Properties

Label 3762.2.b.a.989.5
Level $3762$
Weight $2$
Character 3762.989
Analytic conductor $30.040$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(989,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.989");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 989.5
Character \(\chi\) \(=\) 3762.989
Dual form 3762.2.b.a.989.32

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.00309i q^{5} +3.31087i q^{7} -1.00000 q^{8} +3.00309i q^{10} +(3.24754 + 0.673411i) q^{11} -4.99159i q^{13} -3.31087i q^{14} +1.00000 q^{16} +5.87757 q^{17} -1.00000i q^{19} -3.00309i q^{20} +(-3.24754 - 0.673411i) q^{22} +0.771532i q^{23} -4.01857 q^{25} +4.99159i q^{26} +3.31087i q^{28} +8.92687 q^{29} -3.81106 q^{31} -1.00000 q^{32} -5.87757 q^{34} +9.94287 q^{35} -1.04032 q^{37} +1.00000i q^{38} +3.00309i q^{40} -5.68449 q^{41} +7.56719i q^{43} +(3.24754 + 0.673411i) q^{44} -0.771532i q^{46} -5.44408i q^{47} -3.96189 q^{49} +4.01857 q^{50} -4.99159i q^{52} -5.33171i q^{53} +(2.02232 - 9.75267i) q^{55} -3.31087i q^{56} -8.92687 q^{58} -0.367024i q^{59} -4.68980i q^{61} +3.81106 q^{62} +1.00000 q^{64} -14.9902 q^{65} +2.00040 q^{67} +5.87757 q^{68} -9.94287 q^{70} +13.5343i q^{71} +12.6777i q^{73} +1.04032 q^{74} -1.00000i q^{76} +(-2.22958 + 10.7522i) q^{77} -4.97264i q^{79} -3.00309i q^{80} +5.68449 q^{82} +10.4352 q^{83} -17.6509i q^{85} -7.56719i q^{86} +(-3.24754 - 0.673411i) q^{88} +11.6524i q^{89} +16.5265 q^{91} +0.771532i q^{92} +5.44408i q^{94} -3.00309 q^{95} -7.71791 q^{97} +3.96189 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 36 q^{2} + 36 q^{4} - 36 q^{8} + 4 q^{11} + 36 q^{16} - 16 q^{17} - 4 q^{22} - 28 q^{25} - 8 q^{31} - 36 q^{32} + 16 q^{34} - 16 q^{35} + 16 q^{37} - 24 q^{41} + 4 q^{44} - 68 q^{49} + 28 q^{50}+ \cdots + 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.00309i 1.34302i −0.740993 0.671512i \(-0.765645\pi\)
0.740993 0.671512i \(-0.234355\pi\)
\(6\) 0 0
\(7\) 3.31087i 1.25139i 0.780067 + 0.625697i \(0.215185\pi\)
−0.780067 + 0.625697i \(0.784815\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.00309i 0.949662i
\(11\) 3.24754 + 0.673411i 0.979170 + 0.203041i
\(12\) 0 0
\(13\) 4.99159i 1.38442i −0.721697 0.692209i \(-0.756638\pi\)
0.721697 0.692209i \(-0.243362\pi\)
\(14\) 3.31087i 0.884869i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.87757 1.42552 0.712760 0.701408i \(-0.247445\pi\)
0.712760 + 0.701408i \(0.247445\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 3.00309i 0.671512i
\(21\) 0 0
\(22\) −3.24754 0.673411i −0.692378 0.143572i
\(23\) 0.771532i 0.160875i 0.996760 + 0.0804377i \(0.0256318\pi\)
−0.996760 + 0.0804377i \(0.974368\pi\)
\(24\) 0 0
\(25\) −4.01857 −0.803715
\(26\) 4.99159i 0.978931i
\(27\) 0 0
\(28\) 3.31087i 0.625697i
\(29\) 8.92687 1.65768 0.828839 0.559487i \(-0.189002\pi\)
0.828839 + 0.559487i \(0.189002\pi\)
\(30\) 0 0
\(31\) −3.81106 −0.684487 −0.342243 0.939611i \(-0.611187\pi\)
−0.342243 + 0.939611i \(0.611187\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −5.87757 −1.00799
\(35\) 9.94287 1.68065
\(36\) 0 0
\(37\) −1.04032 −0.171027 −0.0855134 0.996337i \(-0.527253\pi\)
−0.0855134 + 0.996337i \(0.527253\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) 3.00309i 0.474831i
\(41\) −5.68449 −0.887768 −0.443884 0.896084i \(-0.646400\pi\)
−0.443884 + 0.896084i \(0.646400\pi\)
\(42\) 0 0
\(43\) 7.56719i 1.15399i 0.816749 + 0.576993i \(0.195774\pi\)
−0.816749 + 0.576993i \(0.804226\pi\)
\(44\) 3.24754 + 0.673411i 0.489585 + 0.101520i
\(45\) 0 0
\(46\) 0.771532i 0.113756i
\(47\) 5.44408i 0.794100i −0.917797 0.397050i \(-0.870034\pi\)
0.917797 0.397050i \(-0.129966\pi\)
\(48\) 0 0
\(49\) −3.96189 −0.565985
\(50\) 4.01857 0.568312
\(51\) 0 0
\(52\) 4.99159i 0.692209i
\(53\) 5.33171i 0.732366i −0.930543 0.366183i \(-0.880664\pi\)
0.930543 0.366183i \(-0.119336\pi\)
\(54\) 0 0
\(55\) 2.02232 9.75267i 0.272689 1.31505i
\(56\) 3.31087i 0.442434i
\(57\) 0 0
\(58\) −8.92687 −1.17216
\(59\) 0.367024i 0.0477825i −0.999715 0.0238912i \(-0.992394\pi\)
0.999715 0.0238912i \(-0.00760554\pi\)
\(60\) 0 0
\(61\) 4.68980i 0.600468i −0.953866 0.300234i \(-0.902935\pi\)
0.953866 0.300234i \(-0.0970647\pi\)
\(62\) 3.81106 0.484005
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −14.9902 −1.85931
\(66\) 0 0
\(67\) 2.00040 0.244387 0.122194 0.992506i \(-0.461007\pi\)
0.122194 + 0.992506i \(0.461007\pi\)
\(68\) 5.87757 0.712760
\(69\) 0 0
\(70\) −9.94287 −1.18840
\(71\) 13.5343i 1.60623i 0.595826 + 0.803114i \(0.296825\pi\)
−0.595826 + 0.803114i \(0.703175\pi\)
\(72\) 0 0
\(73\) 12.6777i 1.48382i 0.670502 + 0.741908i \(0.266079\pi\)
−0.670502 + 0.741908i \(0.733921\pi\)
\(74\) 1.04032 0.120934
