Properties

Label 3744.2.m.g.1585.5
Level $3744$
Weight $2$
Character 3744.1585
Analytic conductor $29.896$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1585,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1585");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4521217600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 2x^{4} + 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1585.5
Root \(1.29437 + 0.569745i\) of defining polynomial
Character \(\chi\) \(=\) 3744.1585
Dual form 3744.2.m.g.1585.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81616 q^{5} -1.13949i q^{7} +4.40490 q^{11} +(-2.58874 + 2.50967i) q^{13} -0.701562 q^{17} +5.95005 q^{19} +4.00000 q^{23} -1.70156 q^{25} +5.01934i q^{29} +8.77585i q^{31} -2.06950i q^{35} -3.36131 q^{37} +2.94984i q^{43} +1.13949i q^{47} +5.70156 q^{49} -11.7994i q^{53} +8.00000 q^{55} +5.95005 q^{59} +(-4.70156 + 4.55796i) q^{65} -7.49521 q^{67} -11.8543i q^{71} +8.43579i q^{73} -5.01934i q^{77} +10.8062 q^{79} +2.85974 q^{83} -1.27415 q^{85} +8.43579i q^{89} +(2.85974 + 2.94984i) q^{91} +10.8062 q^{95} +12.9937i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 20 q^{17} + 32 q^{23} + 12 q^{25} + 20 q^{49} + 64 q^{55} - 12 q^{65} - 16 q^{79} - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.81616 0.812212 0.406106 0.913826i \(-0.366886\pi\)
0.406106 + 0.913826i \(0.366886\pi\)
\(6\) 0 0
\(7\) 1.13949i 0.430687i −0.976538 0.215343i \(-0.930913\pi\)
0.976538 0.215343i \(-0.0690871\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.40490 1.32813 0.664063 0.747676i \(-0.268831\pi\)
0.664063 + 0.747676i \(0.268831\pi\)
\(12\) 0 0
\(13\) −2.58874 + 2.50967i −0.717987 + 0.696057i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.701562 −0.170154 −0.0850769 0.996374i \(-0.527114\pi\)
−0.0850769 + 0.996374i \(0.527114\pi\)
\(18\) 0 0
\(19\) 5.95005 1.36504 0.682518 0.730869i \(-0.260885\pi\)
0.682518 + 0.730869i \(0.260885\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.70156 −0.340312
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.01934i 0.932068i 0.884767 + 0.466034i \(0.154317\pi\)
−0.884767 + 0.466034i \(0.845683\pi\)
\(30\) 0 0
\(31\) 8.77585i 1.57619i 0.615554 + 0.788095i \(0.288932\pi\)
−0.615554 + 0.788095i \(0.711068\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.06950i 0.349809i
\(36\) 0 0
\(37\) −3.36131 −0.552597 −0.276298 0.961072i \(-0.589108\pi\)
−0.276298 + 0.961072i \(0.589108\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 2.94984i 0.449847i 0.974376 + 0.224923i \(0.0722131\pi\)
−0.974376 + 0.224923i \(0.927787\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.13949i 0.166212i 0.996541 + 0.0831059i \(0.0264840\pi\)
−0.996541 + 0.0831059i \(0.973516\pi\)
\(48\) 0 0
\(49\) 5.70156 0.814509
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.7994i 1.62077i −0.585900 0.810384i \(-0.699259\pi\)
0.585900 0.810384i \(-0.300741\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.95005 0.774631 0.387315 0.921947i \(-0.373402\pi\)
0.387315 + 0.921947i \(0.373402\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.70156 + 4.55796i −0.583157 + 0.565345i
\(66\) 0 0
\(67\) −7.49521 −0.915685 −0.457843 0.889033i \(-0.651378\pi\)
−0.457843 + 0.889033i \(0.651378\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8543i 1.40684i −0.710774 0.703421i \(-0.751655\pi\)
0.710774 0.703421i \(-0.248345\pi\)
\(72\) 0 0
\(73\) 8.43579i 0.987334i 0.869651 + 0.493667i \(0.164344\pi\)
−0.869651 + 0.493667i \(0.835656\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.01934i 0.572007i
\(78\) 0 0
\(79\) 10.8062 1.21580 0.607899 0.794014i \(-0.292013\pi\)
0.607899 + 0.794014i \(0.292013\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.85974 0.313898 0.156949 0.987607i \(-0.449834\pi\)
0.156949 + 0.987607i \(0.449834\pi\)
