Properties

Label 3762.2.b.b.989.4
Level $3762$
Weight $2$
Character 3762.989
Analytic conductor $30.040$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(989,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.989");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 989.4
Character \(\chi\) \(=\) 3762.989
Dual form 3762.2.b.b.989.33

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.17738i q^{5} +1.82716i q^{7} +1.00000 q^{8} -3.17738i q^{10} +(3.31203 - 0.174537i) q^{11} +1.50882i q^{13} +1.82716i q^{14} +1.00000 q^{16} -1.79436 q^{17} +1.00000i q^{19} -3.17738i q^{20} +(3.31203 - 0.174537i) q^{22} +1.69855i q^{23} -5.09572 q^{25} +1.50882i q^{26} +1.82716i q^{28} +7.31983 q^{29} +6.41670 q^{31} +1.00000 q^{32} -1.79436 q^{34} +5.80556 q^{35} +0.490103 q^{37} +1.00000i q^{38} -3.17738i q^{40} +7.55243 q^{41} +6.64939i q^{43} +(3.31203 - 0.174537i) q^{44} +1.69855i q^{46} -13.6683i q^{47} +3.66150 q^{49} -5.09572 q^{50} +1.50882i q^{52} +1.80541i q^{53} +(-0.554569 - 10.5236i) q^{55} +1.82716i q^{56} +7.31983 q^{58} -6.18295i q^{59} +8.74905i q^{61} +6.41670 q^{62} +1.00000 q^{64} +4.79408 q^{65} -9.32749 q^{67} -1.79436 q^{68} +5.80556 q^{70} +3.66376i q^{71} -13.3378i q^{73} +0.490103 q^{74} +1.00000i q^{76} +(0.318906 + 6.05159i) q^{77} -11.4910i q^{79} -3.17738i q^{80} +7.55243 q^{82} +5.73214 q^{83} +5.70137i q^{85} +6.64939i q^{86} +(3.31203 - 0.174537i) q^{88} -4.98909i q^{89} -2.75685 q^{91} +1.69855i q^{92} -13.6683i q^{94} +3.17738 q^{95} -13.6131 q^{97} +3.66150 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 36 q^{2} + 36 q^{4} + 36 q^{8} - 4 q^{11} + 36 q^{16} + 16 q^{17} - 4 q^{22} - 28 q^{25} - 8 q^{31} + 36 q^{32} + 16 q^{34} + 16 q^{35} + 16 q^{37} + 24 q^{41} - 4 q^{44} - 68 q^{49} - 28 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.17738i 1.42097i −0.703714 0.710483i \(-0.748476\pi\)
0.703714 0.710483i \(-0.251524\pi\)
\(6\) 0 0
\(7\) 1.82716i 0.690600i 0.938492 + 0.345300i \(0.112223\pi\)
−0.938492 + 0.345300i \(0.887777\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.17738i 1.00477i
\(11\) 3.31203 0.174537i 0.998614 0.0526248i
\(12\) 0 0
\(13\) 1.50882i 0.418471i 0.977865 + 0.209235i \(0.0670975\pi\)
−0.977865 + 0.209235i \(0.932903\pi\)
\(14\) 1.82716i 0.488328i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.79436 −0.435197 −0.217599 0.976038i \(-0.569822\pi\)
−0.217599 + 0.976038i \(0.569822\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 3.17738i 0.710483i
\(21\) 0 0
\(22\) 3.31203 0.174537i 0.706127 0.0372114i
\(23\) 1.69855i 0.354173i 0.984195 + 0.177086i \(0.0566672\pi\)
−0.984195 + 0.177086i \(0.943333\pi\)
\(24\) 0 0
\(25\) −5.09572 −1.01914