\(75\) 0 0
\(76\) 1.00000i 0.114708i
\(77\) −2.22958 + 10.7522i −0.254084 + 1.22533i
\(78\) 0 0
\(79\) 4.97264i 0.559466i −0.960078 0.279733i \(-0.909754\pi\)
0.960078 0.279733i \(-0.0902460\pi\)
\(80\) 3.00309i 0.335756i
\(81\) 0 0
\(82\) 5.68449 0.627747
\(83\) 10.4352 1.14541 0.572706 0.819761i \(-0.305894\pi\)
0.572706 + 0.819761i \(0.305894\pi\)
\(84\) 0 0
\(85\) 17.6509i 1.91451i
\(86\) 7.56719i 0.815991i
\(87\) 0 0
\(88\) −3.24754 0.673411i −0.346189 0.0717858i
\(89\) 11.6524i 1.23515i 0.786511 + 0.617577i \(0.211886\pi\)
−0.786511 + 0.617577i \(0.788114\pi\)
\(90\) 0 0
\(91\) 16.5265 1.73245
\(92\) 0.771532i 0.0804377i
\(93\) 0 0
\(94\) 5.44408i 0.561514i
\(95\) −3.00309 −0.308111
\(96\) 0 0
\(97\) −7.71791 −0.783635 −0.391818 0.920043i \(-0.628154\pi\)
−0.391818 + 0.920043i \(0.628154\pi\)
\(98\) 3.96189 0.400212
\(99\) 0 0
\(100\) −4.01857 −0.401857
\(101\) 5.63251 0.560456 0.280228 0.959934i \(-0.409590\pi\)
0.280228 + 0.959934i \(0.409590\pi\)
\(102\) 0 0
\(103\) 2.65084 0.261195 0.130597 0.991435i \(-0.458310\pi\)
0.130597 + 0.991435i \(0.458310\pi\)
\(104\) 4.99159i 0.489465i
\(105\) 0 0
\(106\) 5.33171i 0.517861i
\(107\) 18.0820 1.74805 0.874026 0.485879i \(-0.161500\pi\)
0.874026 + 0.485879i \(0.161500\pi\)
\(108\) 0 0
\(109\) 17.4431i 1.67074i −0.549686 0.835371i \(-0.685253\pi\)
0.549686 0.835371i \(-0.314747\pi\)
\(110\) −2.02232 + 9.75267i −0.192820 + 0.929881i
\(111\) 0 0
\(112\) 3.31087i 0.312848i
\(113\) 0.423629i 0.0398517i −0.999801 0.0199258i \(-0.993657\pi\)
0.999801 0.0199258i \(-0.00634301\pi\)
\(114\) 0 0
\(115\) 2.31698 0.216060
\(116\) 8.92687 0.828839
\(117\) 0 0
\(118\) 0.367024i 0.0337873i
\(119\) 19.4599i 1.78389i
\(120\) 0 0
\(121\) 10.0930 + 4.37386i 0.917549 + 0.397623i
\(122\) 4.68980i 0.424595i
\(123\) 0 0
\(124\) −3.81106 −0.342243
\(125\) 2.94731i 0.263616i
\(126\) 0 0
\(127\) 2.22458i 0.197399i 0.995117 + 0.0986997i \(0.0314683\pi\)
−0.995117 + 0.0986997i \(0.968532\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 14.9902 1.31473
\(131\) 13.4918 1.17879 0.589394 0.807846i \(-0.299366\pi\)
0.589394 + 0.807846i \(0.299366\pi\)
\(132\) 0 0
\(133\) 3.31087 0.287089
\(134\) −2.00040 −0.172808
\(135\) 0 0
\(136\) −5.87757 −0.503997
\(137\) 13.2515i 1.13215i −0.824353 0.566076i \(-0.808461\pi\)
0.824353 0.566076i \(-0.191539\pi\)
\(138\) 0 0
\(139\) 3.71160i 0.314814i −0.987534 0.157407i \(-0.949687\pi\)
0.987534 0.157407i \(-0.0503134\pi\)
\(140\) 9.94287 0.840326
\(141\) 0 0
\(142\) 13.5343i 1.13577i
\(143\) 3.36139 16.2104i 0.281093 1.35558i
\(144\) 0 0
\(145\) 26.8082i 2.22630i
\(146\) 12.6777i 1.04922i
\(147\) 0 0
\(148\) −1.04032 −0.0855134
\(149\) −0.782444 −0.0641003 −0.0320502 0.999486i \(-0.510204\pi\)
−0.0320502 + 0.999486i \(0.510204\pi\)
\(150\) 0 0
\(151\) 4.68719i 0.381438i 0.981645 + 0.190719i \(0.0610820\pi\)
−0.981645 + 0.190719i \(0.938918\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 0 0
\(154\) 2.22958 10.7522i 0.179665 0.866437i
\(155\) 11.4450i 0.919283i
\(156\) 0 0
\(157\) −19.0620 −1.52131 −0.760655 0.649157i \(-0.775122\pi\)
−0.760655 + 0.649157i \(0.775122\pi\)
\(158\) 4.97264i 0.395602i
\(159\) 0 0
\(160\) 3.00309i 0.237415i
\(161\) −2.55444 −0.201318
\(162\) 0 0
\(163\) 7.03872 0.551315 0.275657 0.961256i \(-0.411104\pi\)
0.275657 + 0.961256i \(0.411104\pi\)
\(164\) −5.68449 −0.443884
\(165\) 0 0
\(166\) −10.4352 −0.809929
\(167\) −18.1622 −1.40543 −0.702716 0.711470i \(-0.748030\pi\)
−0.702716 + 0.711470i \(0.748030\pi\)
\(168\) 0 0
\(169\) −11.9159 −0.916611
\(170\) 17.6509i 1.35376i
\(171\) 0 0
\(172\) 7.56719i 0.576993i
\(173\) −20.0969 −1.52794 −0.763970 0.645252i \(-0.776752\pi\)
−0.763970 + 0.645252i \(0.776752\pi\)
\(174\) 0 0
\(175\) 13.3050i 1.00576i
\(176\) 3.24754 + 0.673411i 0.244793 + 0.0507602i
\(177\) 0 0
\(178\) 11.6524i 0.873385i
\(179\) 18.4938i 1.38229i −0.722715 0.691146i \(-0.757106\pi\)
0.722715 0.691146i \(-0.242894\pi\)
\(180\) 0 0
\(181\) 11.0037 0.817898 0.408949 0.912557i \(-0.365895\pi\)
0.408949 + 0.912557i \(0.365895\pi\)
\(182\) −16.5265 −1.22503
\(183\) 0 0
\(184\) 0.771532i 0.0568781i
\(185\) 3.12416i 0.229693i
\(186\) 0 0
\(187\) 19.0876 + 3.95802i 1.39583 + 0.289439i
\(188\) 5.44408i 0.397050i
\(189\) 0 0
\(190\) 3.00309 0.217867
\(191\) 19.9599i 1.44425i −0.691763 0.722125i \(-0.743166\pi\)
0.691763 0.722125i \(-0.256834\pi\)
\(192\) 0 0
\(193\) 3.64379i 0.262285i −0.991364 0.131143i \(-0.958135\pi\)
0.991364 0.131143i \(-0.0418646\pi\)
\(194\) 7.71791 0.554114
\(195\) 0 0
\(196\) −3.96189 −0.282992
\(197\) 24.2098 1.72488 0.862440 0.506160i \(-0.168935\pi\)
0.862440 + 0.506160i \(0.168935\pi\)
\(198\) 0 0
