\) 5.16007 1.07595 0.537974 0.842961i \(-0.319190\pi\)
0.537974 + 0.842961i \(0.319190\pi\)
\(24\) 0 0
\(25\) −12.5198 −2.50396
\(26\) −0.137446 1.40752i −0.0269553 0.276037i
\(27\) 0 0
\(28\) 5.31610 1.04824i 1.00465 0.198099i
\(29\) 4.46122i 0.828428i −0.910180 0.414214i \(-0.864057\pi\)
0.910180 0.414214i \(-0.135943\pi\)
\(30\) 0 0
\(31\) 6.37531 1.14504 0.572519 0.819891i \(-0.305966\pi\)
0.572519 + 0.819891i \(0.305966\pi\)
\(32\) −4.99995 + 2.64584i −0.883875 + 0.467723i
\(33\) 0 0
\(34\) −6.98848 + 0.682433i −1.19851 + 0.117036i
\(35\) 11.3399i 1.91680i
\(36\) 0 0
\(37\) 1.66608i 0.273901i −0.990578 0.136951i \(-0.956270\pi\)
0.990578 0.136951i \(-0.0437301\pi\)
\(38\) −0.769259 7.87763i −0.124790 1.27792i
\(39\) 0 0
\(40\) −3.40834 11.3376i −0.538906 1.79263i
\(41\) −8.64689 −1.35042 −0.675208 0.737627i \(-0.735946\pi\)
−0.675208 + 0.737627i \(0.735946\pi\)
\(42\) 0 0
\(43\) 7.67092i 1.16980i −0.811104 0.584902i \(-0.801133\pi\)
0.811104 0.584902i \(-0.198867\pi\)
\(44\) 0.370200 + 1.87745i 0.0558098 + 0.283036i
\(45\) 0 0
\(46\) −7.26289 + 0.709230i −1.07086 + 0.104570i
\(47\) −8.01021 −1.16841 −0.584205 0.811606i \(-0.698593\pi\)
−0.584205 + 0.811606i \(0.698593\pi\)
\(48\) 0 0
\(49\) 0.339928 0.0485611
\(50\) 17.6218 1.72079i 2.49210 0.243357i
\(51\) 0 0
\(52\) 0.386915 + 1.96222i 0.0536555 + 0.272111i
\(53\) 0.0797782i 0.0109584i 0.999985 + 0.00547919i \(0.00174409\pi\)
−0.999985 + 0.00547919i \(0.998256\pi\)
\(54\) 0 0
\(55\) −4.00484 −0.540012
\(56\) −7.33843 + 2.20610i −0.980639 + 0.294802i
\(57\) 0 0
\(58\) 0.613176 + 6.27925i 0.0805140 + 0.824506i
\(59\) 4.70716i 0.612820i −0.951900 0.306410i \(-0.900872\pi\)
0.951900 0.306410i \(-0.0991278\pi\)
\(60\) 0 0
\(61\) 8.10132i 1.03727i 0.854996 + 0.518634i \(0.173559\pi\)
−0.854996 + 0.518634i \(0.826441\pi\)
\(62\) −8.97336 + 0.876259i −1.13962 + 0.111285i
\(63\) 0 0
\(64\) 6.67387 4.41129i 0.834233 0.551411i
\(65\) −4.18566 −0.519168
\(66\) 0 0
\(67\) 13.7670i 1.68191i 0.541108 + 0.840953i \(0.318005\pi\)
−0.541108 + 0.840953i \(0.681995\pi\)
\(68\) 9.74262 1.92108i 1.18147 0.232965i
\(69\) 0 0
\(70\) −1.55863 15.9612i −0.186291 1.90772i
\(71\) 1.15489 0.137061 0.0685303 0.997649i \(-0.478169\pi\)
0.0685303 + 0.997649i \(0.478169\pi\)
\(72\) 0 0
\(73\) 1.66608 0.194999 0.0974997 0.995236i \(-0.468916\pi\)
0.0974997 + 0.995236i \(0.468916\pi\)
\(74\) 0.228995 + 2.34503i 0.0266201 + 0.272604i
\(75\) 0 0
\(76\) 2.16549 + 10.9822i 0.248399 + 1.25974i
\(77\) 2.59219i 0.295407i
\(78\) 0 0
\(79\) 4.30121 0.483924 0.241962 0.970286i \(-0.422209\pi\)
0.241962 + 0.970286i \(0.422209\pi\)
\(80\) 6.35561 + 15.4894i 0.710579 + 1.73177i
\(81\) 0 0
\(82\) 12.1707 1.18848i 1.34402 0.131245i
\(83\) 14.0185i 1.53873i 0.638810 + 0.769365i \(0.279427\pi\)
−0.638810 + 0.769365i \(0.720573\pi\)
\(84\) 0 0
\(85\) 20.7823i 2.25415i
\(86\) 1.05434 + 10.7970i 0.113692 + 1.16427i
\(87\) 0 0
\(88\) −0.779111 2.59166i −0.0830535 0.276272i
\(89\) 11.6601 1.23596 0.617981 0.786193i \(-0.287951\pi\)
0.617981 + 0.786193i \(0.287951\pi\)
\(90\) 0 0
\(91\) 2.70923i 0.284004i
\(92\) 10.1252 1.99651i 1.05562 0.208150i
\(93\) 0 0
\(94\) 11.2745 1.10097i 1.16288 0.113556i
\(95\) −23.4264 −2.40350
\(96\) 0 0
\(97\) −6.17018 −0.626487 −0.313243 0.949673i \(-0.601416\pi\)
−0.313243 + 0.949673i \(0.601416\pi\)
\(98\) −0.478454 + 0.0467216i −0.0483312 + 0.00471960i
\(99\) 0 0
\(100\) −24.5665 + 4.84409i −2.45665 + 0.484409i
\(101\) 18.2218i 1.81313i −0.422063 0.906567i \(-0.638694\pi\)
0.422063 0.906567i \(-0.361306\pi\)
\(102\) 0 0
\(103\) −1.61651 −0.159280 −0.0796399 0.996824i \(-0.525377\pi\)
−0.0796399 + 0.996824i \(0.525377\pi\)
\(104\) −0.814289 2.70868i −0.0798476 0.265608i
\(105\) 0 0
\(106\) −0.0109652 0.112289i −0.00106503 0.0109065i
\(107\) 10.6645i 1.03097i 0.856898 + 0.515487i \(0.172389\pi\)
−0.856898 + 0.515487i \(0.827611\pi\)
\(108\) 0 0
\(109\) 15.0942i 1.44576i −0.690972 0.722882i \(-0.742817\pi\)
0.690972 0.722882i \(-0.257183\pi\)
\(110\) 5.63689 0.550449i 0.537456 0.0524832i
\(111\) 0 0
\(112\) 10.0258 4.11376i 0.947345 0.388714i
\(113\) −14.5746 −1.37106 −0.685530 0.728044i \(-0.740430\pi\)
−0.685530 + 0.728044i \(0.740430\pi\)
\(114\) 0 0
\(115\) 21.5983i 2.01405i
\(116\) −1.72611 8.75388i −0.160266 0.812778i
\(117\) 0 0
\(118\) 0.646979 + 6.62541i 0.0595593 + 0.609919i
\(119\) 13.4516 1.23311
\(120\) 0 0
\(121\) 10.0845 0.916776
\(122\) −1.11349 11.4028i −0.100811 1.03236i
\(123\) 0 0
\(124\) 12.5097 2.46670i 1.12341 0.221516i
\(125\) 31.4753i 2.81524i
\(126\) 0 0
\(127\) −16.1471 −1.43283 −0.716414 0.697676i \(-0.754218\pi\)
−0.716414 + 0.697676i \(0.754218\pi\)
\(128\) −8.78728 + 7.12627i −0.776693 + 0.629879i
\(129\) 0 0
\(130\) 5.89140 0.575302i 0.516710 0.0504573i
\(131\) 9.42633i 0.823582i 0.911278 + 0.411791i \(0.135097\pi\)
−0.911278 + 0.411791i \(0.864903\pi\)
\(132\) 0 0
\(133\) 15.1631i 1.31480i
\(134\) −1.89222 19.3773i −0.163463 1.67394i
\(135\) 0 0
\(136\) −13.4489 + 4.04303i −1.15323 + 0.346687i
\(137\) 4.68642 0.400388 0.200194 0.979756i \(-0.435843\pi\)
0.200194 + 0.979756i \(0.435843\pi\)