\(26\) 1.50882i 0.295904i
\(27\) 0 0
\(28\) 1.82716i 0.345300i
\(29\) 7.31983 1.35926 0.679629 0.733556i \(-0.262141\pi\)
0.679629 + 0.733556i \(0.262141\pi\)
\(30\) 0 0
\(31\) 6.41670 1.15247 0.576236 0.817283i \(-0.304521\pi\)
0.576236 + 0.817283i \(0.304521\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.79436 −0.307731
\(35\) 5.80556 0.981319
\(36\) 0 0
\(37\) 0.490103 0.0805724 0.0402862 0.999188i \(-0.487173\pi\)
0.0402862 + 0.999188i \(0.487173\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) 3.17738i 0.502387i
\(41\) 7.55243 1.17949 0.589746 0.807589i \(-0.299228\pi\)
0.589746 + 0.807589i \(0.299228\pi\)
\(42\) 0 0
\(43\) 6.64939i 1.01402i 0.861940 + 0.507011i \(0.169250\pi\)
−0.861940 + 0.507011i \(0.830750\pi\)
\(44\) 3.31203 0.174537i 0.499307 0.0263124i
\(45\) 0 0
\(46\) 1.69855i 0.250438i
\(47\) 13.6683i 1.99373i −0.0791466 0.996863i \(-0.525220\pi\)
0.0791466 0.996863i \(-0.474780\pi\)
\(48\) 0 0
\(49\) 3.66150 0.523071
\(50\) −5.09572 −0.720644
\(51\) 0 0
\(52\) 1.50882i 0.209235i
\(53\) 1.80541i 0.247992i 0.992283 + 0.123996i \(0.0395710\pi\)
−0.992283 + 0.123996i \(0.960429\pi\)
\(54\) 0 0
\(55\) −0.554569 10.5236i −0.0747781 1.41900i
\(56\) 1.82716i 0.244164i
\(57\) 0 0
\(58\) 7.31983 0.961140
\(59\) 6.18295i 0.804952i −0.915431 0.402476i \(-0.868150\pi\)
0.915431 0.402476i \(-0.131850\pi\)
\(60\) 0 0
\(61\) 8.74905i 1.12020i 0.828425 + 0.560100i \(0.189237\pi\)
−0.828425 + 0.560100i \(0.810763\pi\)
\(62\) 6.41670 0.814921
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.79408 0.594633
\(66\) 0 0
\(67\) −9.32749 −1.13953 −0.569767 0.821806i \(-0.692967\pi\)
−0.569767 + 0.821806i \(0.692967\pi\)
\(68\) −1.79436 −0.217599
\(69\) 0 0
\(70\) 5.80556 0.693898
\(71\) 3.66376i 0.434808i 0.976082 + 0.217404i \(0.0697590\pi\)
−0.976082 + 0.217404i \(0.930241\pi\)
\(72\) 0 0
\(73\) 13.3378i 1.56107i −0.625112 0.780535i \(-0.714947\pi\)
0.625112 0.780535i \(-0.285053\pi\)
\(74\) 0.490103 0.0569733
\(75\) 0 0
\(76\) 1.00000i 0.114708i
\(77\) 0.318906 + 6.05159i 0.0363427 + 0.689643i
\(78\) 0 0
\(79\) 11.4910i 1.29283i −0.762984 0.646417i \(-0.776267\pi\)
0.762984 0.646417i \(-0.223733\pi\)
\(80\) 3.17738i 0.355242i
\(81\) 0 0
\(82\) 7.55243 0.834026
\(83\) 5.73214 0.629184 0.314592 0.949227i \(-0.398132\pi\)
0.314592 + 0.949227i \(0.398132\pi\)
\(84\) 0 0
\(85\) 5.70137i 0.618401i
\(86\) 6.64939i 0.717022i
\(87\) 0 0
\(88\) 3.31203 0.174537i 0.353063 0.0186057i
\(89\) 4.98909i 0.528843i −0.964407 0.264421i \(-0.914819\pi\)
0.964407 0.264421i \(-0.0851810\pi\)
\(90\) 0 0
\(91\) −2.75685 −0.288996
\(92\) 1.69855i 0.177086i
\(93\) 0 0
\(94\) 13.6683i 1.40978i
\(95\) 3.17738 0.325992
