Properties

Label 3762.2.b.a.989.12
Level $3762$
Weight $2$
Character 3762.989
Analytic conductor $30.040$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(989,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.989");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 989.12
Character \(\chi\) \(=\) 3762.989
Dual form 3762.2.b.a.989.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.60040i q^{5} -1.65399i q^{7} -1.00000 q^{8} +1.60040i q^{10} +(1.87038 - 2.73892i) q^{11} -1.23956i q^{13} +1.65399i q^{14} +1.00000 q^{16} -1.74559 q^{17} -1.00000i q^{19} -1.60040i q^{20} +(-1.87038 + 2.73892i) q^{22} +5.99268i q^{23} +2.43873 q^{25} +1.23956i q^{26} -1.65399i q^{28} +7.25108 q^{29} +10.5409 q^{31} -1.00000 q^{32} +1.74559 q^{34} -2.64705 q^{35} +7.98892 q^{37} +1.00000i q^{38} +1.60040i q^{40} -8.60750 q^{41} +5.30873i q^{43} +(1.87038 - 2.73892i) q^{44} -5.99268i q^{46} -2.24687i q^{47} +4.26430 q^{49} -2.43873 q^{50} -1.23956i q^{52} -4.01550i q^{53} +(-4.38336 - 2.99335i) q^{55} +1.65399i q^{56} -7.25108 q^{58} -10.9235i q^{59} +0.355889i q^{61} -10.5409 q^{62} +1.00000 q^{64} -1.98378 q^{65} +9.96365 q^{67} -1.74559 q^{68} +2.64705 q^{70} -8.44330i q^{71} -1.24571i q^{73} -7.98892 q^{74} -1.00000i q^{76} +(-4.53015 - 3.09360i) q^{77} +1.72159i q^{79} -1.60040i q^{80} +8.60750 q^{82} +8.04031 q^{83} +2.79364i q^{85} -5.30873i q^{86} +(-1.87038 + 2.73892i) q^{88} +4.10143i q^{89} -2.05022 q^{91} +5.99268i q^{92} +2.24687i q^{94} -1.60040 q^{95} -3.14641 q^{97} -4.26430 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 36 q^{2} + 36 q^{4} - 36 q^{8} + 4 q^{11} + 36 q^{16} - 16 q^{17} - 4 q^{22} - 28 q^{25} - 8 q^{31} - 36 q^{32} + 16 q^{34} - 16 q^{35} + 16 q^{37} - 24 q^{41} + 4 q^{44} - 68 q^{49} + 28 q^{50}+ \cdots + 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.60040i 0.715719i −0.933775 0.357860i \(-0.883507\pi\)
0.933775 0.357860i \(-0.116493\pi\)
\(6\) 0 0
\(7\) 1.65399i 0.625151i −0.949893 0.312575i \(-0.898808\pi\)
0.949893 0.312575i \(-0.101192\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.60040i 0.506090i
\(11\) 1.87038 2.73892i 0.563941 0.825815i
\(12\) 0 0
\(13\) 1.23956i 0.343791i −0.985115 0.171896i \(-0.945011\pi\)
0.985115 0.171896i \(-0.0549891\pi\)
\(14\) 1.65399i 0.442048i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.74559 −0.423368 −0.211684 0.977338i \(-0.567895\pi\)
−0.211684 + 0.977338i \(0.567895\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 1.60040i 0.357860i
\(21\) 0 0
\(22\) −1.87038 + 2.73892i −0.398767 + 0.583939i
\(23\) 5.99268i 1.24956i 0.780800 + 0.624781i \(0.214812\pi\)
−0.780800 + 0.624781i \(0.785188\pi\)
\(24\) 0 0
\(25\) 2.43873 0.487746
\(26\) 1.23956i 0.243097i
\(27\) 0 0
\(28\) 1.65399i 0.312575i
\(29\) 7.25108 1.34649 0.673246 0.739419i \(-0.264899\pi\)
0.673246 + 0.739419i \(0.264899\pi\)
\(30\) 0 0
\(31\) 10.5409 1.89320 0.946602 0.322403i \(-0.104491\pi\)
0.946602 + 0.322403i \(0.104491\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.74559 0.299367
\(35\) −2.64705 −0.447433
\(36\) 0 0
\(37\) 7.98892 1.31337 0.656685 0.754165i \(-0.271958\pi\)
0.656685 + 0.754165i \(0.271958\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) 1.60040i 0.253045i
\(41\) −8.60750 −1.34427 −0.672133 0.740430i \(-0.734622\pi\)
−0.672133 + 0.740430i \(0.734622\pi\)
\(42\) 0 0
\(43\) 5.30873i 0.809573i 0.914411 + 0.404787i \(0.132654\pi\)
−0.914411 + 0.404787i \(0.867346\pi\)
\(44\) 1.87038 2.73892i 0.281971 0.412907i
\(45\) 0 0
\(46\) 5.99268i 0.883573i
\(47\) 2.24687i 0.327739i −0.986482 0.163870i \(-0.947602\pi\)
0.986482 0.163870i \(-0.0523976\pi\)
\(48\) 0 0
\(49\) 4.26430 0.609186
\(50\) −2.43873 −0.344888
\(51\) 0 0
\(52\) 1.23956i 0.171896i
\(53\) 4.01550i 0.551572i −0.961219 0.275786i \(-0.911062\pi\)
0.961219 0.275786i \(-0.0889381\pi\)
\(54\) 0 0
\(55\) −4.38336 2.99335i −0.591052 0.403624i
\(56\) 1.65399i 0.221024i
\(57\) 0 0
\(58\) −7.25108 −0.952114
\(59\) 10.9235i 1.42212i −0.703132 0.711059i \(-0.748216\pi\)
0.703132 0.711059i \(-0.251784\pi\)
\(60\) 0 0
\(61\) 0.355889i 0.0455669i 0.999740 + 0.0227834i \(0.00725282\pi\)
−0.999740 + 0.0227834i \(0.992747\pi\)
\(62\) −10.5409 −1.33870
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.98378 −0.246058
\(66\) 0 0
\(67\) 9.96365 1.21725 0.608627 0.793457i \(-0.291721\pi\)
0.608627 + 0.793457i \(0.291721\pi\)
\(68\) −1.74559 −0.211684
\(69\) 0 0
\(70\) 2.64705 0.316383
\(71\) 8.44330i 1.00204i −0.865437 0.501018i \(-0.832959\pi\)
0.865437 0.501018i \(-0.167041\pi\)
\(72\) 0 0
\(73\) 1.24571i 0.145799i −0.997339 0.0728997i \(-0.976775\pi\)
0.997339 0.0728997i \(-0.0232253\pi\)
\(74\) −7.98892 −0.928693
\(75\) 0 0