\(138\) 0 0
\(139\) 9.95019i 0.843964i 0.906604 + 0.421982i \(0.138666\pi\)
−0.906604 + 0.421982i \(0.861334\pi\)
\(140\) 4.38759 + 22.2514i 0.370819 + 1.88059i
\(141\) 0 0
\(142\) −1.62553 + 0.158735i −0.136412 + 0.0133208i
\(143\) −0.956799 −0.0800116
\(144\) 0 0
\(145\) 18.6732 1.55072
\(146\) −2.34503 + 0.228995i −0.194076 + 0.0189518i
\(147\) 0 0
\(148\) −0.644630 3.26920i −0.0529882 0.268727i
\(149\) 6.19106i 0.507191i −0.967310 0.253596i \(-0.918387\pi\)
0.967310 0.253596i \(-0.0816132\pi\)
\(150\) 0 0
\(151\) −8.48441 −0.690451 −0.345226 0.938520i \(-0.612198\pi\)
−0.345226 + 0.938520i \(0.612198\pi\)
\(152\) −4.55743 15.1600i −0.369656 1.22964i
\(153\) 0 0
\(154\) −0.356286 3.64855i −0.0287103 0.294009i
\(155\) 26.6849i 2.14338i
\(156\) 0 0
\(157\) 16.0239i 1.27885i 0.768855 + 0.639423i \(0.220827\pi\)
−0.768855 + 0.639423i \(0.779173\pi\)
\(158\) −6.05403 + 0.591183i −0.481633 + 0.0470320i
\(159\) 0 0
\(160\) −11.0746 20.9281i −0.875524 1.65451i
\(161\) 13.9798 1.10176
\(162\) 0 0
\(163\) 16.6039i 1.30052i −0.759712 0.650260i \(-0.774660\pi\)
0.759712 0.650260i \(-0.225340\pi\)
\(164\) −16.9671 + 3.34561i −1.32491 + 0.261248i
\(165\) 0 0
\(166\) −1.92678 19.7313i −0.149547 1.53145i
\(167\) 6.35953 0.492115 0.246058 0.969255i \(-0.420865\pi\)
0.246058 + 0.969255i \(0.420865\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −2.85644 29.2514i −0.219079 2.24348i
\(171\) 0 0
\(172\) −2.96799 15.0520i −0.226307 1.14770i
\(173\) 2.02859i 0.154231i 0.997022 + 0.0771154i \(0.0245710\pi\)
−0.997022 + 0.0771154i \(0.975429\pi\)
\(174\) 0 0
\(175\) −33.9190 −2.56403
\(176\) 1.45283 + 3.54072i 0.109511 + 0.266892i
\(177\) 0 0
\(178\) −16.4117 + 1.60263i −1.23011 + 0.120122i
\(179\) 17.9220i 1.33955i −0.742563 0.669777i \(-0.766390\pi\)
0.742563 0.669777i \(-0.233610\pi\)
\(180\) 0 0
\(181\) 3.41179i 0.253596i −0.991929 0.126798i \(-0.959530\pi\)
0.991929 0.126798i \(-0.0404701\pi\)
\(182\) −0.372372 3.81329i −0.0276021 0.282660i
\(183\) 0 0
\(184\) −13.9770 + 4.20179i −1.03040 + 0.309760i
\(185\) 6.97363 0.512712
\(186\) 0 0
\(187\) 4.75061i 0.347399i
\(188\) −15.7178 + 3.09927i −1.14634 + 0.226038i
\(189\) 0 0
\(190\) 32.9731 3.21986i 2.39212 0.233593i
\(191\) 13.0171 0.941886 0.470943 0.882164i \(-0.343914\pi\)
0.470943 + 0.882164i \(0.343914\pi\)
\(192\) 0 0
\(193\) 2.02198 0.145546 0.0727728 0.997349i \(-0.476815\pi\)
0.0727728 + 0.997349i \(0.476815\pi\)
\(194\) 8.68464 0.848065i 0.623521 0.0608875i
\(195\) 0 0
\(196\) 0.667012 0.131523i 0.0476437 0.00939451i
\(197\) 16.5454i 1.17881i −0.807838 0.589405i \(-0.799362\pi\)
0.807838 0.589405i \(-0.200638\pi\)
\(198\) 0 0
\(199\) −1.11725 −0.0791999 −0.0395999 0.999216i \(-0.512608\pi\)
−0.0395999 + 0.999216i \(0.512608\pi\)
\(200\) 33.9121 10.1947i 2.39794 0.720876i
\(201\) 0 0
\(202\) 2.50451 + 25.6475i 0.176216 + 1.80455i
\(203\) 12.0865i 0.848304i
\(204\) 0 0
\(205\) 36.1930i 2.52783i
\(206\) 2.27527 0.222183i 0.158526 0.0154802i
\(207\) 0 0
\(208\) 1.51842 + 3.70059i 0.105284 + 0.256590i
\(209\) −5.35503 −0.370415
\(210\) 0 0
\(211\) 22.3717i 1.54013i −0.637964 0.770066i \(-0.720223\pi\)
0.637964 0.770066i \(-0.279777\pi\)
\(212\) 0.0308674 + 0.156542i 0.00211998 + 0.0107514i
\(213\) 0 0
\(214\) −1.46579 15.0104i −0.100199 1.02609i
\(215\) 32.1079 2.18974
\(216\) 0 0
\(217\) 17.2722 1.17251
\(218\) 2.07464 + 21.2454i 0.140512 + 1.43892i
\(219\) 0 0
\(220\) −7.85837 + 1.54953i −0.529811 + 0.104470i
\(221\) 4.96511i 0.333989i
\(222\) 0 0
\(223\) 25.3166 1.69532 0.847661 0.530538i \(-0.178010\pi\)
0.847661 + 0.530538i \(0.178010\pi\)
\(224\) −13.5460 + 7.16819i −0.905082 + 0.478945i
\(225\) 0 0
\(226\) 20.5140 2.00321i 1.36457 0.133252i
\(227\) 0.936542i 0.0621604i −0.999517 0.0310802i \(-0.990105\pi\)
0.999517 0.0310802i \(-0.00989474\pi\)
\(228\) 0 0
\(229\) 3.40878i 0.225259i 0.993637 + 0.112629i \(0.0359272\pi\)
−0.993637 + 0.112629i \(0.964073\pi\)
\(230\) −2.96860 30.4000i −0.195744 2.00452i
\(231\) 0 0
\(232\) 3.63272 + 12.0840i 0.238500 + 0.793354i
\(233\) 13.0000 0.851656 0.425828 0.904804i \(-0.359983\pi\)
0.425828 + 0.904804i \(0.359983\pi\)
\(234\) 0 0
\(235\) 33.5280i 2.18713i
\(236\) −1.82127 9.23646i −0.118555 0.601243i
\(237\) 0 0
\(238\) −18.9334 + 1.84887i −1.22727 + 0.119844i
\(239\) −5.91302 −0.382482 −0.191241 0.981543i \(-0.561251\pi\)
−0.191241 + 0.981543i \(0.561251\pi\)
\(240\) 0 0
\(241\) −12.0209 −0.774333 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(242\) −14.1942 + 1.38608i −0.912436 + 0.0891004i
\(243\) 0 0
\(244\) 3.13453 + 15.8966i 0.200667 + 1.01767i
\(245\) 1.42282i 0.0909008i
\(246\) 0 0
\(247\) −5.59682 −0.356117
\(248\) −17.2686 + 5.19134i −1.09656 + 0.329650i
\(249\) 0 0
\(250\) 4.32615 + 44.3021i 0.273610 + 2.80191i
\(251\) 7.48790i 0.472632i −0.971676 0.236316i \(-0.924060\pi\)
0.971676 0.236316i \(-0.0759400\pi\)
\(252\) 0 0
\(253\) 4.93715i 0.310396i
\(254\) 22.7274 2.21936i 1.42604 0.139255i
\(255\) 0 0
\(256\) 11.3888 11.2381i 0.711799 0.702383i
\(257\) 19.5397 1.21885 0.609426 0.792843i \(-0.291400\pi\)
0.609426 + 0.792843i \(0.291400\pi\)