\(96\) 0 0
\(97\) −13.6131 −1.38220 −0.691101 0.722758i \(-0.742874\pi\)
−0.691101 + 0.722758i \(0.742874\pi\)
\(98\) 3.66150 0.369867
\(99\) 0 0
\(100\) −5.09572 −0.509572
\(101\) −5.97341 −0.594377 −0.297188 0.954819i \(-0.596049\pi\)
−0.297188 + 0.954819i \(0.596049\pi\)
\(102\) 0 0
\(103\) −14.8793 −1.46610 −0.733050 0.680175i \(-0.761904\pi\)
−0.733050 + 0.680175i \(0.761904\pi\)
\(104\) 1.50882i 0.147952i
\(105\) 0 0
\(106\) 1.80541i 0.175357i
\(107\) 9.02249 0.872237 0.436118 0.899889i \(-0.356353\pi\)
0.436118 + 0.899889i \(0.356353\pi\)
\(108\) 0 0
\(109\) 7.82316i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(110\) −0.554569 10.5236i −0.0528761 1.00338i
\(111\) 0 0
\(112\) 1.82716i 0.172650i
\(113\) 4.63215i 0.435756i 0.975976 + 0.217878i \(0.0699135\pi\)
−0.975976 + 0.217878i \(0.930087\pi\)
\(114\) 0 0
\(115\) 5.39694 0.503268
\(116\) 7.31983 0.679629
\(117\) 0 0
\(118\) 6.18295i 0.569187i
\(119\) 3.27858i 0.300547i
\(120\) 0 0
\(121\) 10.9391 1.15614i 0.994461 0.105104i
\(122\) 8.74905i 0.792102i
\(123\) 0 0
\(124\) 6.41670 0.576236
\(125\) 0.304150i 0.0272040i
\(126\) 0 0
\(127\) 0.889796i 0.0789567i −0.999220 0.0394783i \(-0.987430\pi\)
0.999220 0.0394783i \(-0.0125696\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 4.79408 0.420469
\(131\) −2.35311 −0.205592 −0.102796 0.994702i \(-0.532779\pi\)
−0.102796 + 0.994702i \(0.532779\pi\)
\(132\) 0 0
\(133\) −1.82716 −0.158435
\(134\) −9.32749 −0.805773
\(135\) 0 0
\(136\) −1.79436 −0.153865
\(137\) 20.2195i 1.72747i 0.503948 + 0.863734i \(0.331880\pi\)
−0.503948 + 0.863734i \(0.668120\pi\)
\(138\) 0 0
\(139\) 20.6561i 1.75203i −0.482288 0.876013i \(-0.660194\pi\)
0.482288 0.876013i \(-0.339806\pi\)
\(140\) 5.80556 0.490660
\(141\) 0 0
\(142\) 3.66376i 0.307456i
\(143\) 0.263344 + 4.99725i 0.0220220 + 0.417891i
\(144\) 0 0
\(145\) 23.2578i 1.93146i
\(146\) 13.3378i 1.10384i
\(147\) 0 0
\(148\) 0.490103 0.0402862
\(149\) 1.46265 0.119825 0.0599127 0.998204i \(-0.480918\pi\)
0.0599127 + 0.998204i \(0.480918\pi\)
\(150\) 0 0
\(151\) 14.3004i 1.16375i −0.813279 0.581874i \(-0.802320\pi\)
0.813279 0.581874i \(-0.197680\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) 0 0
\(154\) 0.318906 + 6.05159i 0.0256982 + 0.487651i
\(155\) 20.3883i 1.63762i
\(156\) 0 0
\(157\) 20.4483 1.63195 0.815976 0.578086i \(-0.196200\pi\)
0.815976 + 0.578086i \(0.196200\pi\)
\(158\) 11.4910i 0.914172i
\(159\) 0 0
\(160\) 3.17738i 0.251194i
\(161\) −3.10352 −0.244592
\(162\) 0 0
\(163\) 2.42589 0.190010 0.0950052 0.995477i \(-0.469713\pi\)
0.0950052 + 0.995477i \(0.469713\pi\)
\(164\) 7.55243 0.589746
\(165\) 0 0
\(166\) 5.73214 0.444900