\(76\) 1.00000i 0.114708i
\(77\) −4.53015 3.09360i −0.516259 0.352548i
\(78\) 0 0
\(79\) 1.72159i 0.193694i 0.995299 + 0.0968472i \(0.0308758\pi\)
−0.995299 + 0.0968472i \(0.969124\pi\)
\(80\) 1.60040i 0.178930i
\(81\) 0 0
\(82\) 8.60750 0.950540
\(83\) 8.04031 0.882538 0.441269 0.897375i \(-0.354528\pi\)
0.441269 + 0.897375i \(0.354528\pi\)
\(84\) 0 0
\(85\) 2.79364i 0.303013i
\(86\) 5.30873i 0.572455i
\(87\) 0 0
\(88\) −1.87038 + 2.73892i −0.199383 + 0.291970i
\(89\) 4.10143i 0.434750i 0.976088 + 0.217375i \(0.0697495\pi\)
−0.976088 + 0.217375i \(0.930251\pi\)
\(90\) 0 0
\(91\) −2.05022 −0.214921
\(92\) 5.99268i 0.624781i
\(93\) 0 0
\(94\) 2.24687i 0.231747i
\(95\) −1.60040 −0.164197
\(96\) 0 0
\(97\) −3.14641 −0.319470 −0.159735 0.987160i \(-0.551064\pi\)
−0.159735 + 0.987160i \(0.551064\pi\)
\(98\) −4.26430 −0.430760
\(99\) 0 0
\(100\) 2.43873 0.243873
\(101\) −2.63345 −0.262038 −0.131019 0.991380i \(-0.541825\pi\)
−0.131019 + 0.991380i \(0.541825\pi\)
\(102\) 0 0
\(103\) −17.0803 −1.68298 −0.841488 0.540276i \(-0.818320\pi\)
−0.841488 + 0.540276i \(0.818320\pi\)
\(104\) 1.23956i 0.121548i
\(105\) 0 0
\(106\) 4.01550i 0.390020i
\(107\) −6.36868 −0.615683 −0.307842 0.951438i \(-0.599607\pi\)
−0.307842 + 0.951438i \(0.599607\pi\)
\(108\) 0 0
\(109\) 0.457818i 0.0438510i −0.999760 0.0219255i \(-0.993020\pi\)
0.999760 0.0219255i \(-0.00697966\pi\)
\(110\) 4.38336 + 2.99335i 0.417937 + 0.285405i
\(111\) 0 0
\(112\) 1.65399i 0.156288i
\(113\) 4.14054i 0.389510i 0.980852 + 0.194755i \(0.0623911\pi\)
−0.980852 + 0.194755i \(0.937609\pi\)
\(114\) 0 0
\(115\) 9.59068 0.894335
\(116\) 7.25108 0.673246
\(117\) 0 0
\(118\) 10.9235i 1.00559i
\(119\) 2.88720i 0.264669i
\(120\) 0 0
\(121\) −4.00335 10.2456i −0.363940 0.931422i
\(122\) 0.355889i 0.0322206i
\(123\) 0 0
\(124\) 10.5409 0.946602
\(125\) 11.9049i 1.06481i
\(126\) 0 0
\(127\) 18.7747i 1.66599i 0.553282 + 0.832994i \(0.313375\pi\)
−0.553282 + 0.832994i \(0.686625\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.98378 0.173989
\(131\) −6.13297 −0.535840 −0.267920 0.963441i \(-0.586336\pi\)
−0.267920 + 0.963441i \(0.586336\pi\)
\(132\) 0 0
\(133\) −1.65399 −0.143419
\(134\) −9.96365 −0.860728
\(135\) 0 0
\(136\) 1.74559 0.149683
\(137\) 2.54878i 0.217757i −0.994055 0.108879i \(-0.965274\pi\)
0.994055 0.108879i \(-0.0347260\pi\)
\(138\) 0 0
\(139\) 18.9662i 1.60870i −0.594159 0.804348i \(-0.702515\pi\)
0.594159 0.804348i \(-0.297485\pi\)
\(140\) −2.64705 −0.223716
\(141\) 0 0
\(142\) 8.44330i 0.708546i
\(143\) −3.39504 2.31844i −0.283908 0.193878i
\(144\) 0 0
\(145\) 11.6046i 0.963711i
\(146\) 1.24571i 0.103096i
\(147\) 0 0
\(148\) 7.98892 0.656685
\(149\) −20.8646 −1.70929 −0.854647 0.519209i \(-0.826227\pi\)
−0.854647 + 0.519209i \(0.826227\pi\)
\(150\) 0 0
\(151\) 15.2282i 1.23926i −0.784896 0.619628i \(-0.787283\pi\)
0.784896 0.619628i \(-0.212717\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 0 0
\(154\) 4.53015 + 3.09360i 0.365050 + 0.249289i
\(155\) 16.8697i 1.35500i
\(156\) 0 0
\(157\) 9.10926 0.726998 0.363499 0.931595i \(-0.381582\pi\)
0.363499 + 0.931595i \(0.381582\pi\)
\(158\) 1.72159i 0.136963i
\(159\) 0 0
\(160\) 1.60040i 0.126523i
\(161\) 9.91186 0.781164
\(162\) 0 0
\(163\) 2.84605 0.222920 0.111460 0.993769i \(-0.464447\pi\)
0.111460 + 0.993769i \(0.464447\pi\)
\(164\) −8.60750 −0.672133
\(165\) 0 0
\(166\) −8.04031 −0.624049
\(167\) 5.22557 0.404367 0.202183 0.979348i \(-0.435196\pi\)
0.202183 + 0.979348i \(0.435196\pi\)
\(168\) 0 0
\(169\) 11.4635 0.881808
\(170\) 2.79364i 0.214262i
\(171\) 0 0
\(172\) 5.30873i 0.404787i
\(173\) −6.83864 −0.519932 −0.259966 0.965618i \(-0.583711\pi\)
−0.259966 + 0.965618i \(0.583711\pi\)
\(174\) 0 0
\(175\) 4.03364i 0.304915i
\(176\) 1.87038 2.73892i 0.140985 0.206454i
\(177\) 0 0
\(178\) 4.10143i 0.307415i
\(179\) 8.39539i 0.627501i −0.949506 0.313750i \(-0.898415\pi\)
0.949506 0.313750i \(-0.101585\pi\)
\(180\) 0 0
\(181\) −9.21653 −0.685060 −0.342530 0.939507i \(-0.611284\pi\)
−0.342530 + 0.939507i \(0.611284\pi\)
\(182\) 2.05022 0.151972
\(183\) 0 0
\(184\) 5.99268i 0.441787i
\(185\) 12.7854i 0.940005i
\(186\) 0 0
\(187\) −3.26492 + 4.78103i −0.238755 + 0.349624i
\(188\) 2.24687i 0.163870i
\(189\) 0 0
\(190\) 1.60040 0.116105
\(191\) 23.5308i 1.70263i 0.524658 + 0.851313i \(0.324193\pi\)
−0.524658 + 0.851313i \(0.675807\pi\)
\(192\) 0 0
\(193\) 0.604960i 0.0435460i −0.999763 0.0217730i \(-0.993069\pi\)
0.999763 0.0217730i \(-0.00693111\pi\)
\(194\) 3.14641 0.225899
\(195\) 0 0
\(196\) 4.26430 0.304593
\(197\) 4.85995 0.346257 0.173129 0.984899i \(-0.444612\pi\)
0.173129 + 0.984899i \(0.444612\pi\)
\(198\) 0 0
\(199\) −15.6837 −1.11179 −0.555895 0.831253i \(-0.687624\pi\)