\(258\) 0 0
\(259\) 4.51378i 0.280473i
\(260\) −8.21318 + 1.61950i −0.509360 + 0.100437i
\(261\) 0 0
\(262\) −1.29561 13.2677i −0.0800430 0.819683i
\(263\) −14.2733 −0.880130 −0.440065 0.897966i \(-0.645045\pi\)
−0.440065 + 0.897966i \(0.645045\pi\)
\(264\) 0 0
\(265\) −0.333925 −0.0205128
\(266\) −2.08410 21.3423i −0.127784 1.30858i
\(267\) 0 0
\(268\) 5.32666 + 27.0138i 0.325377 + 1.65013i
\(269\) 9.47978i 0.577992i −0.957330 0.288996i \(-0.906679\pi\)
0.957330 0.288996i \(-0.0933215\pi\)
\(270\) 0 0
\(271\) 29.1684 1.77185 0.885926 0.463827i \(-0.153524\pi\)
0.885926 + 0.463827i \(0.153524\pi\)
\(272\) 18.3738 7.53913i 1.11408 0.457127i
\(273\) 0 0
\(274\) −6.59622 + 0.644129i −0.398492 + 0.0389132i
\(275\) 11.9789i 0.722356i
\(276\) 0 0
\(277\) 5.56665i 0.334468i 0.985917 + 0.167234i \(0.0534835\pi\)
−0.985917 + 0.167234i \(0.946516\pi\)
\(278\) −1.36761 14.0051i −0.0820240 0.839969i
\(279\) 0 0
\(280\) −9.23398 30.7162i −0.551836 1.83564i
\(281\) 1.67325 0.0998179 0.0499090 0.998754i \(-0.484107\pi\)
0.0499090 + 0.998754i \(0.484107\pi\)
\(282\) 0 0
\(283\) 20.4580i 1.21610i 0.793897 + 0.608052i \(0.208049\pi\)
−0.793897 + 0.608052i \(0.791951\pi\)
\(284\) 2.26615 0.446846i 0.134471 0.0265154i
\(285\) 0 0
\(286\) 1.34671 0.131508i 0.0796328 0.00777623i
\(287\) −23.4264 −1.38282
\(288\) 0 0
\(289\) 7.65230 0.450135
\(290\) −26.2828 + 2.56655i −1.54338 + 0.150713i
\(291\) 0 0
\(292\) 3.26920 0.644630i 0.191316 0.0377241i
\(293\) 29.8221i 1.74223i −0.491083 0.871113i \(-0.663399\pi\)
0.491083 0.871113i \(-0.336601\pi\)
\(294\) 0 0
\(295\) 19.7026 1.14713
\(296\) 1.35667 + 4.51286i 0.0788546 + 0.262305i
\(297\) 0 0
\(298\) 0.850935 + 8.71403i 0.0492933 + 0.504790i
\(299\) 5.16007i 0.298415i
\(300\) 0 0
\(301\) 20.7823i 1.19787i
\(302\) 11.9420 1.16615i 0.687183 0.0671042i
\(303\) 0 0
\(304\) 8.49834 + 20.7115i 0.487413 + 1.18789i
\(305\) −33.9094 −1.94165
\(306\) 0 0
\(307\) 9.81086i 0.559935i 0.960009 + 0.279968i \(0.0903237\pi\)
−0.960009 + 0.279968i \(0.909676\pi\)
\(308\) 1.00296 + 5.08644i 0.0571488 + 0.289827i
\(309\) 0 0
\(310\) −3.66773 37.5595i −0.208313 2.13323i
\(311\) 5.24920 0.297655 0.148827 0.988863i \(-0.452450\pi\)
0.148827 + 0.988863i \(0.452450\pi\)
\(312\) 0 0
\(313\) 3.78596 0.213995 0.106998 0.994259i \(-0.465876\pi\)
0.106998 + 0.994259i \(0.465876\pi\)
\(314\) −2.20242 22.5539i −0.124290 1.27279i
\(315\) 0 0
\(316\) 8.43991 1.66420i 0.474782 0.0936187i
\(317\) 15.9601i 0.896407i 0.893931 + 0.448204i \(0.147936\pi\)
−0.893931 + 0.448204i \(0.852064\pi\)
\(318\) 0 0
\(319\) 4.26849 0.238990
\(320\) 18.4642 + 27.9346i 1.03218 + 1.56159i
\(321\) 0 0
\(322\) −19.6768 + 1.92147i −1.09655 + 0.107079i
\(323\) 27.7888i 1.54621i
\(324\) 0 0
\(325\) 12.5198i 0.694473i
\(326\) 2.28214 + 23.3703i 0.126396 + 1.29436i
\(327\) 0 0
\(328\) 23.4216 7.04106i 1.29324 0.388778i
\(329\) −21.7015 −1.19644
\(330\) 0 0
\(331\) 30.6147i 1.68274i −0.540463 0.841368i \(-0.681751\pi\)
0.540463 0.841368i \(-0.318249\pi\)
\(332\) 5.42397 + 27.5073i 0.297679 + 1.50966i
\(333\) 0 0
\(334\) −8.95115 + 0.874091i −0.489785 + 0.0478281i
\(335\) −57.6240 −3.14834
\(336\) 0 0
\(337\) −19.8679 −1.08227 −0.541137 0.840934i \(-0.682006\pi\)
−0.541137 + 0.840934i \(0.682006\pi\)
\(338\) 1.40752 0.137446i 0.0765589 0.00747607i
\(339\) 0 0
\(340\) 8.04098 + 40.7793i 0.436083 + 2.21157i
\(341\) 6.09989i 0.330327i
\(342\) 0 0
\(343\) −18.0437 −0.974267
\(344\) 6.24634 + 20.7780i 0.336780 + 1.12028i
\(345\) 0 0
\(346\) −0.278821 2.85528i −0.0149895 0.153501i
\(347\) 3.59683i 0.193088i 0.995329 + 0.0965440i \(0.0307788\pi\)
−0.995329 + 0.0965440i \(0.969221\pi\)
\(348\) 0 0
\(349\) 31.9651i 1.71105i −0.517758 0.855527i \(-0.673233\pi\)
0.517758 0.855527i \(-0.326767\pi\)
\(350\) 47.7416 4.66202i 2.55190 0.249196i
\(351\) 0 0
\(352\) −2.53154 4.78395i −0.134931 0.254985i
\(353\) 16.7537 0.891707 0.445854 0.895106i \(-0.352900\pi\)
0.445854 + 0.895106i \(0.352900\pi\)
\(354\) 0 0
\(355\) 4.83399i 0.256562i
\(356\) 22.8796 4.51145i 1.21261 0.239106i
\(357\) 0 0
\(358\) 2.46330 + 25.2256i 0.130190 + 1.33321i
\(359\) 31.7820 1.67739 0.838694 0.544603i \(-0.183320\pi\)
0.838694 + 0.544603i \(0.183320\pi\)
\(360\) 0 0
\(361\) −12.3244 −0.648651
\(362\) 0.468936 + 4.80216i 0.0246467 + 0.252396i
\(363\) 0 0
\(364\) 1.04824 + 5.31610i 0.0549428 + 0.278639i
\(365\) 6.97363i 0.365017i
\(366\) 0 0
\(367\) 27.8497 1.45374 0.726872 0.686773i \(-0.240973\pi\)
0.726872 + 0.686773i \(0.240973\pi\)
\(368\) 19.0953 7.83517i 0.995412 0.408436i
\(369\) 0 0
\(370\) −9.81552 + 0.958497i −0.510284 + 0.0498299i
\(371\) 0.216137i 0.0112213i
\(372\) 0 0
\(373\) 29.9442i 1.55045i −0.631683 0.775227i \(-0.717635\pi\)
0.631683 0.775227i \(-0.282365\pi\)
\(374\) −0.652952 6.68657i −0.0337633 0.345754i
\(375\) 0 0
\(376\) 21.6971 6.52262i 1.11894 0.336379i
\(377\) 4.46122 0.229765
\(378\) 0 0
\(379\) 5.41028i 0.277907i 0.990299 + 0.138954i \(0.0443739\pi\)
−0.990299 + 0.138954i \(0.955626\pi\)
\(380\) −45.9677 + 9.06403i −2.35809 + 0.464975i
\(381\) 0 0
\(382\) −18.3219 + 1.78915i −0.937428 + 0.0915409i