\(199\) 19.1882 1.36022 0.680108 0.733112i \(-0.261933\pi\)
0.680108 + 0.733112i \(0.261933\pi\)
\(200\) 4.01857 0.284156
\(201\) 0 0
\(202\) −5.63251 −0.396302
\(203\) 29.5557i 2.07441i
\(204\) 0 0
\(205\) 17.0711i 1.19229i
\(206\) −2.65084 −0.184693
\(207\) 0 0
\(208\) 4.99159i 0.346104i
\(209\) 0.673411 3.24754i 0.0465808 0.224637i
\(210\) 0 0
\(211\) 6.95465i 0.478778i 0.970924 + 0.239389i \(0.0769471\pi\)
−0.970924 + 0.239389i \(0.923053\pi\)
\(212\) 5.33171i 0.366183i
\(213\) 0 0
\(214\) −18.0820 −1.23606
\(215\) 22.7250 1.54983
\(216\) 0 0
\(217\) 12.6179i 0.856562i
\(218\) 17.4431i 1.18139i
\(219\) 0 0
\(220\) 2.02232 9.75267i 0.136344 0.657525i
\(221\) 29.3384i 1.97351i
\(222\) 0 0
\(223\) −15.7239 −1.05295 −0.526476 0.850190i \(-0.676487\pi\)
−0.526476 + 0.850190i \(0.676487\pi\)
\(224\) 3.31087i 0.221217i
\(225\) 0 0
\(226\) 0.423629i 0.0281794i
\(227\) −19.8004 −1.31420 −0.657101 0.753803i \(-0.728217\pi\)
−0.657101 + 0.753803i \(0.728217\pi\)
\(228\) 0 0
\(229\) −7.86405 −0.519671 −0.259835 0.965653i \(-0.583668\pi\)
−0.259835 + 0.965653i \(0.583668\pi\)
\(230\) −2.31698 −0.152777
\(231\) 0 0
\(232\) −8.92687 −0.586078
\(233\) −2.35291 −0.154144 −0.0770721 0.997026i \(-0.524557\pi\)
−0.0770721 + 0.997026i \(0.524557\pi\)
\(234\) 0 0
\(235\) −16.3491 −1.06650
\(236\) 0.367024i 0.0238912i
\(237\) 0 0
\(238\) 19.4599i 1.26140i
\(239\) −24.4821 −1.58362 −0.791808 0.610770i \(-0.790860\pi\)
−0.791808 + 0.610770i \(0.790860\pi\)
\(240\) 0 0
\(241\) 1.52554i 0.0982687i −0.998792 0.0491344i \(-0.984354\pi\)
0.998792 0.0491344i \(-0.0156463\pi\)
\(242\) −10.0930 4.37386i −0.648805 0.281162i
\(243\) 0 0
\(244\) 4.68980i 0.300234i
\(245\) 11.8979i 0.760131i
\(246\) 0 0
\(247\) −4.99159 −0.317607
\(248\) 3.81106 0.242003
\(249\) 0 0
\(250\) 2.94731i 0.186404i
\(251\) 18.4091i 1.16197i −0.813914 0.580985i \(-0.802667\pi\)
0.813914 0.580985i \(-0.197333\pi\)
\(252\) 0 0
\(253\) −0.519558 + 2.50558i −0.0326643 + 0.157524i
\(254\) 2.22458i 0.139582i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.5082i 1.34164i −0.741618 0.670822i \(-0.765941\pi\)
0.741618 0.670822i \(-0.234059\pi\)
\(258\) 0 0
\(259\) 3.44435i 0.214022i
\(260\) −14.9902 −0.929653
\(261\) 0 0
\(262\) −13.4918 −0.833529
\(263\) 28.0416 1.72912 0.864559 0.502530i \(-0.167598\pi\)
0.864559 + 0.502530i \(0.167598\pi\)
\(264\) 0 0
\(265\) −16.0116 −0.983586
\(266\) −3.31087 −0.203003
\(267\) 0 0
\(268\) 2.00040 0.122194
\(269\) 28.3167i 1.72650i −0.504779 0.863248i \(-0.668426\pi\)
0.504779 0.863248i \(-0.331574\pi\)
\(270\) 0 0
\(271\) 22.7758i 1.38353i 0.722123 + 0.691765i \(0.243166\pi\)
−0.722123 + 0.691765i \(0.756834\pi\)
\(272\) 5.87757 0.356380
\(273\) 0 0
\(274\) 13.2515i 0.800553i
\(275\) −13.0505 2.70615i −0.786974 0.163187i
\(276\) 0 0
\(277\) 8.06995i 0.484876i −0.970167 0.242438i \(-0.922053\pi\)
0.970167 0.242438i \(-0.0779472\pi\)
\(278\) 3.71160i 0.222607i
\(279\) 0 0
\(280\) −9.94287 −0.594200
\(281\) 20.3290 1.21272 0.606362 0.795188i \(-0.292628\pi\)
0.606362 + 0.795188i \(0.292628\pi\)
\(282\) 0 0
\(283\) 16.7483i 0.995580i −0.867297 0.497790i \(-0.834145\pi\)
0.867297 0.497790i \(-0.165855\pi\)
\(284\) 13.5343i 0.803114i
\(285\) 0 0
\(286\) −3.36139 + 16.2104i −0.198763 + 0.958540i
\(287\) 18.8206i 1.11095i
\(288\) 0 0
\(289\) 17.5458 1.03211
\(290\) 26.8082i 1.57423i
\(291\) 0 0
\(292\) 12.6777i 0.741908i
\(293\) 24.3860 1.42464 0.712321 0.701854i \(-0.247644\pi\)
0.712321 + 0.701854i \(0.247644\pi\)
\(294\) 0 0
\(295\) −1.10221 −0.0641730
\(296\) 1.04032 0.0604671
\(297\) 0 0
\(298\) 0.782444 0.0453258
\(299\) 3.85117 0.222719
\(300\) 0 0
\(301\) −25.0540 −1.44409
\(302\) 4.68719i 0.269718i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) −14.0839 −0.806443
\(306\) 0 0
\(307\) 13.2730i 0.757533i 0.925492 + 0.378766i \(0.123652\pi\)
−0.925492 + 0.378766i \(0.876348\pi\)
\(308\) −2.22958 + 10.7522i −0.127042 + 0.612663i
\(309\) 0 0
\(310\) 11.4450i 0.650031i
\(311\) 9.95863i 0.564702i −0.959311 0.282351i \(-0.908886\pi\)
0.959311 0.282351i \(-0.0911143\pi\)
\(312\) 0 0
\(313\) −8.55364 −0.483480 −0.241740 0.970341i \(-0.577718\pi\)
−0.241740 + 0.970341i \(0.577718\pi\)
\(314\) 19.0620 1.07573
\(315\) 0 0
\(316\) 4.97264i 0.279733i
\(317\) 8.69979i 0.488629i −0.969696 0.244315i \(-0.921437\pi\)
0.969696 0.244315i \(-0.0785629\pi\)
\(318\) 0 0
\(319\) 28.9904 + 6.01145i 1.62315 + 0.336577i
\(320\) 3.00309i 0.167878i
\(321\) 0 0
\(322\) 2.55444 0.142354
\(323\) 5.87757i 0.327037i
\(324\) 0 0
\(325\) 20.0591i 1.11268i
\(326\) −7.03872 −0.389839
\(327\) 0 0
\(328\) 5.68449 0.313873
\(329\) 18.0247 0.993732
\(330\) 0 0
\(331\) 29.4762 1.62016 0.810079 0.586321i \(-0.199424\pi\)