−0.555895 + 0.831253i \(0.687624\pi\)
\(200\) −2.43873 −0.172444
\(201\) 0 0
\(202\) 2.63345 0.185289
\(203\) 11.9932i 0.841761i
\(204\) 0 0
\(205\) 13.7754i 0.962117i
\(206\) 17.0803 1.19004
\(207\) 0 0
\(208\) 1.23956i 0.0859478i
\(209\) −2.73892 1.87038i −0.189455 0.129377i
\(210\) 0 0
\(211\) 10.2138i 0.703144i −0.936161 0.351572i \(-0.885647\pi\)
0.936161 0.351572i \(-0.114353\pi\)
\(212\) 4.01550i 0.275786i
\(213\) 0 0
\(214\) 6.36868 0.435354
\(215\) 8.49607 0.579427
\(216\) 0 0
\(217\) 17.4346i 1.18354i
\(218\) 0.457818i 0.0310073i
\(219\) 0 0
\(220\) −4.38336 2.99335i −0.295526 0.201812i
\(221\) 2.16376i 0.145550i
\(222\) 0 0
\(223\) −22.1003 −1.47995 −0.739973 0.672636i \(-0.765162\pi\)
−0.739973 + 0.672636i \(0.765162\pi\)
\(224\) 1.65399i 0.110512i
\(225\) 0 0
\(226\) 4.14054i 0.275425i
\(227\) −17.1078 −1.13549 −0.567743 0.823206i \(-0.692183\pi\)
−0.567743 + 0.823206i \(0.692183\pi\)
\(228\) 0 0
\(229\) 9.64766 0.637535 0.318768 0.947833i \(-0.396731\pi\)
0.318768 + 0.947833i \(0.396731\pi\)
\(230\) −9.59068 −0.632390
\(231\) 0 0
\(232\) −7.25108 −0.476057
\(233\) 8.90102 0.583125 0.291563 0.956552i \(-0.405825\pi\)
0.291563 + 0.956552i \(0.405825\pi\)
\(234\) 0 0
\(235\) −3.59588 −0.234569
\(236\) 10.9235i 0.711059i
\(237\) 0 0
\(238\) 2.88720i 0.187149i
\(239\) 16.7800 1.08541 0.542703 0.839925i \(-0.317401\pi\)
0.542703 + 0.839925i \(0.317401\pi\)
\(240\) 0 0
\(241\) 5.80518i 0.373944i −0.982365 0.186972i \(-0.940133\pi\)
0.982365 0.186972i \(-0.0598674\pi\)
\(242\) 4.00335 + 10.2456i 0.257345 + 0.658615i
\(243\) 0 0
\(244\) 0.355889i 0.0227834i
\(245\) 6.82458i 0.436007i
\(246\) 0 0
\(247\) −1.23956 −0.0788711
\(248\) −10.5409 −0.669349
\(249\) 0 0
\(250\) 11.9049i 0.752933i
\(251\) 9.00520i 0.568403i 0.958765 + 0.284202i \(0.0917285\pi\)
−0.958765 + 0.284202i \(0.908271\pi\)
\(252\) 0 0
\(253\) 16.4135 + 11.2086i 1.03191 + 0.704679i
\(254\) 18.7747i 1.17803i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.5525i 0.907761i 0.891063 + 0.453880i \(0.149961\pi\)
−0.891063 + 0.453880i \(0.850039\pi\)
\(258\) 0 0
\(259\) 13.2136i 0.821055i
\(260\) −1.98378 −0.123029
\(261\) 0 0
\(262\) 6.13297 0.378896
\(263\) −11.7893 −0.726960 −0.363480 0.931602i \(-0.618411\pi\)
−0.363480 + 0.931602i \(0.618411\pi\)
\(264\) 0 0
\(265\) −6.42640 −0.394771
\(266\) 1.65399 0.101413
\(267\) 0 0
\(268\) 9.96365 0.608627
\(269\) 9.54840i 0.582177i −0.956696 0.291088i \(-0.905983\pi\)
0.956696 0.291088i \(-0.0940173\pi\)
\(270\) 0 0
\(271\) 16.4893i 1.00166i 0.865547 + 0.500828i \(0.166971\pi\)
−0.865547 + 0.500828i \(0.833029\pi\)
\(272\) −1.74559 −0.105842
\(273\) 0 0
\(274\) 2.54878i 0.153978i
\(275\) 4.56135 6.67948i 0.275060 0.402788i
\(276\) 0 0
\(277\) 10.4004i 0.624901i 0.949934 + 0.312450i \(0.101150\pi\)
−0.949934 + 0.312450i \(0.898850\pi\)
\(278\) 18.9662i 1.13752i
\(279\) 0 0
\(280\) 2.64705 0.158191
\(281\) −29.8925 −1.78324 −0.891619 0.452786i \(-0.850430\pi\)
−0.891619 + 0.452786i \(0.850430\pi\)
\(282\) 0 0
\(283\) 20.4726i 1.21697i 0.793565 + 0.608486i \(0.208223\pi\)
−0.793565 + 0.608486i \(0.791777\pi\)
\(284\) 8.44330i 0.501018i
\(285\) 0 0
\(286\) 3.39504 + 2.31844i 0.200753 + 0.137092i
\(287\) 14.2368i 0.840369i
\(288\) 0 0
\(289\) −13.9529 −0.820759
\(290\) 11.6046i 0.681446i
\(291\) 0 0
\(292\) 1.24571i 0.0728997i
\(293\) 23.3628 1.36487 0.682434 0.730947i \(-0.260921\pi\)
0.682434 + 0.730947i \(0.260921\pi\)
\(294\) 0 0
\(295\) −17.4819 −1.01784
\(296\) −7.98892 −0.464347
\(297\) 0 0
\(298\) 20.8646 1.20865
\(299\) 7.42827 0.429588
\(300\) 0 0
\(301\) 8.78060 0.506105
\(302\) 15.2282i 0.876286i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 0.569563 0.0326131
\(306\) 0 0
\(307\) 26.5375i 1.51457i −0.653082 0.757287i \(-0.726524\pi\)
0.653082 0.757287i \(-0.273476\pi\)
\(308\) −4.53015 3.09360i −0.258129 0.176274i
\(309\) 0 0
\(310\) 16.8697i 0.958132i
\(311\) 28.2467i 1.60172i −0.598851 0.800860i \(-0.704376\pi\)
0.598851 0.800860i \(-0.295624\pi\)
\(312\) 0 0
\(313\) 10.7742 0.608995 0.304497 0.952513i \(-0.401512\pi\)
0.304497 + 0.952513i \(0.401512\pi\)
\(314\) −9.10926 −0.514065
\(315\) 0 0
\(316\) 1.72159i 0.0968472i
\(317\) 3.30204i 0.185461i 0.995691 + 0.0927306i \(0.0295595\pi\)
−0.995691 + 0.0927306i \(0.970440\pi\)
\(318\) 0 0
\(319\) 13.5623 19.8601i 0.759342 1.11195i
\(320\) 1.60040i 0.0894649i
\(321\) 0 0
\(322\) −9.91186 −0.552366
\(323\) 1.74559i 0.0971273i
\(324\) 0 0
\(325\) 3.02294i 0.167683i
\(326\) −2.84605 −0.157628
\(327\) 0 0
\(328\) 8.60750 0.475270
\(329\) −3.71630 −0.204886
\(330\) 0 0
\(331\) −0.420921 −0.0231359 −0.0115680 0.999933i \(-0.503682\pi\)
−0.0115680 + 0.999933i \(0.503682\pi\)