\(383\) 2.35907 0.120543 0.0602714 0.998182i \(-0.480803\pi\)
0.0602714 + 0.998182i \(0.480803\pi\)
\(384\) 0 0
\(385\) −10.8500 −0.552969
\(386\) −2.84598 + 0.277913i −0.144857 + 0.0141454i
\(387\) 0 0
\(388\) −12.1072 + 2.38734i −0.614651 + 0.121199i
\(389\) 34.2038i 1.73420i 0.498131 + 0.867102i \(0.334020\pi\)
−0.498131 + 0.867102i \(0.665980\pi\)
\(390\) 0 0
\(391\) 25.6203 1.29567
\(392\) −0.920754 + 0.276799i −0.0465051 + 0.0139805i
\(393\) 0 0
\(394\) 2.27409 + 23.2879i 0.114567 + 1.17323i
\(395\) 18.0034i 0.905850i
\(396\) 0 0
\(397\) 16.8214i 0.844240i 0.906540 + 0.422120i \(0.138714\pi\)
−0.906540 + 0.422120i \(0.861286\pi\)
\(398\) 1.57255 0.153562i 0.0788249 0.00769735i
\(399\) 0 0
\(400\) −46.3306 + 19.0103i −2.31653 + 0.950517i
\(401\) −3.03043 −0.151333 −0.0756663 0.997133i \(-0.524108\pi\)
−0.0756663 + 0.997133i \(0.524108\pi\)
\(402\) 0 0
\(403\) 6.37531i 0.317577i
\(404\) −7.05028 35.7551i −0.350764 1.77888i
\(405\) 0 0
\(406\) 1.66124 + 17.0119i 0.0824457 + 0.844288i
\(407\) 1.59410 0.0790166
\(408\) 0 0
\(409\) −36.7145 −1.81542 −0.907708 0.419602i \(-0.862169\pi\)
−0.907708 + 0.419602i \(0.862169\pi\)
\(410\) 4.97457 + 50.9423i 0.245677 + 2.51586i
\(411\) 0 0
\(412\) −3.17195 + 0.625454i −0.156271 + 0.0308139i
\(413\) 12.7528i 0.627523i
\(414\) 0 0
\(415\) −58.6767 −2.88033
\(416\) −2.64584 4.99995i −0.129723 0.245143i
\(417\) 0 0
\(418\) 7.53731 0.736027i 0.368662 0.0360002i
\(419\) 18.2783i 0.892956i −0.894795 0.446478i \(-0.852678\pi\)
0.894795 0.446478i \(-0.147322\pi\)
\(420\) 0 0
\(421\) 0.991796i 0.0483372i 0.999708 + 0.0241686i \(0.00769385\pi\)
−0.999708 + 0.0241686i \(0.992306\pi\)
\(422\) 3.07490 + 31.4886i 0.149684 + 1.53284i
\(423\) 0 0
\(424\) −0.0649625 0.216093i −0.00315486 0.0104944i
\(425\) −62.1621 −3.01530
\(426\) 0 0
\(427\) 21.9484i 1.06216i
\(428\) 4.12624 + 20.9260i 0.199450 + 1.01150i
\(429\) 0 0
\(430\) −45.1924 + 4.41309i −2.17937 + 0.212818i
\(431\) 1.05847 0.0509847 0.0254923 0.999675i \(-0.491885\pi\)
0.0254923 + 0.999675i \(0.491885\pi\)
\(432\) 0 0
\(433\) −26.5935 −1.27800 −0.639002 0.769205i \(-0.720652\pi\)
−0.639002 + 0.769205i \(0.720652\pi\)
\(434\) −24.3109 + 2.37399i −1.16696 + 0.113955i
\(435\) 0 0
\(436\) −5.84018 29.6181i −0.279694 1.41845i
\(437\) 28.8800i 1.38152i
\(438\) 0 0
\(439\) 28.5184 1.36111 0.680554 0.732698i \(-0.261739\pi\)
0.680554 + 0.732698i \(0.261739\pi\)
\(440\) 10.8478 3.26110i 0.517149 0.155467i
\(441\) 0 0
\(442\) −0.682433 6.98848i −0.0324600 0.332408i
\(443\) 8.16454i 0.387909i 0.981011 + 0.193955i \(0.0621315\pi\)
−0.981011 + 0.193955i \(0.937869\pi\)
\(444\) 0 0
\(445\) 48.8051i 2.31358i
\(446\) −35.6335 + 3.47966i −1.68730 + 0.164766i
\(447\) 0 0
\(448\) 18.0810 11.9512i 0.854249 0.564641i
\(449\) −1.19420 −0.0563577 −0.0281788 0.999603i \(-0.508971\pi\)
−0.0281788 + 0.999603i \(0.508971\pi\)
\(450\) 0 0
\(451\) 8.27333i 0.389576i
\(452\) −28.5985 + 5.63912i −1.34516 + 0.265242i
\(453\) 0 0
\(454\) 0.128724 + 1.31820i 0.00604130 + 0.0618662i
\(455\) −11.3399 −0.531624
\(456\) 0 0
\(457\) −15.9989 −0.748397 −0.374198 0.927349i \(-0.622082\pi\)
−0.374198 + 0.927349i \(0.622082\pi\)
\(458\) −0.468523 4.79792i −0.0218926 0.224192i
\(459\) 0 0
\(460\) 8.35672 + 42.3806i 0.389634 + 1.97601i
\(461\) 6.35688i 0.296069i −0.988982 0.148035i \(-0.952705\pi\)
0.988982 0.148035i \(-0.0472947\pi\)
\(462\) 0 0
\(463\) 17.3832 0.807866 0.403933 0.914789i \(-0.367643\pi\)
0.403933 + 0.914789i \(0.367643\pi\)
\(464\) −6.77402 16.5092i −0.314476 0.766419i
\(465\) 0 0
\(466\) −18.2977 + 1.78679i −0.847624 + 0.0827715i
\(467\) 1.59410i 0.0737661i −0.999320 0.0368831i \(-0.988257\pi\)
0.999320 0.0368831i \(-0.0117429\pi\)
\(468\) 0 0
\(469\) 37.2980i 1.72226i
\(470\) 4.60829 + 47.1913i 0.212565 + 2.17677i
\(471\) 0 0
\(472\) 3.83299 + 12.7502i 0.176427 + 0.586874i
\(473\) 7.33952 0.337472
\(474\) 0 0
\(475\) 70.0710i 3.21508i
\(476\) 26.3950 5.20464i 1.20981 0.238554i
\(477\) 0 0
\(478\) 8.32269 0.812721i 0.380671 0.0371730i
\(479\) 17.9730 0.821206 0.410603 0.911814i \(-0.365318\pi\)
0.410603 + 0.911814i \(0.365318\pi\)
\(480\) 0 0
\(481\) 1.66608 0.0759665
\(482\) 16.9196 1.65222i 0.770667 0.0752565i
\(483\) 0 0
\(484\) 19.7880 3.90186i 0.899457 0.177357i
\(485\) 25.8263i 1.17271i
\(486\) 0 0
\(487\) 27.5020 1.24623 0.623117 0.782129i \(-0.285866\pi\)
0.623117 + 0.782129i \(0.285866\pi\)
\(488\) −6.59682 21.9439i −0.298624 0.993353i
\(489\) 0 0
\(490\) −0.195561 2.00265i −0.00883455 0.0904705i
\(491\) 6.45310i 0.291224i −0.989342 0.145612i \(-0.953485\pi\)
0.989342 0.145612i \(-0.0465152\pi\)
\(492\) 0 0
\(493\) 22.1504i 0.997606i
\(494\) 7.87763 0.769259i 0.354431 0.0346106i
\(495\) 0 0
\(496\) 23.5924 9.68041i 1.05933 0.434663i
\(497\) 3.12887 0.140349
\(498\) 0 0
\(499\) 37.8522i 1.69450i 0.531197 + 0.847249i \(0.321743\pi\)
−0.531197 + 0.847249i \(0.678257\pi\)
\(500\) −12.1783 61.7614i −0.544629 2.76205i
\(501\) 0 0
\(502\) 1.02918 + 10.5394i 0.0459346 + 0.470395i
\(503\) 4.57973 0.204200 0.102100 0.994774i \(-0.467444\pi\)
0.102100 + 0.994774i \(0.467444\pi\)
\(504\) 0 0