0.810079 + 0.586321i \(0.199424\pi\)
\(332\) 10.4352 0.572706
\(333\) 0 0
\(334\) 18.1622 0.993790
\(335\) 6.00738i 0.328218i
\(336\) 0 0
\(337\) 9.17830i 0.499974i −0.968249 0.249987i \(-0.919574\pi\)
0.968249 0.249987i \(-0.0804263\pi\)
\(338\) 11.9159 0.648142
\(339\) 0 0
\(340\) 17.6509i 0.957254i
\(341\) −12.3766 2.56641i −0.670229 0.138979i
\(342\) 0 0
\(343\) 10.0588i 0.543124i
\(344\) 7.56719i 0.407996i
\(345\) 0 0
\(346\) 20.0969 1.08042
\(347\) −9.03702 −0.485133 −0.242566 0.970135i \(-0.577989\pi\)
−0.242566 + 0.970135i \(0.577989\pi\)
\(348\) 0 0
\(349\) 16.9667i 0.908205i −0.890949 0.454103i \(-0.849960\pi\)
0.890949 0.454103i \(-0.150040\pi\)
\(350\) 13.3050i 0.711182i
\(351\) 0 0
\(352\) −3.24754 0.673411i −0.173094 0.0358929i
\(353\) 24.0307i 1.27902i 0.768781 + 0.639512i \(0.220864\pi\)
−0.768781 + 0.639512i \(0.779136\pi\)
\(354\) 0 0
\(355\) 40.6448 2.15720
\(356\) 11.6524i 0.617577i
\(357\) 0 0
\(358\) 18.4938i 0.977428i
\(359\) 30.9906 1.63562 0.817811 0.575486i \(-0.195187\pi\)
0.817811 + 0.575486i \(0.195187\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −11.0037 −0.578341
\(363\) 0 0
\(364\) 16.5265 0.866225
\(365\) 38.0724 1.99280
\(366\) 0 0
\(367\) 18.7089 0.976599 0.488300 0.872676i \(-0.337617\pi\)
0.488300 + 0.872676i \(0.337617\pi\)
\(368\) 0.771532i 0.0402189i
\(369\) 0 0
\(370\) 3.12416i 0.162418i
\(371\) 17.6526 0.916478
\(372\) 0 0
\(373\) 26.1185i 1.35236i 0.736735 + 0.676181i \(0.236366\pi\)
−0.736735 + 0.676181i \(0.763634\pi\)
\(374\) −19.0876 3.95802i −0.986998 0.204664i
\(375\) 0 0
\(376\) 5.44408i 0.280757i
\(377\) 44.5592i 2.29492i
\(378\) 0 0
\(379\) 1.81358 0.0931572 0.0465786 0.998915i \(-0.485168\pi\)
0.0465786 + 0.998915i \(0.485168\pi\)
\(380\) −3.00309 −0.154055
\(381\) 0 0
\(382\) 19.9599i 1.02124i
\(383\) 7.82110i 0.399639i 0.979833 + 0.199820i \(0.0640356\pi\)
−0.979833 + 0.199820i \(0.935964\pi\)
\(384\) 0 0
\(385\) 32.2899 + 6.69563i 1.64564 + 0.341241i
\(386\) 3.64379i 0.185464i
\(387\) 0 0
\(388\) −7.71791 −0.391818
\(389\) 25.3857i 1.28711i −0.765401 0.643554i \(-0.777459\pi\)
0.765401 0.643554i \(-0.222541\pi\)
\(390\) 0 0
\(391\) 4.53473i 0.229331i
\(392\) 3.96189 0.200106
\(393\) 0 0
\(394\) −24.2098 −1.21967
\(395\) −14.9333 −0.751377
\(396\) 0 0
\(397\) −27.5933 −1.38487 −0.692434 0.721481i \(-0.743462\pi\)
−0.692434 + 0.721481i \(0.743462\pi\)
\(398\) −19.1882 −0.961818
\(399\) 0 0
\(400\) −4.01857 −0.200929
\(401\) 17.2571i 0.861776i 0.902405 + 0.430888i \(0.141800\pi\)
−0.902405 + 0.430888i \(0.858200\pi\)
\(402\) 0 0
\(403\) 19.0233i 0.947616i
\(404\) 5.63251 0.280228
\(405\) 0 0
\(406\) 29.5557i 1.46683i
\(407\) −3.37847 0.700559i −0.167464 0.0347254i
\(408\) 0 0
\(409\) 27.3940i 1.35454i −0.735733 0.677272i \(-0.763162\pi\)
0.735733 0.677272i \(-0.236838\pi\)
\(410\) 17.0711i 0.843079i
\(411\) 0 0
\(412\) 2.65084 0.130597
\(413\) 1.21517 0.0597947
\(414\) 0 0
\(415\) 31.3379i 1.53832i
\(416\) 4.99159i 0.244733i
\(417\) 0 0
\(418\) −0.673411 + 3.24754i −0.0329376 + 0.158842i
\(419\) 10.3841i 0.507295i −0.967297 0.253647i \(-0.918370\pi\)
0.967297 0.253647i \(-0.0816303\pi\)
\(420\) 0 0
\(421\) −5.45710 −0.265963 −0.132981 0.991119i \(-0.542455\pi\)
−0.132981 + 0.991119i \(0.542455\pi\)
\(422\) 6.95465i 0.338547i
\(423\) 0 0
\(424\) 5.33171i 0.258931i
\(425\) −23.6194 −1.14571
\(426\) 0 0
\(427\) 15.5273 0.751421
\(428\) 18.0820 0.874026
\(429\) 0 0
\(430\) −22.7250 −1.09590
\(431\) 9.65282 0.464960 0.232480 0.972601i \(-0.425316\pi\)
0.232480 + 0.972601i \(0.425316\pi\)
\(432\) 0 0
\(433\) −26.2314 −1.26060 −0.630301 0.776351i \(-0.717068\pi\)
−0.630301 + 0.776351i \(0.717068\pi\)
\(434\) 12.6179i 0.605681i
\(435\) 0 0
\(436\) 17.4431i 0.835371i
\(437\) 0.771532 0.0369074
\(438\) 0 0
\(439\) 3.73505i 0.178264i −0.996020 0.0891320i \(-0.971591\pi\)
0.996020 0.0891320i \(-0.0284093\pi\)
\(440\) −2.02232 + 9.75267i −0.0964101 + 0.464940i
\(441\) 0 0
\(442\) 29.3384i 1.39549i
\(443\) 27.8080i 1.32120i 0.750739 + 0.660599i \(0.229698\pi\)
−0.750739 + 0.660599i \(0.770302\pi\)
\(444\) 0 0
\(445\) 34.9933 1.65884
\(446\) 15.7239 0.744550
\(447\) 0 0
\(448\) 3.31087i 0.156424i
\(449\) 34.6728i 1.63631i 0.574999 + 0.818154i \(0.305003\pi\)
−0.574999 + 0.818154i \(0.694997\pi\)
\(450\) 0 0
\(451\) −18.4606 3.82799i −0.869276 0.180253i
\(452\) 0.423629i 0.0199258i
\(453\) 0 0
\(454\) 19.8004 0.929280
\(455\) 49.6307i 2.32672i
\(456\) 0 0
\(457\) 16.9656i 0.793617i 0.917901 + 0.396808i \(0.129882\pi\)
−0.917901 + 0.396808i \(0.870118\pi\)
\(458\) 7.86405 0.367463
\(459\) 0 0
\(460\) 2.31698 0.108030
\(461\) 23.8211 1.10946 0.554730 0.832031i \(-0.312822\pi\)
0.554730 + 0.832031i \(0.312822\pi\)
\(462\) 0 0