\(332\) 8.04031 0.441269
\(333\) 0 0
\(334\) −5.22557 −0.285930
\(335\) 15.9458i 0.871212i
\(336\) 0 0
\(337\) 21.5763i 1.17534i −0.809101 0.587669i \(-0.800046\pi\)
0.809101 0.587669i \(-0.199954\pi\)
\(338\) −11.4635 −0.623532
\(339\) 0 0
\(340\) 2.79364i 0.151506i
\(341\) 19.7155 28.8707i 1.06766 1.56344i
\(342\) 0 0
\(343\) 18.6311i 1.00598i
\(344\) 5.30873i 0.286227i
\(345\) 0 0
\(346\) 6.83864 0.367647
\(347\) 23.4062 1.25651 0.628254 0.778008i \(-0.283770\pi\)
0.628254 + 0.778008i \(0.283770\pi\)
\(348\) 0 0
\(349\) 1.17120i 0.0626928i −0.999509 0.0313464i \(-0.990020\pi\)
0.999509 0.0313464i \(-0.00997950\pi\)
\(350\) 4.03364i 0.215607i
\(351\) 0 0
\(352\) −1.87038 + 2.73892i −0.0996917 + 0.145985i
\(353\) 6.72587i 0.357982i −0.983851 0.178991i \(-0.942717\pi\)
0.983851 0.178991i \(-0.0572833\pi\)
\(354\) 0 0
\(355\) −13.5126 −0.717176
\(356\) 4.10143i 0.217375i
\(357\) 0 0
\(358\) 8.39539i 0.443710i
\(359\) 25.2102 1.33054 0.665272 0.746601i \(-0.268315\pi\)
0.665272 + 0.746601i \(0.268315\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 9.21653 0.484410
\(363\) 0 0
\(364\) −2.05022 −0.107461
\(365\) −1.99363 −0.104351
\(366\) 0 0
\(367\) 20.9049 1.09123 0.545614 0.838037i \(-0.316296\pi\)
0.545614 + 0.838037i \(0.316296\pi\)
\(368\) 5.99268i 0.312390i
\(369\) 0 0
\(370\) 12.7854i 0.664684i
\(371\) −6.64162 −0.344816
\(372\) 0 0
\(373\) 14.9317i 0.773133i 0.922261 + 0.386567i \(0.126339\pi\)
−0.922261 + 0.386567i \(0.873661\pi\)
\(374\) 3.26492 4.78103i 0.168825 0.247221i
\(375\) 0 0
\(376\) 2.24687i 0.115873i
\(377\) 8.98812i 0.462912i
\(378\) 0 0
\(379\) 22.9383 1.17826 0.589131 0.808038i \(-0.299470\pi\)
0.589131 + 0.808038i \(0.299470\pi\)
\(380\) −1.60040 −0.0820986
\(381\) 0 0
\(382\) 23.5308i 1.20394i
\(383\) 26.7584i 1.36729i −0.729814 0.683646i \(-0.760393\pi\)
0.729814 0.683646i \(-0.239607\pi\)
\(384\) 0 0
\(385\) −4.95099 + 7.25005i −0.252326 + 0.369497i
\(386\) 0.604960i 0.0307917i
\(387\) 0 0
\(388\) −3.14641 −0.159735
\(389\) 18.5342i 0.939723i 0.882740 + 0.469861i \(0.155696\pi\)
−0.882740 + 0.469861i \(0.844304\pi\)
\(390\) 0 0
\(391\) 10.4608i 0.529024i
\(392\) −4.26430 −0.215380
\(393\) 0 0
\(394\) −4.85995 −0.244841
\(395\) 2.75523 0.138631
\(396\) 0 0
\(397\) 8.18631 0.410859 0.205430 0.978672i \(-0.434141\pi\)
0.205430 + 0.978672i \(0.434141\pi\)
\(398\) 15.6837 0.786154
\(399\) 0 0
\(400\) 2.43873 0.121936
\(401\) 18.5674i 0.927209i 0.886042 + 0.463605i \(0.153444\pi\)
−0.886042 + 0.463605i \(0.846556\pi\)
\(402\) 0 0
\(403\) 13.0661i 0.650867i
\(404\) −2.63345 −0.131019
\(405\) 0 0
\(406\) 11.9932i 0.595215i
\(407\) 14.9423 21.8810i 0.740664 1.08460i
\(408\) 0 0
\(409\) 37.0679i 1.83289i −0.400160 0.916445i \(-0.631045\pi\)
0.400160 0.916445i \(-0.368955\pi\)
\(410\) 13.7754i 0.680320i
\(411\) 0 0
\(412\) −17.0803 −0.841488
\(413\) −18.0674 −0.889039
\(414\) 0 0
\(415\) 12.8677i 0.631650i
\(416\) 1.23956i 0.0607742i
\(417\) 0 0
\(418\) 2.73892 + 1.87038i 0.133965 + 0.0914834i
\(419\) 8.88277i 0.433952i −0.976177 0.216976i \(-0.930381\pi\)
0.976177 0.216976i \(-0.0696193\pi\)
\(420\) 0 0
\(421\) −15.0103 −0.731559 −0.365779 0.930702i \(-0.619197\pi\)
−0.365779 + 0.930702i \(0.619197\pi\)
\(422\) 10.2138i 0.497198i
\(423\) 0 0
\(424\) 4.01550i 0.195010i
\(425\) −4.25703 −0.206496
\(426\) 0 0
\(427\) 0.588638 0.0284862
\(428\) −6.36868 −0.307842
\(429\) 0 0
\(430\) −8.49607 −0.409717
\(431\) −11.5164 −0.554728 −0.277364 0.960765i \(-0.589461\pi\)
−0.277364 + 0.960765i \(0.589461\pi\)
\(432\) 0 0
\(433\) −24.3150 −1.16850 −0.584252 0.811573i \(-0.698612\pi\)
−0.584252 + 0.811573i \(0.698612\pi\)
\(434\) 17.4346i 0.836888i
\(435\) 0 0
\(436\) 0.457818i 0.0219255i
\(437\) 5.99268 0.286669
\(438\) 0 0
\(439\) 36.9879i 1.76534i −0.469998 0.882668i \(-0.655745\pi\)
0.469998 0.882668i \(-0.344255\pi\)
\(440\) 4.38336 + 2.99335i 0.208968 + 0.142703i
\(441\) 0 0
\(442\) 2.16376i 0.102920i
\(443\) 26.6046i 1.26402i −0.774959 0.632011i \(-0.782230\pi\)
0.774959 0.632011i \(-0.217770\pi\)
\(444\) 0 0
\(445\) 6.56391 0.311159
\(446\) 22.1003 1.04648
\(447\) 0 0
\(448\) 1.65399i 0.0781439i
\(449\) 5.55083i 0.261960i 0.991385 + 0.130980i \(0.0418124\pi\)
−0.991385 + 0.130980i \(0.958188\pi\)
\(450\) 0 0
\(451\) −16.0993 + 23.5752i −0.758087 + 1.11011i
\(452\) 4.14054i 0.194755i
\(453\) 0 0
\(454\) 17.1078 0.802910
\(455\) 3.28116i 0.153823i
\(456\) 0 0
\(457\) 20.2718i 0.948274i 0.880451 + 0.474137i \(0.157240\pi\)
−0.880451 + 0.474137i \(0.842760\pi\)
\(458\) −9.64766 −0.450805
\(459\) 0 0
\(460\) 9.59068 0.447168
\(461\) −23.4834 −1.09373 −0.546866 0.837220i \(-0.684179\pi\)
−0.546866 + 0.837220i \(0.684179\pi\)
\(462\) 0 0