\(167\) 2.76565 0.214013 0.107006 0.994258i \(-0.465873\pi\)
0.107006 + 0.994258i \(0.465873\pi\)
\(168\) 0 0
\(169\) 10.7235 0.824882
\(170\) 5.70137i 0.437275i
\(171\) 0 0
\(172\) 6.64939i 0.507011i
\(173\) −18.3305 −1.39365 −0.696823 0.717244i \(-0.745403\pi\)
−0.696823 + 0.717244i \(0.745403\pi\)
\(174\) 0 0
\(175\) 9.31068i 0.703821i
\(176\) 3.31203 0.174537i 0.249654 0.0131562i
\(177\) 0 0
\(178\) 4.98909i 0.373948i
\(179\) 6.72559i 0.502694i 0.967897 + 0.251347i \(0.0808736\pi\)
−0.967897 + 0.251347i \(0.919126\pi\)
\(180\) 0 0
\(181\) 10.4185 0.774400 0.387200 0.921996i \(-0.373442\pi\)
0.387200 + 0.921996i \(0.373442\pi\)
\(182\) −2.75685 −0.204351
\(183\) 0 0
\(184\) 1.69855i 0.125219i
\(185\) 1.55724i 0.114491i
\(186\) 0 0
\(187\) −5.94299 + 0.313183i −0.434594 + 0.0229022i
\(188\) 13.6683i 0.996863i
\(189\) 0 0
\(190\) 3.17738 0.230511
\(191\) 0.767620i 0.0555430i 0.999614 + 0.0277715i \(0.00884108\pi\)
−0.999614 + 0.0277715i \(0.991159\pi\)
\(192\) 0 0
\(193\) 9.46804i 0.681524i 0.940150 + 0.340762i \(0.110685\pi\)
−0.940150 + 0.340762i \(0.889315\pi\)
\(194\) −13.6131 −0.977364
\(195\) 0 0
\(196\) 3.66150 0.261536
\(197\) 14.0225 0.999058 0.499529 0.866297i \(-0.333506\pi\)
0.499529 + 0.866297i \(0.333506\pi\)
\(198\) 0 0
\(199\) 0.968012 0.0686206 0.0343103 0.999411i \(-0.489077\pi\)
0.0343103 + 0.999411i \(0.489077\pi\)
\(200\) −5.09572 −0.360322
\(201\) 0 0
\(202\) −5.97341 −0.420288
\(203\) 13.3745i 0.938703i
\(204\) 0 0
\(205\) 23.9969i 1.67602i
\(206\) −14.8793 −1.03669
\(207\) 0 0
\(208\) 1.50882i 0.104618i
\(209\) 0.174537 + 3.31203i 0.0120730 + 0.229098i
\(210\) 0 0
\(211\) 11.5426i 0.794628i −0.917683 0.397314i \(-0.869942\pi\)
0.917683 0.397314i \(-0.130058\pi\)
\(212\) 1.80541i 0.123996i
\(213\) 0 0
\(214\) 9.02249 0.616765
\(215\) 21.1276 1.44089
\(216\) 0 0
\(217\) 11.7243i 0.795898i
\(218\) 7.82316i 0.529851i
\(219\) 0 0
\(220\) −0.554569 10.5236i −0.0373890 0.709499i
\(221\) 2.70737i 0.182117i
\(222\) 0 0
\(223\) −9.33268 −0.624962 −0.312481 0.949924i \(-0.601160\pi\)
−0.312481 + 0.949924i \(0.601160\pi\)
\(224\) 1.82716i 0.122082i
\(225\) 0 0
\(226\) 4.63215i 0.308126i
\(227\) 1.35999 0.0902658 0.0451329 0.998981i \(-0.485629\pi\)
0.0451329 + 0.998981i \(0.485629\pi\)
\(228\) 0 0
\(229\) 18.1305 1.19809 0.599047 0.800714i \(-0.295546\pi\)
0.599047 + 0.800714i \(0.295546\pi\)
\(230\) 5.39694 0.355864
\(231\) 0 0
\(232\) 7.31983 0.480570
\(233\) −2.77760 −0.181967 −0.0909834 0.995852i \(-0.529001\pi\)
−0.0909834 + 0.995852i \(0.529001\pi\)
\(234\) 0 0
\(235\) −43.4293 −2.83302
\(236\) 6.18295i 0.402476i
\(237\) 0 0
\(238\) 3.27858i 0.212519i
\(239\) 17.7215 1.14631 0.573153 0.819448i \(-0.305720\pi\)