\(84\) 0 0
\(85\) −1.27415 −0.138201
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.43579i 0.894192i 0.894486 + 0.447096i \(0.147542\pi\)
−0.894486 + 0.447096i \(0.852458\pi\)
\(90\) 0 0
\(91\) 2.85974 + 2.94984i 0.299783 + 0.309227i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.8062 1.10870
\(96\) 0 0
\(97\) 12.9937i 1.31932i 0.751566 + 0.659658i \(0.229299\pi\)
−0.751566 + 0.659658i \(0.770701\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.880344i 0.0851061i −0.999094 0.0425530i \(-0.986451\pi\)
0.999094 0.0425530i \(-0.0135491\pi\)
\(108\) 0 0
\(109\) 6.99364 0.669869 0.334934 0.942241i \(-0.391286\pi\)
0.334934 + 0.942241i \(0.391286\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.40312 0.131995 0.0659974 0.997820i \(-0.478977\pi\)
0.0659974 + 0.997820i \(0.478977\pi\)
\(114\) 0 0
\(115\) 7.26464 0.677431
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.799423i 0.0732830i
\(120\) 0 0
\(121\) 8.40312 0.763920
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1711 −1.08862
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.18915i 0.103897i −0.998650 0.0519484i \(-0.983457\pi\)
0.998650 0.0519484i \(-0.0165431\pi\)
\(132\) 0 0
\(133\) 6.78003i 0.587903i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.55796i 0.389413i 0.980862 + 0.194706i \(0.0623754\pi\)
−0.980862 + 0.194706i \(0.937625\pi\)
\(138\) 0 0
\(139\) 18.8882i 1.60208i −0.598613 0.801038i \(-0.704281\pi\)
0.598613 0.801038i \(-0.295719\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.4031 + 11.0548i −0.953577 + 0.924452i
\(144\) 0 0
\(145\) 9.11592i 0.757036i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.08717 0.170987 0.0854936 0.996339i \(-0.472753\pi\)
0.0854936 + 0.996339i \(0.472753\pi\)
\(150\) 0 0
\(151\) 5.69745i 0.463652i −0.972757 0.231826i \(-0.925530\pi\)
0.972757 0.231826i \(-0.0744700\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.9384i 1.28020i
\(156\) 0 0
\(157\) 16.8187i 1.34228i −0.741331 0.671139i \(-0.765805\pi\)
0.741331 0.671139i \(-0.234195\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.55796i 0.359218i
\(162\) 0 0
\(163\) −2.85974 −0.223992 −0.111996 0.993709i \(-0.535724\pi\)
−0.111996 + 0.993709i \(0.535724\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.21789i 0.326390i 0.986594 + 0.163195i \(0.0521800\pi\)
−0.986594 + 0.163195i \(0.947820\pi\)
\(168\) 0 0
\(169\) 0.403124 12.9937i 0.0310096 0.999519i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.7994i 0.897089i −0.893760 0.448545i \(-0.851943\pi\)
0.893760 0.448545i \(-0.148057\pi\)
\(174\) 0 0
\(175\) 1.93891i 0.146568i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.9885i 0.970807i −0.874290 0.485404i \(-0.838673\pi\)
0.874290 0.485404i \(-0.161327\pi\)
\(180\) 0 0
\(181\) 6.78003i 0.503955i 0.967733 + 0.251978i \(0.0810810\pi\)
−0.967733 + 0.251978i \(0.918919\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.10469 −0.448825
\(186\) 0 0
\(187\) −3.09031 −0.225986
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.8062 1.65020 0.825101 0.564985i \(-0.191118\pi\)
0.825101 + 0.564985i \(0.191118\pi\)
\(192\) 0 0
\(193\) 8.43579i 0.607221i 0.952796 + 0.303611i \(0.0981922\pi\)
−0.952796 + 0.303611i \(0.901808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.36131 0.239484 0.119742 0.992805i \(-0.461793\pi\)
0.119742 + 0.992805i \(0.461793\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.71949 0.401429
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 26.2094 1.81294
\(210\) 0 0
\(211\) 1.18915i 0.0818646i 0.999162 + 0.0409323i \(0.0130328\pi\)
−0.999162 + 0.0409323i \(0.986967\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.35738i 0.365371i
\(216\) 0 0
\(217\) 10.0000 0.678844
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.81616 1.76069i 0.122168 0.118437i