\(463\) −5.10399 −0.237203 −0.118601 0.992942i \(-0.537841\pi\)
−0.118601 + 0.992942i \(0.537841\pi\)
\(464\) 7.25108 0.336623
\(465\) 0 0
\(466\) −8.90102 −0.412332
\(467\) 24.1746i 1.11867i 0.828942 + 0.559334i \(0.188943\pi\)
−0.828942 + 0.559334i \(0.811057\pi\)
\(468\) 0 0
\(469\) 16.4798i 0.760967i
\(470\) 3.59588 0.165866
\(471\) 0 0
\(472\) 10.9235i 0.502795i
\(473\) 14.5402 + 9.92935i 0.668558 + 0.456552i
\(474\) 0 0
\(475\) 2.43873i 0.111897i
\(476\) 2.88720i 0.132335i
\(477\) 0 0
\(478\) −16.7800 −0.767498
\(479\) 4.36286 0.199344 0.0996722 0.995020i \(-0.468221\pi\)
0.0996722 + 0.995020i \(0.468221\pi\)
\(480\) 0 0
\(481\) 9.90271i 0.451525i
\(482\) 5.80518i 0.264419i
\(483\) 0 0
\(484\) −4.00335 10.2456i −0.181970 0.465711i
\(485\) 5.03551i 0.228651i
\(486\) 0 0
\(487\) −21.1036 −0.956296 −0.478148 0.878279i \(-0.658692\pi\)
−0.478148 + 0.878279i \(0.658692\pi\)
\(488\) 0.355889i 0.0161103i
\(489\) 0 0
\(490\) 6.82458i 0.308303i
\(491\) 34.5369 1.55863 0.779315 0.626632i \(-0.215567\pi\)
0.779315 + 0.626632i \(0.215567\pi\)
\(492\) 0 0
\(493\) −12.6574 −0.570062
\(494\) 1.23956 0.0557703
\(495\) 0 0
\(496\) 10.5409 0.473301
\(497\) −13.9652 −0.626423
\(498\) 0 0
\(499\) 2.33181 0.104386 0.0521931 0.998637i \(-0.483379\pi\)
0.0521931 + 0.998637i \(0.483379\pi\)
\(500\) 11.9049i 0.532404i
\(501\) 0 0
\(502\) 9.00520i 0.401922i
\(503\) 3.31385 0.147757 0.0738786 0.997267i \(-0.476462\pi\)
0.0738786 + 0.997267i \(0.476462\pi\)
\(504\) 0 0
\(505\) 4.21456i 0.187545i
\(506\) −16.4135 11.2086i −0.729668 0.498283i
\(507\) 0 0
\(508\) 18.7747i 0.832994i
\(509\) 25.9710i 1.15114i 0.817751 + 0.575571i \(0.195220\pi\)
−0.817751 + 0.575571i \(0.804780\pi\)
\(510\) 0 0
\(511\) −2.06040 −0.0911466
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 14.5525i 0.641884i
\(515\) 27.3353i 1.20454i
\(516\) 0 0
\(517\) −6.15398 4.20250i −0.270652 0.184826i
\(518\) 13.2136i 0.580573i
\(519\) 0 0
\(520\) 1.98378 0.0869946
\(521\) 34.8826i 1.52823i 0.645078 + 0.764117i \(0.276825\pi\)
−0.645078 + 0.764117i \(0.723175\pi\)
\(522\) 0 0
\(523\) 33.1973i 1.45161i −0.687898 0.725807i \(-0.741466\pi\)
0.687898 0.725807i \(-0.258534\pi\)
\(524\) −6.13297 −0.267920
\(525\) 0 0
\(526\) 11.7893 0.514038
\(527\) −18.4001 −0.801523
\(528\) 0 0
\(529\) −12.9123 −0.561403
\(530\) 6.42640 0.279145
\(531\) 0 0
\(532\) −1.65399 −0.0717097
\(533\) 10.6695i 0.462147i
\(534\) 0 0
\(535\) 10.1924i 0.440656i
\(536\) −9.96365 −0.430364
\(537\) 0 0
\(538\) 9.54840i 0.411661i
\(539\) 7.97588 11.6796i 0.343545 0.503075i
\(540\) 0 0
\(541\) 24.6969i 1.06180i −0.847434 0.530900i \(-0.821854\pi\)
0.847434 0.530900i \(-0.178146\pi\)
\(542\) 16.4893i 0.708277i
\(543\) 0 0
\(544\) 1.74559 0.0748416
\(545\) −0.732690 −0.0313850
\(546\) 0 0
\(547\) 38.2759i 1.63656i 0.574819 + 0.818281i \(0.305073\pi\)
−0.574819 + 0.818281i \(0.694927\pi\)
\(548\) 2.54878i 0.108879i
\(549\) 0 0
\(550\) −4.56135 + 6.67948i −0.194497 + 0.284814i
\(551\) 7.25108i 0.308906i
\(552\) 0 0
\(553\) 2.84750 0.121088
\(554\) 10.4004i 0.441871i
\(555\) 0 0
\(556\) 18.9662i 0.804348i
\(557\) 37.7397 1.59908 0.799541 0.600611i \(-0.205076\pi\)
0.799541 + 0.600611i \(0.205076\pi\)
\(558\) 0 0
\(559\) 6.58047 0.278324
\(560\) −2.64705 −0.111858
\(561\) 0 0
\(562\) 29.8925 1.26094
\(563\) −20.0944 −0.846876 −0.423438 0.905925i \(-0.639177\pi\)
−0.423438 + 0.905925i \(0.639177\pi\)
\(564\) 0 0
\(565\) 6.62651 0.278780
\(566\) 20.4726i 0.860528i
\(567\) 0 0
\(568\) 8.44330i 0.354273i
\(569\) −2.04519 −0.0857390 −0.0428695 0.999081i \(-0.513650\pi\)
−0.0428695 + 0.999081i \(0.513650\pi\)
\(570\) 0 0
\(571\) 15.4377i 0.646047i −0.946391 0.323024i \(-0.895301\pi\)
0.946391 0.323024i \(-0.104699\pi\)
\(572\) −3.39504 2.31844i −0.141954 0.0969390i
\(573\) 0 0
\(574\) 14.2368i 0.594231i
\(575\) 14.6145i 0.609468i
\(576\) 0 0
\(577\) 3.56099 0.148246 0.0741229 0.997249i \(-0.476384\pi\)
0.0741229 + 0.997249i \(0.476384\pi\)
\(578\) 13.9529 0.580364
\(579\) 0 0
\(580\) 11.6046i 0.481855i
\(581\) 13.2986i 0.551720i
\(582\) 0 0
\(583\) −10.9981 7.51052i −0.455496 0.311054i
\(584\) 1.24571i 0.0515479i
\(585\) 0 0
\(586\) −23.3628 −0.965107
\(587\) 15.1317i 0.624553i −0.949991 0.312276i \(-0.898908\pi\)
0.949991 0.312276i \(-0.101092\pi\)
\(588\) 0 0
\(589\) 10.5409i 0.434331i
\(590\) 17.4819 0.719720
\(591\) 0 0
\(592\) 7.98892 0.328343
\(593\) 26.2323 1.07723 0.538615 0.842552i \(-0.318948\pi\)
0.538615 + 0.842552i \(0.318948\pi\)
\(594\) 0 0
\(595\) 4.62066 0.189429
\(596\) −20.8646 −0.854647
\(597\) 0 0
\(598\) −7.42827 −0.303764
\(599\) 8.03822i 0.328433i 0.986424 + 0.164216i \(0.0525095\pi\)
−0.986424 + 0.164216i \(0.947490\pi\)
\(600\) 0 0