\(463\) 20.5137 0.953354 0.476677 0.879079i \(-0.341841\pi\)
0.476677 + 0.879079i \(0.341841\pi\)
\(464\) 8.92687 0.414419
\(465\) 0 0
\(466\) 2.35291 0.108996
\(467\) 27.2191i 1.25955i 0.776778 + 0.629774i \(0.216853\pi\)
−0.776778 + 0.629774i \(0.783147\pi\)
\(468\) 0 0
\(469\) 6.62307i 0.305825i
\(470\) 16.3491 0.754127
\(471\) 0 0
\(472\) 0.367024i 0.0168937i
\(473\) −5.09583 + 24.5748i −0.234306 + 1.12995i
\(474\) 0 0
\(475\) 4.01857i 0.184385i
\(476\) 19.4599i 0.891943i
\(477\) 0 0
\(478\) 24.4821 1.11979
\(479\) −1.54399 −0.0705467 −0.0352734 0.999378i \(-0.511230\pi\)
−0.0352734 + 0.999378i \(0.511230\pi\)
\(480\) 0 0
\(481\) 5.19283i 0.236772i
\(482\) 1.52554i 0.0694865i
\(483\) 0 0
\(484\) 10.0930 + 4.37386i 0.458774 + 0.198812i
\(485\) 23.1776i 1.05244i
\(486\) 0 0
\(487\) 16.5914 0.751828 0.375914 0.926654i \(-0.377329\pi\)
0.375914 + 0.926654i \(0.377329\pi\)
\(488\) 4.68980i 0.212297i
\(489\) 0 0
\(490\) 11.8979i 0.537494i
\(491\) −33.1297 −1.49512 −0.747562 0.664192i \(-0.768776\pi\)
−0.747562 + 0.664192i \(0.768776\pi\)
\(492\) 0 0
\(493\) 52.4683 2.36305
\(494\) 4.99159 0.224582
\(495\) 0 0
\(496\) −3.81106 −0.171122
\(497\) −44.8104 −2.01002
\(498\) 0 0
\(499\) −27.7467 −1.24211 −0.621056 0.783766i \(-0.713296\pi\)
−0.621056 + 0.783766i \(0.713296\pi\)
\(500\) 2.94731i 0.131808i
\(501\) 0 0
\(502\) 18.4091i 0.821637i
\(503\) −6.41063 −0.285836 −0.142918 0.989735i \(-0.545648\pi\)
−0.142918 + 0.989735i \(0.545648\pi\)
\(504\) 0 0
\(505\) 16.9150i 0.752706i
\(506\) 0.519558 2.50558i 0.0230972 0.111387i
\(507\) 0 0
\(508\) 2.22458i 0.0986997i
\(509\) 21.3460i 0.946147i −0.881023 0.473073i \(-0.843145\pi\)
0.881023 0.473073i \(-0.156855\pi\)
\(510\) 0 0
\(511\) −41.9744 −1.85684
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 21.5082i 0.948686i
\(515\) 7.96072i 0.350791i
\(516\) 0 0
\(517\) 3.66610 17.6799i 0.161235 0.777559i
\(518\) 3.44435i 0.151336i
\(519\) 0 0
\(520\) 14.9902 0.657364
\(521\) 30.2415i 1.32490i −0.749104 0.662452i \(-0.769516\pi\)
0.749104 0.662452i \(-0.230484\pi\)
\(522\) 0 0
\(523\) 9.82644i 0.429680i −0.976649 0.214840i \(-0.931077\pi\)
0.976649 0.214840i \(-0.0689230\pi\)
\(524\) 13.4918 0.589394
\(525\) 0 0
\(526\) −28.0416 −1.22267
\(527\) −22.3998 −0.975750
\(528\) 0 0
\(529\) 22.4047 0.974119
\(530\) 16.0116 0.695500
\(531\) 0 0
\(532\) 3.31087 0.143545
\(533\) 28.3746i 1.22904i
\(534\) 0 0
\(535\) 54.3019i 2.34768i
\(536\) −2.00040 −0.0864040
\(537\) 0 0
\(538\) 28.3167i 1.22082i
\(539\) −12.8664 2.66798i −0.554195 0.114918i
\(540\) 0 0
\(541\) 42.3404i 1.82036i 0.414218 + 0.910178i \(0.364055\pi\)
−0.414218 + 0.910178i \(0.635945\pi\)
\(542\) 22.7758i 0.978303i
\(543\) 0 0
\(544\) −5.87757 −0.251999
\(545\) −52.3832 −2.24385
\(546\) 0 0
\(547\) 3.94544i 0.168695i 0.996436 + 0.0843474i \(0.0268805\pi\)
−0.996436 + 0.0843474i \(0.973119\pi\)
\(548\) 13.2515i 0.566076i
\(549\) 0 0
\(550\) 13.0505 + 2.70615i 0.556474 + 0.115391i
\(551\) 8.92687i 0.380297i
\(552\) 0 0
\(553\) 16.4638 0.700112
\(554\) 8.06995i 0.342859i
\(555\) 0 0
\(556\) 3.71160i 0.157407i
\(557\) 2.32476 0.0985034 0.0492517 0.998786i \(-0.484316\pi\)
0.0492517 + 0.998786i \(0.484316\pi\)
\(558\) 0 0
\(559\) 37.7723 1.59760
\(560\) 9.94287 0.420163
\(561\) 0 0
\(562\) −20.3290 −0.857526
\(563\) −3.29794 −0.138991 −0.0694957 0.997582i \(-0.522139\pi\)
−0.0694957 + 0.997582i \(0.522139\pi\)
\(564\) 0 0
\(565\) −1.27220 −0.0535218
\(566\) 16.7483i 0.703982i
\(567\) 0 0
\(568\) 13.5343i 0.567887i
\(569\) 6.61627 0.277368 0.138684 0.990337i \(-0.455713\pi\)
0.138684 + 0.990337i \(0.455713\pi\)
\(570\) 0 0
\(571\) 30.5375i 1.27796i 0.769225 + 0.638978i \(0.220642\pi\)
−0.769225 + 0.638978i \(0.779358\pi\)
\(572\) 3.36139 16.2104i 0.140547 0.677790i
\(573\) 0 0
\(574\) 18.8206i 0.785558i
\(575\) 3.10046i 0.129298i
\(576\) 0 0
\(577\) −38.8350 −1.61672 −0.808360 0.588688i \(-0.799645\pi\)
−0.808360 + 0.588688i \(0.799645\pi\)
\(578\) −17.5458 −0.729809
\(579\) 0 0
\(580\) 26.8082i 1.11315i
\(581\) 34.5496i 1.43336i
\(582\) 0 0
\(583\) 3.59043 17.3149i 0.148700 0.717111i
\(584\) 12.6777i 0.524608i
\(585\) 0 0
\(586\) −24.3860 −1.00737
\(587\) 3.15215i 0.130103i 0.997882 + 0.0650515i \(0.0207212\pi\)
−0.997882 + 0.0650515i \(0.979279\pi\)
\(588\) 0 0
\(589\) 3.81106i 0.157032i
\(590\) 1.10221 0.0453772
\(591\) 0 0
\(592\) −1.04032 −0.0427567
\(593\) −9.24115 −0.379488 −0.189744 0.981834i \(-0.560766\pi\)
−0.189744 + 0.981834i \(0.560766\pi\)
\(594\) 0 0
\(595\) 58.4399 2.39580
\(596\) −0.782444 −0.0320502
\(597\) 0 0
\(598\) −3.85117 −0.157486
\(599\) 8.49532i 0.347109i −0.984824 0.173555i \(-0.944475\pi\)
0.984824 0.173555i \(-0.0555253\pi\)