\(222\) 0 0
\(223\) 20.9702i 1.40427i 0.712045 + 0.702134i \(0.247769\pi\)
−0.712045 + 0.702134i \(0.752231\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.3050 −1.08220 −0.541101 0.840958i \(-0.681992\pi\)
−0.541101 + 0.840958i \(0.681992\pi\)
\(228\) 0 0
\(229\) 18.8937 1.24853 0.624267 0.781211i \(-0.285398\pi\)
0.624267 + 0.781211i \(0.285398\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1047 −0.793004 −0.396502 0.918034i \(-0.629776\pi\)
−0.396502 + 0.918034i \(0.629776\pi\)
\(234\) 0 0
\(235\) 2.06950i 0.134999i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.57528i 0.619373i 0.950839 + 0.309687i \(0.100224\pi\)
−0.950839 + 0.309687i \(0.899776\pi\)
\(240\) 0 0
\(241\) 17.5517i 1.13060i 0.824884 + 0.565302i \(0.191241\pi\)
−0.824884 + 0.565302i \(0.808759\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.3550 0.661554
\(246\) 0 0
\(247\) −15.4031 + 14.9327i −0.980077 + 0.950142i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.15833i 0.578069i 0.957319 + 0.289034i \(0.0933342\pi\)
−0.957319 + 0.289034i \(0.906666\pi\)
\(252\) 0 0
\(253\) 17.6196 1.10773
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 25.5078 1.59113 0.795567 0.605866i \(-0.207173\pi\)
0.795567 + 0.605866i \(0.207173\pi\)
\(258\) 0 0
\(259\) 3.83019i 0.237996i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 21.4295i 1.31641i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.5794i 1.13281i 0.824129 + 0.566403i \(0.191665\pi\)
−0.824129 + 0.566403i \(0.808335\pi\)
\(270\) 0 0
\(271\) 18.0111i 1.09409i −0.837102 0.547047i \(-0.815752\pi\)
0.837102 0.547047i \(-0.184248\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.49521 −0.451978
\(276\) 0 0
\(277\) 23.5987i 1.41791i −0.705254 0.708955i \(-0.749167\pi\)
0.705254 0.708955i \(-0.250833\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.5517i 1.04705i 0.852011 + 0.523524i \(0.175383\pi\)
−0.852011 + 0.523524i \(0.824617\pi\)
\(282\) 0 0
\(283\) 10.9190i 0.649068i 0.945874 + 0.324534i \(0.105208\pi\)
−0.945874 + 0.324534i \(0.894792\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.5078 −0.971048
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −23.5292 −1.37459 −0.687295 0.726378i \(-0.741202\pi\)
−0.687295 + 0.726378i \(0.741202\pi\)
\(294\) 0 0
\(295\) 10.8062 0.629164
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3550 + 10.0387i −0.598842 + 0.580552i
\(300\) 0 0
\(301\) 3.36131 0.193743
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.57923 0.489642 0.244821 0.969568i \(-0.421271\pi\)
0.244821 + 0.969568i \(0.421271\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 7.50781 0.424367 0.212183 0.977230i \(-0.431943\pi\)
0.212183 + 0.977230i \(0.431943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1679 1.13274 0.566371 0.824151i \(-0.308347\pi\)
0.566371 + 0.824151i \(0.308347\pi\)
\(318\) 0 0
\(319\) 22.1097i 1.23790i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.17433 −0.232266
\(324\) 0 0
\(325\) 4.40490 4.27036i 0.244340 0.236877i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.29844 0.0715852
\(330\) 0 0
\(331\) 23.5696 1.29550 0.647752 0.761851i \(-0.275709\pi\)
0.647752 + 0.761851i \(0.275709\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.6125 −0.743730
\(336\) 0 0
\(337\) 20.7016 1.12769 0.563843 0.825882i \(-0.309322\pi\)
0.563843 + 0.825882i \(0.309322\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 38.6567i 2.09338i
\(342\) 0 0
\(343\) 14.4733i 0.781485i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 24.7879i 1.33068i −0.746539 0.665342i \(-0.768286\pi\)
0.746539 0.665342i \(-0.231714\pi\)
\(348\) 0 0
\(349\) −32.8810 −1.76008 −0.880040 0.474899i \(-0.842484\pi\)
−0.880040 + 0.474899i \(0.842484\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.6739i 0.727787i −0.931441 0.363894i \(-0.881447\pi\)