0.573153 + 0.819448i \(0.305720\pi\)
\(240\) 0 0
\(241\) 4.99032i 0.321455i −0.986999 0.160728i \(-0.948616\pi\)
0.986999 0.160728i \(-0.0513840\pi\)
\(242\) 10.9391 1.15614i 0.703190 0.0743196i
\(243\) 0 0
\(244\) 8.74905i 0.560100i
\(245\) 11.6340i 0.743267i
\(246\) 0 0
\(247\) −1.50882 −0.0960038
\(248\) 6.41670 0.407461
\(249\) 0 0
\(250\) 0.304150i 0.0192361i
\(251\) 13.0051i 0.820876i 0.911889 + 0.410438i \(0.134624\pi\)
−0.911889 + 0.410438i \(0.865376\pi\)
\(252\) 0 0
\(253\) 0.296460 + 5.62566i 0.0186383 + 0.353682i
\(254\) 0.889796i 0.0558308i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.96286i 0.247197i −0.992332 0.123598i \(-0.960557\pi\)
0.992332 0.123598i \(-0.0394434\pi\)
\(258\) 0 0
\(259\) 0.895495i 0.0556433i
\(260\) 4.79408 0.297316
\(261\) 0 0
\(262\) −2.35311 −0.145375
\(263\) −18.6239 −1.14840 −0.574200 0.818715i \(-0.694687\pi\)
−0.574200 + 0.818715i \(0.694687\pi\)
\(264\) 0 0
\(265\) 5.73647 0.352389
\(266\) −1.82716 −0.112030
\(267\) 0 0
\(268\) −9.32749 −0.569767
\(269\) 25.3246i 1.54407i 0.635582 + 0.772033i \(0.280760\pi\)
−0.635582 + 0.772033i \(0.719240\pi\)
\(270\) 0 0
\(271\) 13.5880i 0.825412i 0.910864 + 0.412706i \(0.135416\pi\)
−0.910864 + 0.412706i \(0.864584\pi\)
\(272\) −1.79436 −0.108799
\(273\) 0 0
\(274\) 20.2195i 1.22150i
\(275\) −16.8772 + 0.889391i −1.01773 + 0.0536323i
\(276\) 0 0
\(277\) 2.49779i 0.150077i 0.997181 + 0.0750387i \(0.0239080\pi\)
−0.997181 + 0.0750387i \(0.976092\pi\)
\(278\) 20.6561i 1.23887i
\(279\) 0 0
\(280\) 5.80556 0.346949
\(281\) 3.03707 0.181176 0.0905882 0.995888i \(-0.471125\pi\)
0.0905882 + 0.995888i \(0.471125\pi\)
\(282\) 0 0
\(283\) 13.5569i 0.805872i 0.915228 + 0.402936i \(0.132010\pi\)
−0.915228 + 0.402936i \(0.867990\pi\)
\(284\) 3.66376i 0.217404i
\(285\) 0 0
\(286\) 0.263344 + 4.99725i 0.0155719 + 0.295494i
\(287\) 13.7995i 0.814557i
\(288\) 0 0
\(289\) −13.7803 −0.810603
\(290\) 23.2578i 1.36575i
\(291\) 0 0
\(292\) 13.3378i 0.780535i
\(293\) −6.35638 −0.371344 −0.185672 0.982612i \(-0.559446\pi\)
−0.185672 + 0.982612i \(0.559446\pi\)
\(294\) 0 0
\(295\) −19.6456 −1.14381
\(296\) 0.490103 0.0284867
\(297\) 0 0
\(298\) 1.46265 0.0847293
\(299\) −2.56281 −0.148211
\(300\) 0 0
\(301\) −12.1495 −0.700284
\(302\) 14.3004i 0.822894i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 27.7990 1.59177
\(306\) 0 0
\(307\) 10.5247i 0.600676i −0.953833 0.300338i \(-0.902900\pi\)
0.953833 0.300338i \(-0.0970995\pi\)
\(308\) 0.318906 + 6.05159i 0.0181714 + 0.344822i
\(309\) 0 0
\(310\) 20.3883i 1.15798i
\(311\) 15.9661i 0.905354i 0.891675 + 0.452677i \(0.149531\pi\)
−0.891675 + 0.452677i \(0.850469\pi\)
\(312\) 0 0