\(505\) 76.2702 3.39398
\(506\) −0.678591 6.94913i −0.0301670 0.308927i
\(507\) 0 0
\(508\) −31.6842 + 6.24757i −1.40576 + 0.277191i
\(509\) 13.7626i 0.610016i 0.952350 + 0.305008i \(0.0986591\pi\)
−0.952350 + 0.305008i \(0.901341\pi\)
\(510\) 0 0
\(511\) 4.51378 0.199678
\(512\) −14.4853 + 17.3832i −0.640165 + 0.768237i
\(513\) 0 0
\(514\) −27.5025 + 2.68565i −1.21308 + 0.118459i
\(515\) 6.76618i 0.298154i
\(516\) 0 0
\(517\) 7.66416i 0.337069i
\(518\) 0.620400 + 6.35323i 0.0272588 + 0.279145i
\(519\) 0 0
\(520\) 11.3376 3.40834i 0.497187 0.149466i
\(521\) 32.5790 1.42731 0.713656 0.700496i \(-0.247038\pi\)
0.713656 + 0.700496i \(0.247038\pi\)
\(522\) 0 0
\(523\) 40.2919i 1.76184i −0.473264 0.880921i \(-0.656924\pi\)
0.473264 0.880921i \(-0.343076\pi\)
\(524\) 3.64719 + 18.4965i 0.159328 + 0.808024i
\(525\) 0 0
\(526\) 20.0900 1.96181i 0.875964 0.0855389i
\(527\) 31.6541 1.37887
\(528\) 0 0
\(529\) 3.62631 0.157666
\(530\) 0.470005 0.0458966i 0.0204157 0.00199362i
\(531\) 0 0
\(532\) 5.86682 + 29.7532i 0.254359 + 1.28997i
\(533\) 8.64689i 0.374538i
\(534\) 0 0
\(535\) −44.6379 −1.92986
\(536\) −11.2103 37.2904i −0.484212 1.61070i
\(537\) 0 0
\(538\) 1.30296 + 13.3430i 0.0561744 + 0.575256i
\(539\) 0.325242i 0.0140092i
\(540\) 0 0
\(541\) 28.6390i 1.23129i −0.788025 0.615643i \(-0.788896\pi\)
0.788025 0.615643i \(-0.211104\pi\)
\(542\) −41.0550 + 4.00907i −1.76346 + 0.172204i
\(543\) 0 0
\(544\) −24.8253 + 13.1369i −1.06438 + 0.563239i
\(545\) 63.1793 2.70630
\(546\) 0 0
\(547\) 6.51086i 0.278384i 0.990265 + 0.139192i \(0.0444505\pi\)
−0.990265 + 0.139192i \(0.955549\pi\)
\(548\) 9.19577 1.81325i 0.392824 0.0774580i
\(549\) 0 0
\(550\) 1.64645 + 16.8606i 0.0702050 + 0.718936i
\(551\) 24.9686 1.06370
\(552\) 0 0
\(553\) 11.6530 0.495534
\(554\) −0.765113 7.83517i −0.0325066 0.332884i
\(555\) 0 0
\(556\) 3.84988 + 19.5244i 0.163271 + 0.828021i
\(557\) 6.44138i 0.272930i 0.990645 + 0.136465i \(0.0435741\pi\)
−0.990645 + 0.136465i \(0.956426\pi\)
\(558\) 0 0
\(559\) 7.67092 0.324445
\(560\) 17.2188 + 41.9645i 0.727627 + 1.77332i
\(561\) 0 0
\(562\) −2.35514 + 0.229982i −0.0993454 + 0.00970119i
\(563\) 34.3919i 1.44945i 0.689040 + 0.724724i \(0.258033\pi\)
−0.689040 + 0.724724i \(0.741967\pi\)
\(564\) 0 0
\(565\) 61.0043i 2.56647i
\(566\) −2.81187 28.7951i −0.118192 1.21035i
\(567\) 0 0
\(568\) −3.12823 + 0.940417i −0.131258 + 0.0394590i
\(569\) 43.8071 1.83649 0.918244 0.396014i \(-0.129607\pi\)
0.918244 + 0.396014i \(0.129607\pi\)
\(570\) 0 0
\(571\) 29.1661i 1.22056i −0.792185 0.610281i \(-0.791056\pi\)
0.792185 0.610281i \(-0.208944\pi\)
\(572\) −1.87745 + 0.370200i −0.0785000 + 0.0154788i
\(573\) 0 0
\(574\) 32.9731 3.21986i 1.37627 0.134394i
\(575\) −64.6030 −2.69413
\(576\) 0 0
\(577\) −10.5041 −0.437291 −0.218646 0.975804i \(-0.570164\pi\)
−0.218646 + 0.975804i \(0.570164\pi\)
\(578\) −10.7707 + 1.05178i −0.448004 + 0.0437481i
\(579\) 0 0
\(580\) 36.6408 7.22493i 1.52143 0.299999i
\(581\) 37.9793i 1.57565i
\(582\) 0 0
\(583\) −0.0763317 −0.00316134
\(584\) −4.51286 + 1.35667i −0.186744 + 0.0561393i
\(585\) 0 0
\(586\) 4.09892 + 41.9752i 0.169325 + 1.73398i
\(587\) 39.6896i 1.63817i 0.573675 + 0.819083i \(0.305517\pi\)
−0.573675 + 0.819083i \(0.694483\pi\)
\(588\) 0 0
\(589\) 35.6814i 1.47023i
\(590\) −27.7317 + 2.70804i −1.14170 + 0.111488i
\(591\) 0 0
\(592\) −2.52981 6.16547i −0.103974 0.253399i
\(593\) −18.9670 −0.778882 −0.389441 0.921051i \(-0.627332\pi\)
−0.389441 + 0.921051i \(0.627332\pi\)
\(594\) 0 0
\(595\) 56.3040i 2.30824i
\(596\) −2.39541 12.1482i −0.0981199 0.497609i
\(597\) 0 0
\(598\) −0.709230 7.26289i −0.0290026 0.297002i
\(599\) 1.68323 0.0687750 0.0343875 0.999409i \(-0.489052\pi\)
0.0343875 + 0.999409i \(0.489052\pi\)
\(600\) 0 0
\(601\) −7.76439 −0.316716 −0.158358 0.987382i \(-0.550620\pi\)
−0.158358 + 0.987382i \(0.550620\pi\)
\(602\) 2.85644 + 29.2514i 0.116420 + 1.19220i
\(603\) 0 0
\(604\) −16.6482 + 3.28275i −0.677408 + 0.133573i
\(605\) 42.2105i 1.71610i
\(606\) 0 0
\(607\) −4.45424 −0.180792 −0.0903961 0.995906i \(-0.528813\pi\)
−0.0903961 + 0.995906i \(0.528813\pi\)
\(608\) −14.8083 27.9838i −0.600555 1.13489i
\(609\) 0 0
\(610\) 47.7281 4.66071i 1.93246 0.188707i
\(611\) 8.01021i 0.324058i
\(612\) 0 0
\(613\) 20.7056i 0.836293i −0.908380 0.418147i \(-0.862680\pi\)
0.908380 0.418147i \(-0.137320\pi\)
\(614\) −1.34846 13.8090i −0.0544195 0.557284i
\(615\) 0 0
\(616\) −2.11079 7.02140i −0.0850462 0.282900i
\(617\) −31.2889 −1.25964 −0.629821 0.776740i \(-0.716872\pi\)
−0.629821 + 0.776740i \(0.716872\pi\)
\(618\) 0 0
\(619\) 13.1646i 0.529129i −0.964368 0.264565i \(-0.914772\pi\)
0.964368 0.264565i \(-0.0852282\pi\)
\(620\) 10.3248 + 52.3615i 0.414653 + 2.10289i
\(621\) 0 0
\(622\) −7.38835 + 0.721481i −0.296246 + 0.0289287i
\(623\) 31.5898 1.26562
\(624\) 0 0
\(625\) 69.1461 2.76584
\(626\) −5.32881 + 0.520365i −0.212982 + 0.0207980i
\(627\) 0 0
\(628\) 6.19988 + 31.4423i 0.247402 + 1.25469i
\(629\) 8.27224i 0.329836i
\(630\) 0 0
\(631\) −6.38498 −0.254182 −0.127091 0.991891i \(-0.540564\pi\)
−0.127091 + 0.991891i \(0.540564\pi\)