0.931441 0.363894i \(-0.118553\pi\)
\(354\) 0 0
\(355\) 21.5292i 1.14265i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.340067i 0.0179481i 0.999960 + 0.00897403i \(0.00285656\pi\)
−0.999960 + 0.00897403i \(0.997143\pi\)
\(360\) 0 0
\(361\) 16.4031 0.863322
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.3207i 0.801924i
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.4453 −0.698043
\(372\) 0 0
\(373\) 18.5794i 0.962004i 0.876719 + 0.481002i \(0.159727\pi\)
−0.876719 + 0.481002i \(0.840273\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.5969 12.9937i −0.648772 0.669212i
\(378\) 0 0
\(379\) 5.95005 0.305634 0.152817 0.988255i \(-0.451166\pi\)
0.152817 + 0.988255i \(0.451166\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.1332i 0.722175i 0.932532 + 0.361087i \(0.117594\pi\)
−0.932532 + 0.361087i \(0.882406\pi\)
\(384\) 0 0
\(385\) 9.11592i 0.464590i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.8574i 1.36172i −0.732412 0.680862i \(-0.761606\pi\)
0.732412 0.680862i \(-0.238394\pi\)
\(390\) 0 0
\(391\) −2.80625 −0.141918
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 19.6259 0.987485
\(396\) 0 0
\(397\) 3.63232 0.182301 0.0911505 0.995837i \(-0.470946\pi\)
0.0911505 + 0.995837i \(0.470946\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.5517i 0.876491i 0.898855 + 0.438245i \(0.144400\pi\)
−0.898855 + 0.438245i \(0.855600\pi\)
\(402\) 0 0
\(403\) −22.0245 22.7184i −1.09712 1.13168i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −14.8062 −0.733918
\(408\) 0 0
\(409\) 13.6739i 0.676130i −0.941123 0.338065i \(-0.890228\pi\)
0.941123 0.338065i \(-0.109772\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.78003i 0.333623i
\(414\) 0 0
\(415\) 5.19375 0.254951
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.5486i 1.29698i −0.761222 0.648491i \(-0.775400\pi\)
0.761222 0.648491i \(-0.224600\pi\)
\(420\) 0 0
\(421\) 9.62281 0.468987 0.234494 0.972118i \(-0.424657\pi\)
0.234494 + 0.972118i \(0.424657\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.19375 0.0579055
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.4060i 1.41644i −0.705994 0.708218i \(-0.749499\pi\)
0.705994 0.708218i \(-0.250501\pi\)
\(432\) 0 0
\(433\) −29.5078 −1.41805 −0.709027 0.705181i \(-0.750866\pi\)
−0.709027 + 0.705181i \(0.750866\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.8002 1.13852
\(438\) 0 0
\(439\) −10.8062 −0.515754 −0.257877 0.966178i \(-0.583023\pi\)
−0.257877 + 0.966178i \(0.583023\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.94984i 0.140151i −0.997542 0.0700756i \(-0.977676\pi\)
0.997542 0.0700756i \(-0.0223240\pi\)
\(444\) 0 0
\(445\) 15.3207i 0.726273i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.9812i 1.83964i −0.392342 0.919819i \(-0.628335\pi\)
0.392342 0.919819i \(-0.371665\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.19375 + 5.35738i 0.243487 + 0.251158i
\(456\) 0 0
\(457\) 30.5455i 1.42886i 0.699709 + 0.714428i \(0.253313\pi\)
−0.699709 + 0.714428i \(0.746687\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.6260 0.494900 0.247450 0.968901i \(-0.420407\pi\)
0.247450 + 0.968901i \(0.420407\pi\)
\(462\) 0 0
\(463\) 17.2116i 0.799893i −0.916539 0.399946i \(-0.869029\pi\)
0.916539 0.399946i \(-0.130971\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.6797i 0.586747i 0.955998 + 0.293373i \(0.0947779\pi\)
−0.955998 + 0.293373i \(0.905222\pi\)
\(468\) 0 0
\(469\) 8.54071i 0.394374i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.9937i 0.597453i
\(474\) 0 0
\(475\) −10.1244 −0.464539
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.73834i 0.125118i −0.998041 0.0625589i \(-0.980074\pi\)
0.998041 0.0625589i \(-0.0199261\pi\)
\(480\) 0 0
\(481\) 8.70156 8.43579i 0.396757 0.384639i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.5987i 1.07156i