\(600\) 0 0
\(601\) 6.52893i 0.266321i −0.991095 0.133160i \(-0.957487\pi\)
0.991095 0.133160i \(-0.0425125\pi\)
\(602\) 25.0540 1.02113
\(603\) 0 0
\(604\) 4.68719i 0.190719i
\(605\) 13.1351 30.3103i 0.534018 1.23229i
\(606\) 0 0
\(607\) 45.3963i 1.84258i −0.388876 0.921290i \(-0.627137\pi\)
0.388876 0.921290i \(-0.372863\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 0 0
\(610\) 14.0839 0.570241
\(611\) −27.1746 −1.09937
\(612\) 0 0
\(613\) 22.4162i 0.905382i 0.891667 + 0.452691i \(0.149536\pi\)
−0.891667 + 0.452691i \(0.850464\pi\)
\(614\) 13.2730i 0.535657i
\(615\) 0 0
\(616\) 2.22958 10.7522i 0.0898323 0.433218i
\(617\) 13.5245i 0.544476i −0.962230 0.272238i \(-0.912236\pi\)
0.962230 0.272238i \(-0.0877637\pi\)
\(618\) 0 0
\(619\) 19.1199 0.768495 0.384248 0.923230i \(-0.374461\pi\)
0.384248 + 0.923230i \(0.374461\pi\)
\(620\) 11.4450i 0.459641i
\(621\) 0 0
\(622\) 9.95863i 0.399305i
\(623\) −38.5797 −1.54566
\(624\) 0 0
\(625\) −28.9439 −1.15776
\(626\) 8.55364 0.341872
\(627\) 0 0
\(628\) −19.0620 −0.760655
\(629\) −6.11452 −0.243802
\(630\) 0 0
\(631\) −9.61661 −0.382831 −0.191416 0.981509i \(-0.561308\pi\)
−0.191416 + 0.981509i \(0.561308\pi\)
\(632\) 4.97264i 0.197801i
\(633\) 0 0
\(634\) 8.69979i 0.345513i
\(635\) 6.68062 0.265112
\(636\) 0 0
\(637\) 19.7761i 0.783559i
\(638\) −28.9904 6.01145i −1.14774 0.237996i
\(639\) 0 0
\(640\) 3.00309i 0.118708i
\(641\) 5.17195i 0.204280i 0.994770 + 0.102140i \(0.0325689\pi\)
−0.994770 + 0.102140i \(0.967431\pi\)
\(642\) 0 0
\(643\) −12.1805 −0.480350 −0.240175 0.970730i \(-0.577205\pi\)
−0.240175 + 0.970730i \(0.577205\pi\)
\(644\) −2.55444 −0.100659
\(645\) 0 0
\(646\) 5.87757i 0.231250i
\(647\) 20.3812i 0.801268i −0.916238 0.400634i \(-0.868790\pi\)
0.916238 0.400634i \(-0.131210\pi\)
\(648\) 0 0
\(649\) 0.247158 1.19193i 0.00970180 0.0467872i
\(650\) 20.0591i 0.786781i
\(651\) 0 0
\(652\) 7.03872 0.275657
\(653\) 2.93909i 0.115016i 0.998345 + 0.0575078i \(0.0183154\pi\)
−0.998345 + 0.0575078i \(0.981685\pi\)
\(654\) 0 0
\(655\) 40.5173i 1.58314i
\(656\) −5.68449 −0.221942
\(657\) 0 0
\(658\) −18.0247 −0.702674
\(659\) 41.3613 1.61121 0.805604 0.592454i \(-0.201841\pi\)
0.805604 + 0.592454i \(0.201841\pi\)
\(660\) 0 0
\(661\) −3.58345 −0.139380 −0.0696900 0.997569i \(-0.522201\pi\)
−0.0696900 + 0.997569i \(0.522201\pi\)
\(662\) −29.4762 −1.14562
\(663\) 0 0
\(664\) −10.4352 −0.404964
\(665\) 9.94287i 0.385568i
\(666\) 0 0
\(667\) 6.88736i 0.266680i
\(668\) −18.1622 −0.702716
\(669\) 0 0
\(670\) 6.00738i 0.232085i
\(671\) 3.15816 15.2303i 0.121920 0.587960i
\(672\) 0 0
\(673\) 6.69968i 0.258254i 0.991628 + 0.129127i \(0.0412174\pi\)
−0.991628 + 0.129127i \(0.958783\pi\)
\(674\) 9.17830i 0.353535i
\(675\) 0 0
\(676\) −11.9159 −0.458306
\(677\) 3.34298 0.128481 0.0642405 0.997934i \(-0.479538\pi\)
0.0642405 + 0.997934i \(0.479538\pi\)
\(678\) 0 0
\(679\) 25.5530i 0.980636i
\(680\) 17.6509i 0.676881i
\(681\) 0 0
\(682\) 12.3766 + 2.56641i 0.473924 + 0.0982729i
\(683\) 30.3946i 1.16302i −0.813540 0.581509i \(-0.802463\pi\)
0.813540 0.581509i \(-0.197537\pi\)
\(684\) 0 0
\(685\) −39.7955 −1.52051
\(686\) 10.0588i 0.384047i
\(687\) 0 0
\(688\) 7.56719i 0.288497i
\(689\) −26.6137 −1.01390
\(690\) 0 0
\(691\) 3.08430 0.117332 0.0586662 0.998278i \(-0.481315\pi\)
0.0586662 + 0.998278i \(0.481315\pi\)
\(692\) −20.0969 −0.763970
\(693\) 0 0
\(694\) 9.03702 0.343041
\(695\) −11.1463 −0.422803
\(696\) 0 0
\(697\) −33.4110 −1.26553
\(698\) 16.9667i 0.642198i
\(699\) 0 0
\(700\) 13.3050i 0.502882i
\(701\) 22.3588 0.844479 0.422240 0.906484i \(-0.361244\pi\)
0.422240 + 0.906484i \(0.361244\pi\)
\(702\) 0 0
\(703\) 1.04032i 0.0392362i
\(704\) 3.24754 + 0.673411i 0.122396 + 0.0253801i
\(705\) 0 0
\(706\) 24.0307i 0.904407i
\(707\) 18.6485i 0.701350i
\(708\) 0 0
\(709\) 32.5620 1.22289 0.611445 0.791287i \(-0.290588\pi\)
0.611445 + 0.791287i \(0.290588\pi\)
\(710\) −40.6448 −1.52537
\(711\) 0 0
\(712\) 11.6524i 0.436693i
\(713\) 2.94035i 0.110117i
\(714\) 0 0
\(715\) −48.6813 10.0946i −1.82058 0.377515i
\(716\) 18.4938i 0.691146i
\(717\) 0 0
\(718\) −30.9906 −1.15656
\(719\) 37.8993i 1.41340i 0.707511 + 0.706702i \(0.249818\pi\)
−0.707511 + 0.706702i \(0.750182\pi\)
\(720\) 0 0
\(721\) 8.77659i 0.326857i
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 11.0037 0.408949
\(725\) −35.8733 −1.33230
\(726\) 0 0
\(727\) −15.4961 −0.574720 −0.287360 0.957823i \(-0.592778\pi\)
−0.287360 + 0.957823i \(0.592778\pi\)
\(728\) −16.5265 −0.612514
\(729\) 0 0
\(730\) −38.0724 −1.40912
\(731\) 44.4767i 1.64503i
\(732\) 0 0
\(733\) 40.1017i 1.48119i 0.671952 + 0.740595i \(0.265456\pi\)
−0.671952 + 0.740595i \(0.734544\pi\)