\(601\) 42.5220i 1.73451i 0.497866 + 0.867254i \(0.334117\pi\)
−0.497866 + 0.867254i \(0.665883\pi\)
\(602\) −8.78060 −0.357871
\(603\) 0 0
\(604\) 15.2282i 0.619628i
\(605\) −16.3971 + 6.40694i −0.666637 + 0.260479i
\(606\) 0 0
\(607\) 16.7886i 0.681428i −0.940167 0.340714i \(-0.889331\pi\)
0.940167 0.340714i \(-0.110669\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 0 0
\(610\) −0.569563 −0.0230609
\(611\) −2.78512 −0.112674
\(612\) 0 0
\(613\) 14.3919i 0.581285i −0.956832 0.290643i \(-0.906131\pi\)
0.956832 0.290643i \(-0.0938690\pi\)
\(614\) 26.5375i 1.07097i
\(615\) 0 0
\(616\) 4.53015 + 3.09360i 0.182525 + 0.124645i
\(617\) 4.62417i 0.186162i −0.995659 0.0930810i \(-0.970328\pi\)
0.995659 0.0930810i \(-0.0296715\pi\)
\(618\) 0 0
\(619\) −28.8606 −1.16001 −0.580003 0.814614i \(-0.696949\pi\)
−0.580003 + 0.814614i \(0.696949\pi\)
\(620\) 16.8697i 0.677502i
\(621\) 0 0
\(622\) 28.2467i 1.13259i
\(623\) 6.78373 0.271784
\(624\) 0 0
\(625\) −6.85896 −0.274358
\(626\) −10.7742 −0.430624
\(627\) 0 0
\(628\) 9.10926 0.363499
\(629\) −13.9454 −0.556039
\(630\) 0 0
\(631\) −4.02870 −0.160380 −0.0801900 0.996780i \(-0.525553\pi\)
−0.0801900 + 0.996780i \(0.525553\pi\)
\(632\) 1.72159i 0.0684813i
\(633\) 0 0
\(634\) 3.30204i 0.131141i
\(635\) 30.0470 1.19238
\(636\) 0 0
\(637\) 5.28585i 0.209433i
\(638\) −13.5623 + 19.8601i −0.536936 + 0.786270i
\(639\) 0 0
\(640\) 1.60040i 0.0632613i
\(641\) 20.9610i 0.827909i 0.910298 + 0.413954i \(0.135853\pi\)
−0.910298 + 0.413954i \(0.864147\pi\)
\(642\) 0 0
\(643\) 27.1544 1.07086 0.535432 0.844578i \(-0.320149\pi\)
0.535432 + 0.844578i \(0.320149\pi\)
\(644\) 9.91186 0.390582
\(645\) 0 0
\(646\) 1.74559i 0.0686794i
\(647\) 20.6187i 0.810606i 0.914182 + 0.405303i \(0.132834\pi\)
−0.914182 + 0.405303i \(0.867166\pi\)
\(648\) 0 0
\(649\) −29.9186 20.4311i −1.17441 0.801991i
\(650\) 3.02294i 0.118569i
\(651\) 0 0
\(652\) 2.84605 0.111460
\(653\) 14.0720i 0.550680i 0.961347 + 0.275340i \(0.0887905\pi\)
−0.961347 + 0.275340i \(0.911210\pi\)
\(654\) 0 0
\(655\) 9.81519i 0.383511i
\(656\) −8.60750 −0.336066
\(657\) 0 0
\(658\) 3.71630 0.144877
\(659\) 42.4730 1.65451 0.827257 0.561823i \(-0.189900\pi\)
0.827257 + 0.561823i \(0.189900\pi\)
\(660\) 0 0
\(661\) −1.55006 −0.0602902 −0.0301451 0.999546i \(-0.509597\pi\)
−0.0301451 + 0.999546i \(0.509597\pi\)
\(662\) 0.420921 0.0163596
\(663\) 0 0
\(664\) −8.04031 −0.312024
\(665\) 2.64705i 0.102648i
\(666\) 0 0
\(667\) 43.4534i 1.68252i
\(668\) 5.22557 0.202183
\(669\) 0 0
\(670\) 15.9458i 0.616040i
\(671\) 0.974750 + 0.665648i 0.0376298 + 0.0256970i
\(672\) 0 0
\(673\) 27.4187i 1.05691i 0.848960 + 0.528457i \(0.177229\pi\)
−0.848960 + 0.528457i \(0.822771\pi\)
\(674\) 21.5763i 0.831090i
\(675\) 0 0
\(676\) 11.4635 0.440904
\(677\) 10.8853 0.418358 0.209179 0.977877i \(-0.432921\pi\)
0.209179 + 0.977877i \(0.432921\pi\)
\(678\) 0 0
\(679\) 5.20415i 0.199717i
\(680\) 2.79364i 0.107131i
\(681\) 0 0
\(682\) −19.7155 + 28.8707i −0.754947 + 1.10552i
\(683\) 9.11796i 0.348889i −0.984667 0.174444i \(-0.944187\pi\)
0.984667 0.174444i \(-0.0558129\pi\)
\(684\) 0 0
\(685\) −4.07906 −0.155853
\(686\) 18.6311i 0.711338i
\(687\) 0 0
\(688\) 5.30873i 0.202393i
\(689\) −4.97744 −0.189625
\(690\) 0 0
\(691\) 18.5738 0.706580 0.353290 0.935514i \(-0.385063\pi\)
0.353290 + 0.935514i \(0.385063\pi\)
\(692\) −6.83864 −0.259966
\(693\) 0 0
\(694\) −23.4062 −0.888485
\(695\) −30.3535 −1.15137
\(696\) 0 0
\(697\) 15.0252 0.569120
\(698\) 1.17120i 0.0443305i
\(699\) 0 0
\(700\) 4.03364i 0.152457i
\(701\) −5.85097 −0.220988 −0.110494 0.993877i \(-0.535243\pi\)
−0.110494 + 0.993877i \(0.535243\pi\)
\(702\) 0 0
\(703\) 7.98892i 0.301308i
\(704\) 1.87038 2.73892i 0.0704927 0.103227i
\(705\) 0 0
\(706\) 6.72587i 0.253131i
\(707\) 4.35570i 0.163813i
\(708\) 0 0
\(709\) −15.0947 −0.566894 −0.283447 0.958988i \(-0.591478\pi\)
−0.283447 + 0.958988i \(0.591478\pi\)
\(710\) 13.5126 0.507120
\(711\) 0 0
\(712\) 4.10143i 0.153707i
\(713\) 63.1684i 2.36567i
\(714\) 0 0
\(715\) −3.71043 + 5.43342i −0.138762 + 0.203198i
\(716\) 8.39539i 0.313750i
\(717\) 0 0
\(718\) −25.2102 −0.940837
\(719\) 37.8816i 1.41274i −0.707840 0.706372i \(-0.750330\pi\)
0.707840 0.706372i \(-0.249670\pi\)
\(720\) 0 0
\(721\) 28.2508i 1.05211i
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) −9.21653 −0.342530
\(725\) 17.6834 0.656746
\(726\) 0 0
\(727\) −5.68835 −0.210969 −0.105485 0.994421i \(-0.533639\pi\)
−0.105485 + 0.994421i \(0.533639\pi\)
\(728\) 2.05022 0.0759861
\(729\) 0 0
\(730\) 1.99363 0.0737876
\(731\) 9.26687i 0.342748i
\(732\) 0 0
\(733\) 42.5732i 1.57248i 0.617924 + 0.786238i \(0.287974\pi\)
−0.617924 + 0.786238i \(0.712026\pi\)
\(734\) −20.9049 −0.771615