\(486\) 0 0
\(487\) 25.6474i 1.16220i 0.813834 + 0.581098i \(0.197377\pi\)
−0.813834 + 0.581098i \(0.802623\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.6876i 1.38491i 0.721461 + 0.692455i \(0.243471\pi\)
−0.721461 + 0.692455i \(0.756529\pi\)
\(492\) 0 0
\(493\) 3.52138i 0.158595i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.5078 −0.605908
\(498\) 0 0
\(499\) 1.77572 0.0794922 0.0397461 0.999210i \(-0.487345\pi\)
0.0397461 + 0.999210i \(0.487345\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.6125 1.14200 0.571002 0.820948i \(-0.306555\pi\)
0.571002 + 0.820948i \(0.306555\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.81294 −0.434951 −0.217475 0.976066i \(-0.569782\pi\)
−0.217475 + 0.976066i \(0.569782\pi\)
\(510\) 0 0
\(511\) 9.61250 0.425232
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.26464 −0.320118
\(516\) 0 0
\(517\) 5.01934i 0.220750i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.10469 0.267451 0.133726 0.991018i \(-0.457306\pi\)
0.133726 + 0.991018i \(0.457306\pi\)
\(522\) 0 0
\(523\) 10.9190i 0.477455i 0.971087 + 0.238728i \(0.0767303\pi\)
−0.971087 + 0.238728i \(0.923270\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.15681i 0.268195i
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.59885i 0.0691242i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.1148 1.08177
\(540\) 0 0
\(541\) −10.6260 −0.456846 −0.228423 0.973562i \(-0.573357\pi\)
−0.228423 + 0.973562i \(0.573357\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.7016 0.544075
\(546\) 0 0
\(547\) 6.47122i 0.276689i 0.990384 + 0.138345i \(0.0441782\pi\)
−0.990384 + 0.138345i \(0.955822\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 29.8653i 1.27231i
\(552\) 0 0
\(553\) 12.3136i 0.523628i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.6132 −1.04290 −0.521448 0.853283i \(-0.674608\pi\)
−0.521448 + 0.853283i \(0.674608\pi\)
\(558\) 0 0
\(559\) −7.40312 7.63636i −0.313119 0.322984i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.5099i 0.695809i −0.937530 0.347905i \(-0.886893\pi\)
0.937530 0.347905i \(-0.113107\pi\)
\(564\) 0 0
\(565\) 2.54830 0.107208
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.5078 0.566277 0.283138 0.959079i \(-0.408624\pi\)
0.283138 + 0.959079i \(0.408624\pi\)
\(570\) 0 0
\(571\) 1.18915i 0.0497645i 0.999690 + 0.0248822i \(0.00792108\pi\)
−0.999690 + 0.0248822i \(0.992079\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.80625 −0.283840
\(576\) 0 0
\(577\) 39.6614i 1.65112i −0.564311 0.825562i \(-0.690858\pi\)
0.564311 0.825562i \(-0.309142\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.25865i 0.135192i
\(582\) 0 0
\(583\) 51.9750i 2.15258i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6695 0.481653 0.240827 0.970568i \(-0.422581\pi\)
0.240827 + 0.970568i \(0.422581\pi\)
\(588\) 0 0
\(589\) 52.2168i 2.15156i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.9875i 1.06718i −0.845744 0.533589i \(-0.820843\pi\)
0.845744 0.533589i \(-0.179157\pi\)
\(594\) 0 0
\(595\) 1.45188i 0.0595213i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −26.1047 −1.06483 −0.532416 0.846483i \(-0.678716\pi\)
−0.532416 + 0.846483i \(0.678716\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.2614 0.620465
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.85974 2.94984i −0.115693 0.119338i
\(612\) 0 0
\(613\) −37.3263 −1.50760 −0.753798 0.657106i \(-0.771781\pi\)
−0.753798 + 0.657106i \(0.771781\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.0972i 1.93632i −0.250334 0.968159i \(-0.580540\pi\)
0.250334 0.968159i \(-0.419460\pi\)
\(618\) 0 0
\(619\) 1.77572 0.0713723 0.0356861 0.999363i \(-0.488638\pi\)
0.0356861 + 0.999363i \(0.488638\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.61250 0.385117