\(734\) −18.7089 −0.690560
\(735\) 0 0
\(736\) 0.771532i 0.0284390i
\(737\) 6.49637 + 1.34709i 0.239297 + 0.0496207i
\(738\) 0 0
\(739\) 28.1975i 1.03726i −0.854998 0.518632i \(-0.826442\pi\)
0.854998 0.518632i \(-0.173558\pi\)
\(740\) 3.12416i 0.114847i
\(741\) 0 0
\(742\) −17.6526 −0.648048
\(743\) −46.4920 −1.70563 −0.852813 0.522216i \(-0.825105\pi\)
−0.852813 + 0.522216i \(0.825105\pi\)
\(744\) 0 0
\(745\) 2.34975i 0.0860883i
\(746\) 26.1185i 0.956265i
\(747\) 0 0
\(748\) 19.0876 + 3.95802i 0.697913 + 0.144719i
\(749\) 59.8672i 2.18750i
\(750\) 0 0
\(751\) 14.6027 0.532860 0.266430 0.963854i \(-0.414156\pi\)
0.266430 + 0.963854i \(0.414156\pi\)
\(752\) 5.44408i 0.198525i
\(753\) 0 0
\(754\) 44.5592i 1.62275i
\(755\) 14.0761 0.512281
\(756\) 0 0
\(757\) −11.2801 −0.409980 −0.204990 0.978764i \(-0.565716\pi\)
−0.204990 + 0.978764i \(0.565716\pi\)
\(758\) −1.81358 −0.0658721
\(759\) 0 0
\(760\) 3.00309 0.108934
\(761\) 36.1020 1.30869 0.654347 0.756194i \(-0.272943\pi\)
0.654347 + 0.756194i \(0.272943\pi\)
\(762\) 0 0
\(763\) 57.7518 2.09076
\(764\) 19.9599i 0.722125i
\(765\) 0 0
\(766\) 7.82110i 0.282588i
\(767\) −1.83203 −0.0661509
\(768\) 0 0
\(769\) 1.14170i 0.0411708i 0.999788 + 0.0205854i \(0.00655300\pi\)
−0.999788 + 0.0205854i \(0.993447\pi\)
\(770\) −32.2899 6.69563i −1.16365 0.241294i
\(771\) 0 0
\(772\) 3.64379i 0.131143i
\(773\) 28.4950i 1.02489i −0.858719 0.512447i \(-0.828739\pi\)
0.858719 0.512447i \(-0.171261\pi\)
\(774\) 0 0
\(775\) 15.3150 0.550132
\(776\) 7.71791 0.277057
\(777\) 0 0
\(778\) 25.3857i 0.910123i
\(779\) 5.68449i 0.203668i
\(780\) 0 0
\(781\) −9.11415 + 43.9532i −0.326130 + 1.57277i
\(782\) 4.53473i 0.162162i
\(783\) 0 0
\(784\) −3.96189 −0.141496
\(785\) 57.2448i 2.04316i
\(786\) 0 0
\(787\) 32.2977i 1.15129i −0.817700 0.575644i \(-0.804751\pi\)
0.817700 0.575644i \(-0.195249\pi\)
\(788\) 24.2098 0.862440
\(789\) 0 0
\(790\) 14.9333 0.531304
\(791\) 1.40258 0.0498701
\(792\) 0 0
\(793\) −23.4096 −0.831298
\(794\) 27.5933 0.979250
\(795\) 0 0
\(796\) 19.1882 0.680108
\(797\) 30.7011i 1.08749i 0.839251 + 0.543745i \(0.182994\pi\)
−0.839251 + 0.543745i \(0.817006\pi\)
\(798\) 0 0
\(799\) 31.9979i 1.13201i
\(800\) 4.01857 0.142078
\(801\) 0 0
\(802\) 17.2571i 0.609368i
\(803\) −8.53732 + 41.1714i −0.301275 + 1.45291i
\(804\) 0 0
\(805\) 7.67124i 0.270376i
\(806\) 19.0233i 0.670065i
\(807\) 0 0
\(808\) −5.63251 −0.198151
\(809\) −42.2005 −1.48369 −0.741846 0.670570i \(-0.766050\pi\)
−0.741846 + 0.670570i \(0.766050\pi\)
\(810\) 0 0
\(811\) 37.5447i 1.31837i 0.751980 + 0.659186i \(0.229099\pi\)
−0.751980 + 0.659186i \(0.770901\pi\)
\(812\) 29.5557i 1.03720i
\(813\) 0 0
\(814\) 3.37847 + 0.700559i 0.118415 + 0.0245546i
\(815\) 21.1379i 0.740429i
\(816\) 0 0
\(817\) 7.56719 0.264743
\(818\) 27.3940i 0.957807i
\(819\) 0 0
\(820\) 17.0711i 0.596147i
\(821\) −44.5145 −1.55357 −0.776783 0.629768i \(-0.783150\pi\)
−0.776783 + 0.629768i \(0.783150\pi\)
\(822\) 0 0
\(823\) −43.4007 −1.51285 −0.756427 0.654078i \(-0.773057\pi\)
−0.756427 + 0.654078i \(0.773057\pi\)
\(824\) −2.65084 −0.0923463
\(825\) 0 0
\(826\) −1.21517 −0.0422812
\(827\) −18.6485 −0.648471 −0.324235 0.945976i \(-0.605107\pi\)
−0.324235 + 0.945976i \(0.605107\pi\)
\(828\) 0 0
\(829\) −26.2638 −0.912178 −0.456089 0.889934i \(-0.650750\pi\)
−0.456089 + 0.889934i \(0.650750\pi\)
\(830\) 31.3379i 1.08775i
\(831\) 0 0
\(832\) 4.99159i 0.173052i
\(833\) −23.2863 −0.806822
\(834\) 0 0
\(835\) 54.5427i 1.88753i
\(836\) 0.673411 3.24754i 0.0232904 0.112319i
\(837\) 0 0
\(838\) 10.3841i 0.358712i
\(839\) 13.1011i 0.452300i 0.974093 + 0.226150i \(0.0726139\pi\)
−0.974093 + 0.226150i \(0.927386\pi\)
\(840\) 0 0
\(841\) 50.6890 1.74790
\(842\) 5.45710 0.188064
\(843\) 0 0
\(844\) 6.95465i 0.239389i
\(845\) 35.7847i 1.23103i
\(846\) 0 0
\(847\) −14.4813 + 33.4168i −0.497583 + 1.14821i
\(848\) 5.33171i 0.183092i
\(849\) 0 0
\(850\) 23.6194 0.810140
\(851\) 0.802636i 0.0275140i
\(852\) 0 0
\(853\) 12.0774i 0.413521i 0.978392 + 0.206760i \(0.0662921\pi\)
−0.978392 + 0.206760i \(0.933708\pi\)
\(854\) −15.5273 −0.531335
\(855\) 0 0
\(856\) −18.0820 −0.618030
\(857\) 9.45066 0.322828 0.161414 0.986887i \(-0.448394\pi\)
0.161414 + 0.986887i \(0.448394\pi\)
\(858\) 0 0
\(859\) −6.50772 −0.222041 −0.111020 0.993818i \(-0.535412\pi\)
−0.111020 + 0.993818i \(0.535412\pi\)
\(860\) 22.7250 0.774916
\(861\) 0 0
\(862\) −9.65282 −0.328776
\(863\) 28.5792i 0.972846i −0.873723 0.486423i \(-0.838301\pi\)
0.873723 0.486423i \(-0.161699\pi\)
\(864\) 0 0
\(865\) 60.3529i 2.05206i
\(866\) 26.2314 0.891380
\(867\) 0 0
\(868\) 12.6179i 0.428281i
\(869\) 3.34863 16.1489i 0.113595 0.547813i
\(870\) 0 0