\(735\) 0 0
\(736\) 5.99268i 0.220893i
\(737\) 18.6358 27.2896i 0.686460 1.00523i
\(738\) 0 0
\(739\) 10.8151i 0.397842i 0.980016 + 0.198921i \(0.0637436\pi\)
−0.980016 + 0.198921i \(0.936256\pi\)
\(740\) 12.7854i 0.470002i
\(741\) 0 0
\(742\) 6.64162 0.243821
\(743\) 40.9336 1.50171 0.750854 0.660469i \(-0.229642\pi\)
0.750854 + 0.660469i \(0.229642\pi\)
\(744\) 0 0
\(745\) 33.3916i 1.22338i
\(746\) 14.9317i 0.546688i
\(747\) 0 0
\(748\) −3.26492 + 4.78103i −0.119377 + 0.174812i
\(749\) 10.5338i 0.384895i
\(750\) 0 0
\(751\) −50.4354 −1.84041 −0.920207 0.391431i \(-0.871980\pi\)
−0.920207 + 0.391431i \(0.871980\pi\)
\(752\) 2.24687i 0.0819348i
\(753\) 0 0
\(754\) 8.98812i 0.327328i
\(755\) −24.3712 −0.886960
\(756\) 0 0
\(757\) −11.9447 −0.434136 −0.217068 0.976156i \(-0.569649\pi\)
−0.217068 + 0.976156i \(0.569649\pi\)
\(758\) −22.9383 −0.833157
\(759\) 0 0
\(760\) 1.60040 0.0580525
\(761\) −33.6940 −1.22141 −0.610704 0.791859i \(-0.709113\pi\)
−0.610704 + 0.791859i \(0.709113\pi\)
\(762\) 0 0
\(763\) −0.757228 −0.0274135
\(764\) 23.5308i 0.851313i
\(765\) 0 0
\(766\) 26.7584i 0.966821i
\(767\) −13.5403 −0.488912
\(768\) 0 0
\(769\) 49.5991i 1.78859i 0.447480 + 0.894294i \(0.352322\pi\)
−0.447480 + 0.894294i \(0.647678\pi\)
\(770\) 4.95099 7.25005i 0.178421 0.261273i
\(771\) 0 0
\(772\) 0.604960i 0.0217730i
\(773\) 27.3879i 0.985073i −0.870292 0.492536i \(-0.836070\pi\)
0.870292 0.492536i \(-0.163930\pi\)
\(774\) 0 0
\(775\) 25.7064 0.923402
\(776\) 3.14641 0.112950
\(777\) 0 0
\(778\) 18.5342i 0.664484i
\(779\) 8.60750i 0.308396i
\(780\) 0 0
\(781\) −23.1255 15.7922i −0.827496 0.565089i
\(782\) 10.4608i 0.374077i
\(783\) 0 0
\(784\) 4.26430 0.152297
\(785\) 14.5784i 0.520327i
\(786\) 0 0
\(787\) 4.39881i 0.156801i 0.996922 + 0.0784003i \(0.0249812\pi\)
−0.996922 + 0.0784003i \(0.975019\pi\)
\(788\) 4.85995 0.173129
\(789\) 0 0
\(790\) −2.75523 −0.0980268
\(791\) 6.84843 0.243502
\(792\) 0 0
\(793\) 0.441144 0.0156655
\(794\) −8.18631 −0.290521
\(795\) 0 0
\(796\) −15.6837 −0.555895
\(797\) 0.513083i 0.0181743i 0.999959 + 0.00908716i \(0.00289257\pi\)
−0.999959 + 0.00908716i \(0.997107\pi\)
\(798\) 0 0
\(799\) 3.92211i 0.138754i
\(800\) −2.43873 −0.0862221
\(801\) 0 0
\(802\) 18.5674i 0.655636i
\(803\) −3.41190 2.32995i −0.120403 0.0822223i
\(804\) 0 0
\(805\) 15.8629i 0.559094i
\(806\) 13.0661i 0.460232i
\(807\) 0 0
\(808\) 2.63345 0.0926443
\(809\) −0.482347 −0.0169584 −0.00847922 0.999964i \(-0.502699\pi\)
−0.00847922 + 0.999964i \(0.502699\pi\)
\(810\) 0 0
\(811\) 36.9347i 1.29695i 0.761234 + 0.648477i \(0.224594\pi\)
−0.761234 + 0.648477i \(0.775406\pi\)
\(812\) 11.9932i 0.420880i
\(813\) 0 0
\(814\) −14.9423 + 21.8810i −0.523728 + 0.766929i
\(815\) 4.55482i 0.159548i
\(816\) 0 0
\(817\) 5.30873 0.185729
\(818\) 37.0679i 1.29605i
\(819\) 0 0
\(820\) 13.7754i 0.481059i
\(821\) −10.9394 −0.381789 −0.190894 0.981611i \(-0.561139\pi\)
−0.190894 + 0.981611i \(0.561139\pi\)
\(822\) 0 0
\(823\) 34.6772 1.20877 0.604386 0.796692i \(-0.293419\pi\)
0.604386 + 0.796692i \(0.293419\pi\)
\(824\) 17.0803 0.595022
\(825\) 0 0
\(826\) 18.0674 0.628645
\(827\) 46.3601 1.61210 0.806049 0.591849i \(-0.201602\pi\)
0.806049 + 0.591849i \(0.201602\pi\)
\(828\) 0 0
\(829\) −17.9018 −0.621756 −0.310878 0.950450i \(-0.600623\pi\)
−0.310878 + 0.950450i \(0.600623\pi\)
\(830\) 12.8677i 0.446644i
\(831\) 0 0
\(832\) 1.23956i 0.0429739i
\(833\) −7.44374 −0.257910
\(834\) 0 0
\(835\) 8.36299i 0.289413i
\(836\) −2.73892 1.87038i −0.0947275 0.0646885i
\(837\) 0 0
\(838\) 8.88277i 0.306850i
\(839\) 7.82142i 0.270026i 0.990844 + 0.135013i \(0.0431075\pi\)
−0.990844 + 0.135013i \(0.956892\pi\)
\(840\) 0 0
\(841\) 23.5782 0.813041
\(842\) 15.0103 0.517290
\(843\) 0 0
\(844\) 10.2138i 0.351572i
\(845\) 18.3462i 0.631127i
\(846\) 0 0
\(847\) −16.9462 + 6.62151i −0.582279 + 0.227518i
\(848\) 4.01550i 0.137893i
\(849\) 0 0
\(850\) 4.25703 0.146015
\(851\) 47.8751i 1.64114i
\(852\) 0 0
\(853\) 39.7054i 1.35949i 0.733449 + 0.679744i \(0.237909\pi\)
−0.733449 + 0.679744i \(0.762091\pi\)
\(854\) −0.588638 −0.0201428
\(855\) 0 0
\(856\) 6.36868 0.217677
\(857\) −32.5490 −1.11185 −0.555927 0.831231i \(-0.687637\pi\)
−0.555927 + 0.831231i \(0.687637\pi\)
\(858\) 0 0
\(859\) −25.9610 −0.885777 −0.442889 0.896577i \(-0.646046\pi\)
−0.442889 + 0.896577i \(0.646046\pi\)
\(860\) 8.49607 0.289714
\(861\) 0 0
\(862\) 11.5164 0.392252
\(863\) 31.2800i 1.06478i −0.846498 0.532392i \(-0.821293\pi\)
0.846498 0.532392i \(-0.178707\pi\)
\(864\) 0 0
\(865\) 10.9445i 0.372125i
\(866\) 24.3150 0.826257
\(867\) 0 0
\(868\) 17.4346i 0.591769i
\(869\) 4.71530 + 3.22004i 0.159956 + 0.109232i
\(870\) 0 0