\(632\) −11.6506 + 3.50243i −0.463435 + 0.139319i
\(633\) 0 0
\(634\) −2.19365 22.4641i −0.0871208 0.892164i
\(635\) 67.5865i 2.68209i
\(636\) 0 0
\(637\) 0.339928i 0.0134684i
\(638\) −6.00798 + 0.586687i −0.237858 + 0.0232271i
\(639\) 0 0
\(640\) −29.8282 36.7806i −1.17906 1.45388i
\(641\) −0.671299 −0.0265147 −0.0132574 0.999912i \(-0.504220\pi\)
−0.0132574 + 0.999912i \(0.504220\pi\)
\(642\) 0 0
\(643\) 2.22333i 0.0876794i 0.999039 + 0.0438397i \(0.0139591\pi\)
−0.999039 + 0.0438397i \(0.986041\pi\)
\(644\) 27.4314 5.40900i 1.08095 0.213145i
\(645\) 0 0
\(646\) −3.81946 39.1133i −0.150274 1.53889i
\(647\) 21.6075 0.849480 0.424740 0.905315i \(-0.360366\pi\)
0.424740 + 0.905315i \(0.360366\pi\)
\(648\) 0 0
\(649\) 4.50380 0.176790
\(650\) 1.72079 + 17.6218i 0.0674950 + 0.691185i
\(651\) 0 0
\(652\) −6.42431 32.5805i −0.251595 1.27595i
\(653\) 4.85741i 0.190085i −0.995473 0.0950426i \(-0.969701\pi\)
0.995473 0.0950426i \(-0.0302987\pi\)
\(654\) 0 0
\(655\) −39.4554 −1.54165
\(656\) −31.9986 + 13.1296i −1.24934 + 0.512626i
\(657\) 0 0
\(658\) 30.5453 2.98278i 1.19078 0.116281i
\(659\) 28.1414i 1.09623i −0.836402 0.548116i \(-0.815345\pi\)
0.836402 0.548116i \(-0.184655\pi\)
\(660\) 0 0
\(661\) 25.8016i 1.00356i −0.864994 0.501782i \(-0.832678\pi\)
0.864994 0.501782i \(-0.167322\pi\)
\(662\) 4.20786 + 43.0908i 0.163543 + 1.67477i
\(663\) 0 0
\(664\) −11.4151 37.9716i −0.442992 1.47358i
\(665\) −63.4675 −2.46116
\(666\) 0 0
\(667\) 23.0202i 0.891346i
\(668\) 12.4788 2.46060i 0.482818 0.0952034i
\(669\) 0 0
\(670\) 81.1069 7.92018i 3.13343 0.305983i
\(671\) −7.75134 −0.299237
\(672\) 0 0
\(673\) 13.6803 0.527336 0.263668 0.964613i \(-0.415068\pi\)
0.263668 + 0.964613i \(0.415068\pi\)
\(674\) 27.9645 2.73076i 1.07715 0.105185i
\(675\) 0 0
\(676\) −1.96222 + 0.386915i −0.0754699 + 0.0148814i
\(677\) 18.7430i 0.720351i 0.932885 + 0.360175i \(0.117283\pi\)
−0.932885 + 0.360175i \(0.882717\pi\)
\(678\) 0 0
\(679\) −16.7164 −0.641518
\(680\) −16.9228 56.2925i −0.648959 2.15872i
\(681\) 0 0
\(682\) −0.838404 8.58570i −0.0321041 0.328764i
\(683\) 30.0389i 1.14941i 0.818362 + 0.574704i \(0.194883\pi\)
−0.818362 + 0.574704i \(0.805117\pi\)
\(684\) 0 0
\(685\) 19.6158i 0.749480i
\(686\) 25.3968 2.48003i 0.969654 0.0946879i
\(687\) 0 0
\(688\) −11.6477 28.3869i −0.444064 1.08224i
\(689\) −0.0797782 −0.00303931
\(690\) 0 0
\(691\) 33.8302i 1.28696i 0.765462 + 0.643481i \(0.222510\pi\)
−0.765462 + 0.643481i \(0.777490\pi\)
\(692\) 0.784892 + 3.98053i 0.0298371 + 0.151317i
\(693\) 0 0
\(694\) −0.494369 5.06261i −0.0187660 0.192174i
\(695\) −41.6482 −1.57981
\(696\) 0 0
\(697\) −42.9327 −1.62619
\(698\) 4.39347 + 44.9915i 0.166295 + 1.70295i
\(699\) 0 0
\(700\) −66.5564 + 13.1238i −2.51560 + 0.496032i
\(701\) 9.20542i 0.347684i −0.984774 0.173842i \(-0.944382\pi\)
0.984774 0.173842i \(-0.0556182\pi\)
\(702\) 0 0
\(703\) 9.32472 0.351689
\(704\) 4.22072 + 6.38555i 0.159074 + 0.240664i
\(705\) 0 0
\(706\) −23.5811 + 2.30272i −0.887486 + 0.0866640i
\(707\) 49.3670i 1.85664i
\(708\) 0 0
\(709\) 42.5563i 1.59824i 0.601174 + 0.799119i \(0.294700\pi\)
−0.601174 + 0.799119i \(0.705300\pi\)
\(710\) −0.664412 6.80394i −0.0249350 0.255347i
\(711\) 0 0
\(712\) −31.5833 + 9.49465i −1.18363 + 0.355827i
\(713\) 32.8970 1.23200
\(714\) 0 0
\(715\) 4.00484i 0.149773i
\(716\) −6.93429 35.1669i −0.259147 1.31425i
\(717\) 0 0
\(718\) −44.7337 + 4.36830i −1.66945 + 0.163023i
\(719\) −25.0205 −0.933107 −0.466554 0.884493i \(-0.654505\pi\)
−0.466554 + 0.884493i \(0.654505\pi\)
\(720\) 0 0
\(721\) −4.37951 −0.163101
\(722\) 17.3468 1.69393i 0.645581 0.0630417i
\(723\) 0 0
\(724\) −1.32007 6.69467i −0.0490601 0.248806i
\(725\) 55.8535i 2.07435i
\(726\) 0 0
\(727\) 17.7041 0.656609 0.328305 0.944572i \(-0.393523\pi\)
0.328305 + 0.944572i \(0.393523\pi\)
\(728\) −2.20610 7.33843i −0.0817634 0.271980i
\(729\) 0 0
\(730\) −0.958497 9.81552i −0.0354756 0.363289i
\(731\) 38.0869i 1.40870i
\(732\) 0 0
\(733\) 20.1480i 0.744183i −0.928196 0.372092i \(-0.878641\pi\)
0.928196 0.372092i \(-0.121359\pi\)
\(734\) −39.1990 + 3.82783i −1.44686 + 0.141288i
\(735\) 0 0
\(736\) −25.8001 + 13.6527i −0.951004 + 0.503246i
\(737\) −13.1722 −0.485206
\(738\) 0 0
\(739\) 12.9725i 0.477202i 0.971118 + 0.238601i \(0.0766888\pi\)
−0.971118 + 0.238601i \(0.923311\pi\)
\(740\) 13.6838 2.69820i 0.503026 0.0991879i
\(741\) 0 0
\(742\) −0.0297072 0.304217i −0.00109059 0.0111682i
\(743\) 31.3522 1.15020 0.575100 0.818083i \(-0.304963\pi\)
0.575100 + 0.818083i \(0.304963\pi\)
\(744\) 0 0
\(745\) 25.9137 0.949404
\(746\) 4.11571 + 42.1471i 0.150687 + 1.54311i
\(747\) 0 0
\(748\) 1.83808 + 9.32173i 0.0672070 + 0.340836i
\(749\) 28.8925i 1.05571i
\(750\) 0 0
\(751\) −13.4231 −0.489814 −0.244907 0.969547i \(-0.578757\pi\)
−0.244907 + 0.969547i \(0.578757\pi\)
\(752\) −29.6425 + 12.1629i −1.08095 + 0.443535i
\(753\) 0 0
\(754\) −6.27925 + 0.613176i −0.228677 + 0.0223306i
\(755\) 35.5129i 1.29245i
\(756\) 0 0
\(757\) 9.49056i 0.344940i −0.985015 0.172470i \(-0.944825\pi\)
0.985015 0.172470i \(-0.0551748\pi\)