\(624\) 0 0
\(625\) −13.5969 −0.543875
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.35817 0.0940264
\(630\) 0 0
\(631\) 29.4060i 1.17063i 0.810805 + 0.585317i \(0.199030\pi\)
−0.810805 + 0.585317i \(0.800970\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.7939 0.864865
\(636\) 0 0
\(637\) −14.7598 + 14.3090i −0.584806 + 0.566945i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −37.4031 −1.47733 −0.738667 0.674070i \(-0.764545\pi\)
−0.738667 + 0.674070i \(0.764545\pi\)
\(642\) 0 0
\(643\) −7.03407 −0.277397 −0.138698 0.990335i \(-0.544292\pi\)
−0.138698 + 0.990335i \(0.544292\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −42.8062 −1.68289 −0.841444 0.540345i \(-0.818294\pi\)
−0.841444 + 0.540345i \(0.818294\pi\)
\(648\) 0 0
\(649\) 26.2094 1.02881
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.5794i 0.727068i −0.931581 0.363534i \(-0.881570\pi\)
0.931581 0.363534i \(-0.118430\pi\)
\(654\) 0 0
\(655\) 2.15969i 0.0843861i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.5177i 1.34462i −0.740269 0.672310i \(-0.765302\pi\)
0.740269 0.672310i \(-0.234698\pi\)
\(660\) 0 0
\(661\) 24.3422 0.946803 0.473401 0.880847i \(-0.343026\pi\)
0.473401 + 0.880847i \(0.343026\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.3136i 0.477501i
\(666\) 0 0
\(667\) 20.0774i 0.777398i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −44.9109 −1.73119 −0.865595 0.500745i \(-0.833059\pi\)
−0.865595 + 0.500745i \(0.833059\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.3981i 1.36046i −0.732999 0.680230i \(-0.761880\pi\)
0.732999 0.680230i \(-0.238120\pi\)
\(678\) 0 0
\(679\) 14.8062 0.568212
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −41.1892 −1.57606 −0.788031 0.615635i \(-0.788899\pi\)
−0.788031 + 0.615635i \(0.788899\pi\)
\(684\) 0 0
\(685\) 8.27799i 0.316286i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.6125 + 30.5455i 1.12815 + 1.16369i
\(690\) 0 0
\(691\) −4.40490 −0.167570 −0.0837851 0.996484i \(-0.526701\pi\)
−0.0837851 + 0.996484i \(0.526701\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 34.3040i 1.30122i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.78003i 0.256078i 0.991769 + 0.128039i \(0.0408683\pi\)
−0.991769 + 0.128039i \(0.959132\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −46.1361 −1.73268 −0.866340 0.499455i \(-0.833533\pi\)
−0.866340 + 0.499455i \(0.833533\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 35.1034i 1.31463i
\(714\) 0 0
\(715\) −20.7099 + 20.0774i −0.774506 + 0.750850i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −30.8062 −1.14888 −0.574440 0.818547i \(-0.694780\pi\)
−0.574440 + 0.818547i \(0.694780\pi\)
\(720\) 0 0
\(721\) 4.55796i 0.169747i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.54071i 0.317194i
\(726\) 0 0
\(727\) −17.1938 −0.637681 −0.318840 0.947808i \(-0.603293\pi\)
−0.318840 + 0.947808i \(0.603293\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.06950i 0.0765431i
\(732\) 0 0
\(733\) 11.6291 0.429531 0.214765 0.976666i \(-0.431101\pi\)
0.214765 + 0.976666i \(0.431101\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −33.0156 −1.21615
\(738\) 0 0
\(739\) −45.8247 −1.68569 −0.842844 0.538157i \(-0.819121\pi\)
−0.842844 + 0.538157i \(0.819121\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.81962i 0.0667555i 0.999443 + 0.0333778i \(0.0106264\pi\)
−0.999443 + 0.0333778i \(0.989374\pi\)
\(744\) 0 0
\(745\) 3.79063 0.138878
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.00314 −0.0366541
\(750\) 0 0
\(751\) −44.4187 −1.62086 −0.810432 0.585833i \(-0.800767\pi\)
−0.810432 + 0.585833i \(0.800767\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.3475i 0.376583i
\(756\) 0 0
\(757\) 8.27799i 0.300869i 0.988620 + 0.150434i \(0.0480672\pi\)