\(871\) 12.3505i 0.418481i
\(872\) 0.457818i 0.0155037i
\(873\) 0 0
\(874\) −5.99268 −0.202706
\(875\) −19.6907 −0.665666
\(876\) 0 0
\(877\) 45.5435i 1.53790i 0.639311 + 0.768948i \(0.279219\pi\)
−0.639311 + 0.768948i \(0.720781\pi\)
\(878\) 36.9879i 1.24828i
\(879\) 0 0
\(880\) −4.38336 2.99335i −0.147763 0.100906i
\(881\) 42.4479i 1.43011i 0.699070 + 0.715054i \(0.253598\pi\)
−0.699070 + 0.715054i \(0.746402\pi\)
\(882\) 0 0
\(883\) −38.8422 −1.30714 −0.653572 0.756865i \(-0.726730\pi\)
−0.653572 + 0.756865i \(0.726730\pi\)
\(884\) 2.16376i 0.0727751i
\(885\) 0 0
\(886\) 26.6046i 0.893799i
\(887\) 36.3100 1.21917 0.609586 0.792720i \(-0.291336\pi\)
0.609586 + 0.792720i \(0.291336\pi\)
\(888\) 0 0
\(889\) 31.0533 1.04149
\(890\) −6.56391 −0.220023
\(891\) 0 0
\(892\) −22.1003 −0.739973
\(893\) −2.24687 −0.0751885
\(894\) 0 0
\(895\) −13.4360 −0.449114
\(896\) 1.65399i 0.0552561i
\(897\) 0 0
\(898\) 5.55083i 0.185234i
\(899\) 76.4331 2.54919
\(900\) 0 0
\(901\) 7.00943i 0.233518i
\(902\) 16.0993 23.5752i 0.536049 0.784970i
\(903\) 0 0
\(904\) 4.14054i 0.137712i
\(905\) 14.7501i 0.490310i
\(906\) 0 0
\(907\) −50.4551 −1.67533 −0.837667 0.546181i \(-0.816081\pi\)
−0.837667 + 0.546181i \(0.816081\pi\)
\(908\) −17.1078 −0.567743
\(909\) 0 0
\(910\) 3.28116i 0.108770i
\(911\) 7.53950i 0.249795i 0.992170 + 0.124897i \(0.0398602\pi\)
−0.992170 + 0.124897i \(0.960140\pi\)
\(912\) 0 0
\(913\) 15.0384 22.0217i 0.497700 0.728813i
\(914\) 20.2718i 0.670531i
\(915\) 0 0
\(916\) 9.64766 0.318768
\(917\) 10.1439i 0.334981i
\(918\) 0 0
\(919\) 2.36625i 0.0780554i 0.999238 + 0.0390277i \(0.0124261\pi\)
−0.999238 + 0.0390277i \(0.987574\pi\)
\(920\) −9.59068 −0.316195
\(921\) 0 0
\(922\) 23.4834 0.773385
\(923\) −10.4659 −0.344491
\(924\) 0 0
\(925\) 19.4828 0.640591
\(926\) 5.10399 0.167728
\(927\) 0 0
\(928\) −7.25108 −0.238028
\(929\) 56.8993i 1.86681i 0.358829 + 0.933403i \(0.383176\pi\)
−0.358829 + 0.933403i \(0.616824\pi\)
\(930\) 0 0
\(931\) 4.26430i 0.139757i
\(932\) 8.90102 0.291563
\(933\) 0 0
\(934\) 24.1746i 0.791018i
\(935\) 7.65155 + 5.22517i 0.250233 + 0.170881i
\(936\) 0 0
\(937\) 47.1121i 1.53908i 0.638596 + 0.769542i \(0.279515\pi\)
−0.638596 + 0.769542i \(0.720485\pi\)
\(938\) 16.4798i 0.538085i
\(939\) 0 0
\(940\) −3.59588 −0.117285
\(941\) 8.97930 0.292717 0.146358 0.989232i \(-0.453245\pi\)
0.146358 + 0.989232i \(0.453245\pi\)
\(942\) 0 0
\(943\) 51.5820i 1.67974i
\(944\) 10.9235i 0.355530i
\(945\) 0 0
\(946\) −14.5402 9.92935i −0.472742 0.322831i
\(947\) 54.9193i 1.78464i 0.451406 + 0.892319i \(0.350923\pi\)
−0.451406 + 0.892319i \(0.649077\pi\)
\(948\) 0 0
\(949\) −1.54413 −0.0501245
\(950\) 2.43873i 0.0791228i
\(951\) 0 0
\(952\) 2.88720i 0.0935746i
\(953\) 41.7950 1.35387 0.676936 0.736042i \(-0.263307\pi\)
0.676936 + 0.736042i \(0.263307\pi\)
\(954\) 0 0
\(955\) 37.6586 1.21860
\(956\) 16.7800 0.542703
\(957\) 0 0
\(958\) −4.36286 −0.140958
\(959\) −4.21567 −0.136131
\(960\) 0 0
\(961\) 80.1110 2.58422
\(962\) 9.90271i 0.319276i
\(963\) 0 0
\(964\) 5.80518i 0.186972i
\(965\) −0.968177 −0.0311667
\(966\) 0 0
\(967\) 62.0406i 1.99509i −0.0700296 0.997545i \(-0.522309\pi\)
0.0700296 0.997545i \(-0.477691\pi\)
\(968\) 4.00335 + 10.2456i 0.128672 + 0.329307i
\(969\) 0 0
\(970\) 5.03551i 0.161680i
\(971\) 19.0298i 0.610694i −0.952241 0.305347i \(-0.901228\pi\)
0.952241 0.305347i \(-0.0987724\pi\)
\(972\) 0 0
\(973\) −31.3700 −1.00568
\(974\) 21.1036 0.676203
\(975\) 0 0
\(976\) 0.355889i 0.0113917i
\(977\) 6.43660i 0.205925i −0.994685 0.102962i \(-0.967168\pi\)
0.994685 0.102962i \(-0.0328322\pi\)
\(978\) 0 0
\(979\) 11.2335 + 7.67123i 0.359023 + 0.245174i
\(980\) 6.82458i 0.218003i
\(981\) 0 0
\(982\) −34.5369 −1.10212
\(983\) 23.9053i 0.762462i 0.924480 + 0.381231i \(0.124500\pi\)
−0.924480 + 0.381231i \(0.875500\pi\)
\(984\) 0 0
\(985\) 7.77785i 0.247823i
\(986\) 12.6574 0.403095
\(987\) 0 0
\(988\) −1.23956 −0.0394355
\(989\) −31.8135 −1.01161
\(990\) 0 0
\(991\) −57.8293 −1.83701 −0.918504 0.395412i \(-0.870602\pi\)
−0.918504 + 0.395412i \(0.870602\pi\)
\(992\) −10.5409 −0.334674
\(993\) 0 0
\(994\) 13.9652 0.442948
\(995\) 25.1002i 0.795729i
\(996\) 0 0
\(997\) 42.9055i 1.35883i 0.733753 + 0.679416i \(0.237767\pi\)
−0.733753 + 0.679416i \(0.762233\pi\)
\(998\) −2.33181 −0.0738121
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.b.a.989.12 36
3.2 odd 2 3762.2.b.b.989.25 yes 36
11.10 odd 2 3762.2.b.b.989.12 yes 36
33.32 even 2 inner 3762.2.b.a.989.25 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3762.2.b.a.989.12 36 1.1 even 1 trivial
3762.2.b.a.989.25 yes 36 33.32 even 2 inner
3762.2.b.b.989.12 yes 36 11.10 odd 2
3762.2.b.b.989.25 yes 36 3.2 odd 2