\(758\) −0.743620 7.61507i −0.0270095 0.276592i
\(759\) 0 0
\(760\) 63.4546 19.0759i 2.30174 0.691954i
\(761\) 13.4197 0.486466 0.243233 0.969968i \(-0.421792\pi\)
0.243233 + 0.969968i \(0.421792\pi\)
\(762\) 0 0
\(763\) 40.8937i 1.48045i
\(764\) 25.5424 5.03653i 0.924093 0.182215i
\(765\) 0 0
\(766\) −3.32043 + 0.324244i −0.119972 + 0.0117154i
\(767\) 4.70716 0.169966
\(768\) 0 0
\(769\) 6.84250 0.246747 0.123373 0.992360i \(-0.460629\pi\)
0.123373 + 0.992360i \(0.460629\pi\)
\(770\) 15.2716 1.49129i 0.550351 0.0537424i
\(771\) 0 0
\(772\) 3.96757 0.782336i 0.142796 0.0281569i
\(773\) 20.6355i 0.742207i −0.928591 0.371104i \(-0.878979\pi\)
0.928591 0.371104i \(-0.121021\pi\)
\(774\) 0 0
\(775\) −79.8174 −2.86713
\(776\) 16.7130 5.02431i 0.599962 0.180362i
\(777\) 0 0
\(778\) −4.70118 48.1425i −0.168545 1.72599i
\(779\) 48.3950i 1.73393i
\(780\) 0 0
\(781\) 1.10500i 0.0395400i
\(782\) −36.0610 + 3.52140i −1.28954 + 0.125925i
\(783\) 0 0
\(784\) 1.25793 0.516154i 0.0449262 0.0184341i
\(785\) −67.0706 −2.39385
\(786\) 0 0
\(787\) 4.33162i 0.154406i 0.997015 + 0.0772028i \(0.0245989\pi\)
−0.997015 + 0.0772028i \(0.975401\pi\)
\(788\) −6.40166 32.4656i −0.228050 1.15654i
\(789\) 0 0
\(790\) −2.47449 25.3401i −0.0880386 0.901562i
\(791\) −39.4859 −1.40396
\(792\) 0 0
\(793\) −8.10132 −0.287686
\(794\) −2.31203 23.6764i −0.0820508 0.840244i
\(795\) 0 0
\(796\) −2.19229 + 0.432282i −0.0777037 + 0.0153218i
\(797\) 26.9591i 0.954941i 0.878648 + 0.477471i \(0.158446\pi\)
−0.878648 + 0.477471i \(0.841554\pi\)
\(798\) 0 0
\(799\) −39.7716 −1.40702
\(800\) 62.5983 33.1253i 2.21319 1.17116i
\(801\) 0 0
\(802\) 4.26539 0.416521i 0.150616 0.0147079i
\(803\) 1.59410i 0.0562545i
\(804\) 0 0
\(805\) 58.5148i 2.06238i
\(806\) −0.876259 8.97336i −0.0308649 0.316073i
\(807\) 0 0
\(808\) 14.8378 + 49.3569i 0.521991 + 1.73637i
\(809\) −0.217636 −0.00765166 −0.00382583 0.999993i \(-0.501218\pi\)
−0.00382583 + 0.999993i \(0.501218\pi\)
\(810\) 0 0
\(811\) 10.9498i 0.384501i 0.981346 + 0.192251i \(0.0615786\pi\)
−0.981346 + 0.192251i \(0.938421\pi\)
\(812\) −4.67644 23.7163i −0.164111 0.832279i
\(813\) 0 0
\(814\) −2.24372 + 0.219102i −0.0786425 + 0.00767953i
\(815\) 69.4984 2.43442
\(816\) 0 0
\(817\) 42.9327 1.50203
\(818\) 51.6764 5.04626i 1.80682 0.176438i
\(819\) 0 0
\(820\) −14.0036 71.0184i −0.489027 2.48007i
\(821\) 10.6224i 0.370725i 0.982670 + 0.185362i \(0.0593459\pi\)
−0.982670 + 0.185362i \(0.940654\pi\)
\(822\) 0 0
\(823\) 28.0573 0.978017 0.489008 0.872279i \(-0.337359\pi\)
0.489008 + 0.872279i \(0.337359\pi\)
\(824\) 4.37861 1.31631i 0.152536 0.0458558i
\(825\) 0 0
\(826\) 1.75282 + 17.9498i 0.0609882 + 0.624552i
\(827\) 2.91954i 0.101522i 0.998711 + 0.0507611i \(0.0161647\pi\)
−0.998711 + 0.0507611i \(0.983835\pi\)
\(828\) 0 0
\(829\) 33.7216i 1.17120i 0.810600 + 0.585600i \(0.199141\pi\)
−0.810600 + 0.585600i \(0.800859\pi\)
\(830\) 82.5886 8.06487i 2.86669 0.279936i
\(831\) 0 0
\(832\) 4.41129 + 6.67387i 0.152934 + 0.231375i
\(833\) 1.68778 0.0584780
\(834\) 0 0
\(835\) 26.6189i 0.921183i
\(836\) −10.5077 + 2.07194i −0.363418 + 0.0716596i
\(837\) 0 0
\(838\) 2.51228 + 25.7271i 0.0867854 + 0.888728i
\(839\) −19.6980 −0.680050 −0.340025 0.940416i \(-0.610436\pi\)
−0.340025 + 0.940416i \(0.610436\pi\)
\(840\) 0 0
\(841\) 9.09751 0.313707
\(842\) −0.136318 1.39597i −0.00469784 0.0481084i
\(843\) 0 0
\(844\) −8.65596 43.8982i −0.297950 1.51104i
\(845\) 4.18566i 0.143991i
\(846\) 0 0
\(847\) 27.3213 0.938772
\(848\) 0.121137 + 0.295227i 0.00415986 + 0.0101381i
\(849\) 0 0
\(850\) 87.4943 8.54392i 3.00103 0.293054i
\(851\) 8.59706i 0.294704i
\(852\) 0 0
\(853\) 11.3421i 0.388347i −0.980967 0.194174i \(-0.937798\pi\)
0.980967 0.194174i \(-0.0622025\pi\)
\(854\) −3.01671 30.8927i −0.103230 1.05713i
\(855\) 0 0
\(856\) −8.68396 28.8866i −0.296812 0.987324i
\(857\) 15.8724 0.542192 0.271096 0.962552i \(-0.412614\pi\)
0.271096 + 0.962552i \(0.412614\pi\)
\(858\) 0 0
\(859\) 23.4990i 0.801776i 0.916127 + 0.400888i \(0.131298\pi\)
−0.916127 + 0.400888i \(0.868702\pi\)
\(860\) 63.0026 12.4230i 2.14837 0.423622i
\(861\) 0 0
\(862\) −1.48982 + 0.145482i −0.0507433 + 0.00495514i
\(863\) 6.45060 0.219581 0.109790 0.993955i \(-0.464982\pi\)
0.109790 + 0.993955i \(0.464982\pi\)
\(864\) 0 0
\(865\) −8.49099 −0.288702
\(866\) 37.4309 3.65517i 1.27195 0.124208i
\(867\) 0 0
\(868\) 33.8917 6.68286i 1.15036 0.226831i
\(869\) 4.11539i 0.139605i
\(870\) 0 0
\(871\) −13.7670 −0.466477
\(872\) 12.2911 + 40.8854i 0.416228 + 1.38455i
\(873\) 0 0
\(874\) −3.96943 40.6491i −0.134268 1.37498i
\(875\) 85.2738i 2.88278i
\(876\) 0 0
\(877\) 43.8038i 1.47915i 0.673074 + 0.739575i \(0.264973\pi\)
−0.673074 + 0.739575i \(0.735027\pi\)
\(878\) −40.1401 + 3.91973i −1.35466 + 0.132285i
\(879\) 0 0
\(880\) −14.8203 + 6.08104i −0.499592 + 0.204992i
\(881\) −54.1923 −1.82579 −0.912893 0.408199i \(-0.866157\pi\)
−0.912893 + 0.408199i \(0.866157\pi\)
\(882\) 0 0
\(883\) 32.4922i 1.09345i 0.837312 + 0.546725i \(0.184126\pi\)
−0.837312 + 0.546725i \(0.815874\pi\)
\(884\) 1.92108 + 9.74262i 0.0646128 + 0.327680i