−0.988620 + 0.150434i \(0.951933\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 47.4170i 1.71887i 0.511248 + 0.859433i \(0.329183\pi\)
−0.511248 + 0.859433i \(0.670817\pi\)
\(762\) 0 0
\(763\) 7.96918i 0.288504i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.4031 + 14.9327i −0.556175 + 0.539187i
\(768\) 0 0
\(769\) 3.87783i 0.139838i 0.997553 + 0.0699190i \(0.0222741\pi\)
−0.997553 + 0.0699190i \(0.977726\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −47.9523 −1.72472 −0.862362 0.506292i \(-0.831016\pi\)
−0.862362 + 0.506292i \(0.831016\pi\)
\(774\) 0 0
\(775\) 14.9327i 0.536397i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 52.2168i 1.86846i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.5455i 1.09021i
\(786\) 0 0
\(787\) −43.1955 −1.53975 −0.769877 0.638192i \(-0.779682\pi\)
−0.769877 + 0.638192i \(0.779682\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.59885i 0.0568484i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.3014i 0.364894i −0.983216 0.182447i \(-0.941598\pi\)
0.983216 0.182447i \(-0.0584019\pi\)
\(798\) 0 0
\(799\) 0.799423i 0.0282816i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.1588i 1.31130i
\(804\) 0 0
\(805\) 8.27799i 0.291761i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.5078 −0.826491 −0.413245 0.910620i \(-0.635605\pi\)
−0.413245 + 0.910620i \(0.635605\pi\)
\(810\) 0 0
\(811\) 31.2954 1.09893 0.549465 0.835516i \(-0.314831\pi\)
0.549465 + 0.835516i \(0.314831\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.19375 −0.181929
\(816\) 0 0
\(817\) 17.5517i 0.614057i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −33.4230 −1.16647 −0.583236 0.812303i \(-0.698214\pi\)
−0.583236 + 0.812303i \(0.698214\pi\)
\(822\) 0 0
\(823\) −25.6125 −0.892796 −0.446398 0.894835i \(-0.647293\pi\)
−0.446398 + 0.894835i \(0.647293\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.2210 0.529285 0.264643 0.964347i \(-0.414746\pi\)
0.264643 + 0.964347i \(0.414746\pi\)
\(828\) 0 0
\(829\) 43.6761i 1.51693i −0.651712 0.758466i \(-0.725949\pi\)
0.651712 0.758466i \(-0.274051\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 7.66037i 0.265098i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.340067i 0.0117404i 0.999983 + 0.00587021i \(0.00186856\pi\)
−0.999983 + 0.00587021i \(0.998131\pi\)
\(840\) 0 0
\(841\) 3.80625 0.131250
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.732138 23.5987i 0.0251863 0.811821i
\(846\) 0 0
\(847\) 9.57528i 0.329010i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.4453 −0.460898
\(852\) 0 0
\(853\) −16.3454 −0.559657 −0.279829 0.960050i \(-0.590278\pi\)
−0.279829 + 0.960050i \(0.590278\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.8062 0.437453 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(858\) 0 0
\(859\) 20.9577i 0.715067i 0.933900 + 0.357534i \(0.116382\pi\)
−0.933900 + 0.357534i \(0.883618\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.5219i 1.31130i −0.755065 0.655650i \(-0.772395\pi\)
0.755065 0.655650i \(-0.227605\pi\)
\(864\) 0 0
\(865\) 21.4295i 0.728626i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 47.6004 1.61473
\(870\) 0 0
\(871\) 19.4031 18.8105i 0.657450 0.637369i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13.8689i 0.468853i
\(876\) 0 0
\(877\) 56.1392 1.89569 0.947843 0.318737i \(-0.103259\pi\)
0.947843 + 0.318737i \(0.103259\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −29.2984 −0.987089 −0.493545 0.869720i \(-0.664299\pi\)
−0.493545 + 0.869720i \(0.664299\pi\)
\(882\) 0 0
\(883\) 28.9269i 0.973467i −0.873551 0.486733i \(-0.838188\pi\)
0.873551 0.486733i \(-0.161812\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 51.2250 1.71997 0.859983 0.510322i \(-0.170474\pi\)
0.859983 + 0.510322i \(0.170474\pi\)
\(888\) 0 0
\(889\) 13.6739i 0.458607i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.78003i 0.226885i