\(871\) 9.98516i 0.338334i
\(872\) 17.4431i 0.590697i
\(873\) 0 0
\(874\) −0.771532 −0.0260974
\(875\) 9.75819 0.329887
\(876\) 0 0
\(877\) 46.3280i 1.56439i 0.623036 + 0.782193i \(0.285899\pi\)
−0.623036 + 0.782193i \(0.714101\pi\)
\(878\) 3.73505i 0.126052i
\(879\) 0 0
\(880\) 2.02232 9.75267i 0.0681722 0.328762i
\(881\) 30.4522i 1.02596i 0.858400 + 0.512980i \(0.171459\pi\)
−0.858400 + 0.512980i \(0.828541\pi\)
\(882\) 0 0
\(883\) 32.1999 1.08361 0.541807 0.840503i \(-0.317740\pi\)
0.541807 + 0.840503i \(0.317740\pi\)
\(884\) 29.3384i 0.986757i
\(885\) 0 0
\(886\) 27.8080i 0.934228i
\(887\) −41.5220 −1.39417 −0.697086 0.716988i \(-0.745520\pi\)
−0.697086 + 0.716988i \(0.745520\pi\)
\(888\) 0 0
\(889\) −7.36530 −0.247024
\(890\) −34.9933 −1.17298
\(891\) 0 0
\(892\) −15.7239 −0.526476
\(893\) −5.44408 −0.182179
\(894\) 0 0
\(895\) −55.5386 −1.85645
\(896\) 3.31087i 0.110609i
\(897\) 0 0
\(898\) 34.6728i 1.15705i
\(899\) −34.0209 −1.13466
\(900\) 0 0
\(901\) 31.3375i 1.04400i
\(902\) 18.4606 + 3.82799i 0.614671 + 0.127458i
\(903\) 0 0
\(904\) 0.423629i 0.0140897i
\(905\) 33.0451i 1.09846i
\(906\) 0 0
\(907\) 1.06675 0.0354208 0.0177104 0.999843i \(-0.494362\pi\)
0.0177104 + 0.999843i \(0.494362\pi\)
\(908\) −19.8004 −0.657101
\(909\) 0 0
\(910\) 49.6307i 1.64524i
\(911\) 13.6459i 0.452110i 0.974115 + 0.226055i \(0.0725829\pi\)
−0.974115 + 0.226055i \(0.927417\pi\)
\(912\) 0 0
\(913\) 33.8887 + 7.02718i 1.12155 + 0.232566i
\(914\) 16.9656i 0.561172i
\(915\) 0 0
\(916\) −7.86405 −0.259835
\(917\) 44.6698i 1.47513i
\(918\) 0 0
\(919\) 50.2666i 1.65814i 0.559144 + 0.829071i \(0.311130\pi\)
−0.559144 + 0.829071i \(0.688870\pi\)
\(920\) −2.31698 −0.0763886
\(921\) 0 0
\(922\) −23.8211 −0.784506
\(923\) 67.5577 2.22369
\(924\) 0 0
\(925\) 4.18058 0.137457
\(926\) −20.5137 −0.674123
\(927\) 0 0
\(928\) −8.92687 −0.293039
\(929\) 32.2263i 1.05731i 0.848837 + 0.528655i \(0.177303\pi\)
−0.848837 + 0.528655i \(0.822697\pi\)
\(930\) 0 0
\(931\) 3.96189i 0.129846i
\(932\) −2.35291 −0.0770721
\(933\) 0 0
\(934\) 27.2191i 0.890635i
\(935\) 11.8863 57.3220i 0.388724 1.87463i
\(936\) 0 0
\(937\) 37.7134i 1.23204i 0.787729 + 0.616021i \(0.211257\pi\)
−0.787729 + 0.616021i \(0.788743\pi\)
\(938\) 6.62307i 0.216251i
\(939\) 0 0
\(940\) −16.3491 −0.533248
\(941\) −16.4780 −0.537167 −0.268584 0.963256i \(-0.586556\pi\)
−0.268584 + 0.963256i \(0.586556\pi\)
\(942\) 0 0
\(943\) 4.38576i 0.142820i
\(944\) 0.367024i 0.0119456i
\(945\) 0 0
\(946\) 5.09583 24.5748i 0.165680 0.798994i
\(947\) 22.4636i 0.729967i 0.931014 + 0.364984i \(0.118925\pi\)
−0.931014 + 0.364984i \(0.881075\pi\)
\(948\) 0 0
\(949\) 63.2820 2.05422
\(950\) 4.01857i 0.130380i
\(951\) 0 0
\(952\) 19.4599i 0.630699i
\(953\) 13.3899 0.433743 0.216871 0.976200i \(-0.430415\pi\)
0.216871 + 0.976200i \(0.430415\pi\)
\(954\) 0 0
\(955\) −59.9415 −1.93966
\(956\) −24.4821 −0.791808
\(957\) 0 0
\(958\) 1.54399 0.0498841
\(959\) 43.8741 1.41677
\(960\) 0 0
\(961\) −16.4758 −0.531478
\(962\) 5.19283i 0.167423i
\(963\) 0 0
\(964\) 1.52554i 0.0491344i
\(965\) −10.9426 −0.352256
\(966\) 0 0
\(967\) 43.6332i 1.40315i 0.712597 + 0.701574i \(0.247519\pi\)
−0.712597 + 0.701574i \(0.752481\pi\)
\(968\) −10.0930 4.37386i −0.324402 0.140581i
\(969\) 0 0
\(970\) 23.1776i 0.744189i
\(971\) 20.3377i 0.652669i 0.945254 + 0.326335i \(0.105814\pi\)
−0.945254 + 0.326335i \(0.894186\pi\)
\(972\) 0 0
\(973\) 12.2886 0.393956
\(974\) −16.5914 −0.531623
\(975\) 0 0
\(976\) 4.68980i 0.150117i
\(977\) 11.0146i 0.352387i 0.984356 + 0.176194i \(0.0563785\pi\)
−0.984356 + 0.176194i \(0.943621\pi\)
\(978\) 0 0
\(979\) −7.84686 + 37.8417i −0.250787 + 1.20943i
\(980\) 11.8979i 0.380066i
\(981\) 0 0
\(982\) 33.1297 1.05721
\(983\) 12.2196i 0.389743i −0.980829 0.194872i \(-0.937571\pi\)
0.980829 0.194872i \(-0.0624290\pi\)
\(984\) 0 0
\(985\) 72.7044i 2.31656i
\(986\) −52.4683 −1.67093
\(987\) 0 0
\(988\) −4.99159 −0.158804
\(989\) −5.83833 −0.185648
\(990\) 0 0
\(991\) 15.9075 0.505319 0.252660 0.967555i \(-0.418695\pi\)
0.252660 + 0.967555i \(0.418695\pi\)
\(992\) 3.81106 0.121001
\(993\) 0 0
\(994\) 44.8104 1.42130
\(995\) 57.6240i 1.82680i
\(996\) 0 0
\(997\) 20.0207i 0.634061i −0.948415 0.317030i \(-0.897314\pi\)
0.948415 0.317030i \(-0.102686\pi\)
\(998\) 27.7467 0.878305
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.b.a.989.5 36
3.2 odd 2 3762.2.b.b.989.32 yes 36
11.10 odd 2 3762.2.b.b.989.5 yes 36
33.32 even 2 inner 3762.2.b.a.989.32 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3762.2.b.a.989.5 36 1.1 even 1 trivial
3762.2.b.a.989.32 yes 36 33.32 even 2 inner
3762.2.b.b.989.5 yes 36 11.10 odd 2
3762.2.b.b.989.32 yes 36 3.2 odd 2