\(885\) 0 0
\(886\) −1.12218 11.4917i −0.0377005 0.386073i
\(887\) −30.3801 −1.02006 −0.510032 0.860156i \(-0.670366\pi\)
−0.510032 + 0.860156i \(0.670366\pi\)
\(888\) 0 0
\(889\) −43.7463 −1.46720
\(890\) −6.70805 68.6940i −0.224854 2.30263i
\(891\) 0 0
\(892\) 49.6766 9.79536i 1.66330 0.327973i
\(893\) 44.8317i 1.50024i
\(894\) 0 0
\(895\) 75.0155 2.50749
\(896\) −23.8068 + 19.3067i −0.795328 + 0.644992i
\(897\) 0 0
\(898\) 1.68086 0.164138i 0.0560909 0.00547734i
\(899\) 28.4416i 0.948582i
\(900\) 0 0
\(901\) 0.396107i 0.0131962i
\(902\) 1.13714 + 11.6449i 0.0378625 + 0.387732i
\(903\) 0 0
\(904\) 39.4778 11.8679i 1.31301 0.394721i
\(905\) 14.2806 0.474703
\(906\) 0 0
\(907\) 29.0224i 0.963671i −0.876262 0.481836i \(-0.839970\pi\)
0.876262 0.481836i \(-0.160030\pi\)
\(908\) −0.362362 1.83770i −0.0120254 0.0609862i
\(909\) 0 0
\(910\) 15.9612 1.55863i 0.529107 0.0516679i
\(911\) 48.1729 1.59604 0.798019 0.602632i \(-0.205881\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(912\) 0 0
\(913\) −13.4129 −0.443902
\(914\) 22.5187 2.19898i 0.744854 0.0727358i
\(915\) 0 0
\(916\) 1.31891 + 6.68877i 0.0435780 + 0.221003i
\(917\) 25.5381i 0.843342i
\(918\) 0 0
\(919\) 25.1063 0.828180 0.414090 0.910236i \(-0.364100\pi\)
0.414090 + 0.910236i \(0.364100\pi\)
\(920\) −17.5873 58.5029i −0.579835 1.92878i
\(921\) 0 0
\(922\) 0.873726 + 8.94742i 0.0287746 + 0.294668i
\(923\) 1.15489i 0.0380138i
\(924\) 0 0
\(925\) 20.8589i 0.685837i
\(926\) −24.4672 + 2.38925i −0.804042 + 0.0785156i
\(927\) 0 0
\(928\) 11.8037 + 22.3059i 0.387475 + 0.732227i
\(929\) 45.7495 1.50099 0.750497 0.660874i \(-0.229814\pi\)
0.750497 + 0.660874i \(0.229814\pi\)
\(930\) 0 0
\(931\) 1.90251i 0.0623523i
\(932\) 25.5087 5.02988i 0.835567 0.164759i
\(933\) 0 0
\(934\) 0.219102 + 2.24372i 0.00716925 + 0.0734169i
\(935\) −19.8845 −0.650291
\(936\) 0 0
\(937\) −41.4498 −1.35411 −0.677053 0.735934i \(-0.736743\pi\)
−0.677053 + 0.735934i \(0.736743\pi\)
\(938\) −5.12645 52.4976i −0.167384 1.71411i
\(939\) 0 0
\(940\) −12.9725 65.7893i −0.423117 2.14581i
\(941\) 27.6008i 0.899760i −0.893089 0.449880i \(-0.851467\pi\)
0.893089 0.449880i \(-0.148533\pi\)
\(942\) 0 0
\(943\) −44.6185 −1.45298
\(944\) −7.14746 17.4193i −0.232630 0.566949i
\(945\) 0 0
\(946\) −10.3305 + 1.00879i −0.335874 + 0.0327985i
\(947\) 60.4406i 1.96405i 0.188740 + 0.982027i \(0.439560\pi\)
−0.188740 + 0.982027i \(0.560440\pi\)
\(948\) 0 0
\(949\) 1.66608i 0.0540831i
\(950\) 9.63096 + 98.6262i 0.312470 + 3.19986i
\(951\) 0 0
\(952\) −36.4361 + 10.9535i −1.18090 + 0.355005i
\(953\) 23.3201 0.755412 0.377706 0.925926i \(-0.376713\pi\)
0.377706 + 0.925926i \(0.376713\pi\)
\(954\) 0 0
\(955\) 54.4853i 1.76310i
\(956\) −11.6026 + 2.28784i −0.375256 + 0.0739940i
\(957\) 0 0
\(958\) −25.2973 + 2.47031i −0.817319 + 0.0798121i
\(959\) 12.6966 0.409994
\(960\) 0 0
\(961\) 9.64452 0.311114
\(962\) −2.34503 + 0.228995i −0.0756069 + 0.00738310i
\(963\) 0 0
\(964\) −23.5876 + 4.65106i −0.759705 + 0.149801i
\(965\) 8.46334i 0.272445i
\(966\) 0 0
\(967\) −28.4046 −0.913432 −0.456716 0.889613i \(-0.650974\pi\)
−0.456716 + 0.889613i \(0.650974\pi\)
\(968\) −27.3158 + 8.21173i −0.877962 + 0.263935i
\(969\) 0 0
\(970\) 3.54972 + 36.3510i 0.113975 + 1.16716i
\(971\) 32.3884i 1.03939i −0.854351 0.519697i \(-0.826045\pi\)
0.854351 0.519697i \(-0.173955\pi\)
\(972\) 0 0
\(973\) 26.9574i 0.864213i
\(974\) −38.7096 + 3.78003i −1.24033 + 0.121120i
\(975\) 0 0
\(976\) 12.3012 + 29.9797i 0.393753 + 0.959627i
\(977\) −40.7641 −1.30416 −0.652079 0.758151i \(-0.726103\pi\)
−0.652079 + 0.758151i \(0.726103\pi\)
\(978\) 0 0
\(979\) 11.1563i 0.356558i
\(980\) 0.550512 + 2.79189i 0.0175854 + 0.0891835i
\(981\) 0 0
\(982\) 0.886952 + 9.08286i 0.0283038 + 0.289846i
\(983\) −44.1753 −1.40897 −0.704486 0.709718i \(-0.748822\pi\)
−0.704486 + 0.709718i \(0.748822\pi\)
\(984\) 0 0
\(985\) 69.2534 2.20660
\(986\) 3.04449 + 31.1772i 0.0969562 + 0.992883i
\(987\) 0 0
\(988\) −10.9822 + 2.16549i −0.349389 + 0.0688935i
\(989\) 39.5825i 1.25865i
\(990\) 0 0
\(991\) 27.7306 0.880893 0.440446 0.897779i \(-0.354820\pi\)
0.440446 + 0.897779i \(0.354820\pi\)
\(992\) −31.8762 + 16.8680i −1.01207 + 0.535561i
\(993\) 0 0
\(994\) −4.40394 + 0.430050i −0.139685 + 0.0136404i
\(995\) 4.67644i 0.148253i
\(996\) 0 0
\(997\) 15.5011i 0.490925i 0.969406 + 0.245463i \(0.0789398\pi\)
−0.969406 + 0.245463i \(0.921060\pi\)
\(998\) −5.20263 53.2777i −0.164686 1.68648i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.2 yes 24
3.2 odd 2 inner 936.2.g.f.469.23 yes 24
4.3 odd 2 3744.2.g.f.1873.12 24
8.3 odd 2 3744.2.g.f.1873.11 24
8.5 even 2 inner 936.2.g.f.469.1 24
12.11 even 2 3744.2.g.f.1873.23 24
24.5 odd 2 inner 936.2.g.f.469.24 yes 24
24.11 even 2 3744.2.g.f.1873.24 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.1 24 8.5 even 2 inner
936.2.g.f.469.2 yes 24 1.1 even 1 trivial
936.2.g.f.469.23 yes 24 3.2 odd 2 inner
936.2.g.f.469.24 yes 24 24.5 odd 2 inner
3744.2.g.f.1873.11 24 8.3 odd 2
3744.2.g.f.1873.12 24 4.3 odd 2
3744.2.g.f.1873.23 24 12.11 even 2
3744.2.g.f.1873.24 24 24.11 even 2