\(894\) 0 0
\(895\) 23.5892i 0.788501i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −44.0490 −1.46912
\(900\) 0 0
\(901\) 8.27799i 0.275780i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.3136i 0.409318i
\(906\) 0 0
\(907\) 43.1045i 1.43126i 0.698478 + 0.715631i \(0.253861\pi\)
−0.698478 + 0.715631i \(0.746139\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 0 0
\(913\) 12.5969 0.416896
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.35503 −0.0447470
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 29.7503 + 30.6876i 0.979242 + 1.01009i
\(924\) 0 0
\(925\) 5.71949 0.188056
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 38.9812i 1.27893i −0.768819 0.639467i \(-0.779155\pi\)
0.768819 0.639467i \(-0.220845\pi\)
\(930\) 0 0
\(931\) 33.9246 1.11183
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.61250 −0.183548
\(936\) 0 0
\(937\) −12.8062 −0.418362 −0.209181 0.977877i \(-0.567080\pi\)
−0.209181 + 0.977877i \(0.567080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.7004 0.870408 0.435204 0.900332i \(-0.356676\pi\)
0.435204 + 0.900332i \(0.356676\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.49521 0.243562 0.121781 0.992557i \(-0.461140\pi\)
0.121781 + 0.992557i \(0.461140\pi\)
\(948\) 0 0
\(949\) −21.1710 21.8380i −0.687241 0.708893i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −44.5234 −1.44226 −0.721128 0.692802i \(-0.756376\pi\)
−0.721128 + 0.692802i \(0.756376\pi\)
\(954\) 0 0
\(955\) 41.4198 1.34031
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.19375 0.167715
\(960\) 0 0
\(961\) −46.0156 −1.48437
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.3207i 0.493192i
\(966\) 0 0
\(967\) 6.37758i 0.205089i −0.994728 0.102545i \(-0.967302\pi\)
0.994728 0.102545i \(-0.0326985\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.1275i 0.549648i 0.961495 + 0.274824i \(0.0886196\pi\)
−0.961495 + 0.274824i \(0.911380\pi\)
\(972\) 0 0
\(973\) −21.5229 −0.689993
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22.1097i 0.707351i 0.935368 + 0.353675i \(0.115068\pi\)
−0.935368 + 0.353675i \(0.884932\pi\)
\(978\) 0 0
\(979\) 37.1588i 1.18760i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 56.0736i 1.78847i −0.447598 0.894235i \(-0.647720\pi\)
0.447598 0.894235i \(-0.352280\pi\)
\(984\) 0 0
\(985\) 6.10469 0.194511
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.7994i 0.375198i
\(990\) 0 0
\(991\) 9.61250 0.305351 0.152676 0.988276i \(-0.451211\pi\)
0.152676 + 0.988276i \(0.451211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.52138i 0.111523i 0.998444 + 0.0557616i \(0.0177587\pi\)
−0.998444 + 0.0557616i \(0.982241\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.m.g.1585.5 8
3.2 odd 2 416.2.e.c.337.7 8
4.3 odd 2 936.2.m.f.181.1 8
8.3 odd 2 936.2.m.f.181.7 8
8.5 even 2 inner 3744.2.m.g.1585.3 8
12.11 even 2 104.2.e.c.77.8 yes 8
13.12 even 2 inner 3744.2.m.g.1585.4 8
24.5 odd 2 416.2.e.c.337.2 8
24.11 even 2 104.2.e.c.77.2 yes 8
39.38 odd 2 416.2.e.c.337.8 8
52.51 odd 2 936.2.m.f.181.8 8
104.51 odd 2 936.2.m.f.181.2 8
104.77 even 2 inner 3744.2.m.g.1585.6 8
156.155 even 2 104.2.e.c.77.1 8
312.77 odd 2 416.2.e.c.337.1 8
312.155 even 2 104.2.e.c.77.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.e.c.77.1 8 156.155 even 2
104.2.e.c.77.2 yes 8 24.11 even 2
104.2.e.c.77.7 yes 8 312.155 even 2
104.2.e.c.77.8 yes 8 12.11 even 2
416.2.e.c.337.1 8 312.77 odd 2
416.2.e.c.337.2 8 24.5 odd 2
416.2.e.c.337.7 8 3.2 odd 2
416.2.e.c.337.8 8 39.38 odd 2
936.2.m.f.181.1 8 4.3 odd 2
936.2.m.f.181.2 8 104.51 odd 2
936.2.m.f.181.7 8 8.3 odd 2
936.2.m.f.181.8 8 52.51 odd 2
3744.2.m.g.1585.3 8 8.5 even 2 inner
3744.2.m.g.1585.4 8 13.12 even 2 inner
3744.2.m.g.1585.5 8 1.1 even 1 trivial
3744.2.m.g.1585.6 8 104.77 even 2 inner