\(313\) −28.5739 −1.61509 −0.807547 0.589804i \(-0.799205\pi\)
−0.807547 + 0.589804i \(0.799205\pi\)
\(314\) 20.4483 1.15396
\(315\) 0 0
\(316\) 11.4910i 0.646417i
\(317\) 5.79413i 0.325431i −0.986673 0.162715i \(-0.947975\pi\)
0.986673 0.162715i \(-0.0520252\pi\)
\(318\) 0 0
\(319\) 24.2435 1.27758i 1.35737 0.0715307i
\(320\) 3.17738i 0.177621i
\(321\) 0 0
\(322\) −3.10352 −0.172953
\(323\) 1.79436i 0.0998411i
\(324\) 0 0
\(325\) 7.68852i 0.426482i
\(326\) 2.42589 0.134358
\(327\) 0 0
\(328\) 7.55243 0.417013
\(329\) 24.9741 1.37687
\(330\) 0 0
\(331\) −20.7981 −1.14317 −0.571584 0.820544i \(-0.693671\pi\)
−0.571584 + 0.820544i \(0.693671\pi\)
\(332\) 5.73214 0.314592
\(333\) 0 0
\(334\) 2.76565 0.151330
\(335\) 29.6370i 1.61924i
\(336\) 0 0
\(337\) 1.66130i 0.0904965i −0.998976 0.0452483i \(-0.985592\pi\)
0.998976 0.0452483i \(-0.0144079\pi\)
\(338\) 10.7235 0.583280
\(339\) 0 0
\(340\) 5.70137i 0.309200i
\(341\) 21.2523 1.11995i 1.15088 0.0606487i
\(342\) 0 0
\(343\) 19.4802i 1.05183i
\(344\) 6.64939i 0.358511i
\(345\) 0 0
\(346\) −18.3305 −0.985456
\(347\) −11.1045 −0.596121 −0.298061 0.954547i \(-0.596340\pi\)
−0.298061 + 0.954547i \(0.596340\pi\)
\(348\) 0 0
\(349\) 19.0884i 1.02178i 0.859646 + 0.510890i \(0.170684\pi\)
−0.859646 + 0.510890i \(0.829316\pi\)
\(350\) 9.31068i 0.497677i
\(351\) 0 0
\(352\) 3.31203 0.174537i 0.176532 0.00930284i
\(353\) 3.14424i 0.167351i −0.996493 0.0836756i \(-0.973334\pi\)
0.996493 0.0836756i \(-0.0266660\pi\)
\(354\) 0 0
\(355\) 11.6411 0.617848
\(356\) 4.98909i 0.264421i
\(357\) 0 0
\(358\) 6.72559i 0.355459i
\(359\) 31.9249 1.68493 0.842466 0.538750i \(-0.181103\pi\)
0.842466 + 0.538750i \(0.181103\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 10.4185 0.547583
\(363\) 0 0
\(364\) −2.75685 −0.144498
\(365\) −42.3792 −2.21823
\(366\) 0 0
\(367\) −33.0623 −1.72584 −0.862918 0.505344i \(-0.831365\pi\)
−0.862918 + 0.505344i \(0.831365\pi\)
\(368\) 1.69855i 0.0885432i
\(369\) 0 0
\(370\) 1.55724i 0.0809572i
\(371\) −3.29877 −0.171263
\(372\) 0 0
\(373\) 6.27558i 0.324937i −0.986714 0.162469i \(-0.948054\pi\)
0.986714 0.162469i \(-0.0519456\pi\)
\(374\) −5.94299 + 0.313183i −0.307305 + 0.0161943i
\(375\) 0 0
\(376\) 13.6683i 0.704889i
\(377\) 11.0443i 0.568810i
\(378\) 0 0
\(379\) −35.9059 −1.84436 −0.922182 0.386756i \(-0.873596\pi\)
−0.922182 + 0.386756i \(0.873596\pi\)
\(380\) 3.17738 0.162996
\(381\) 0 0
\(382\) 0.767620i 0.0392748i
\(383\) 21.0829i 1.07729i 0.842533 + 0.538644i \(0.181063\pi\)
−0.842533 + 0.538644i \(0.818937\pi\)
\(384\) 0 0
\(385\) 19.2282 1.01328i 0.979960 0.0516418i
\(386\) 9.46804i 0.481910i
\(387\) 0 0
\(388\) −13.6131 −0.691101
\(389\) 0.203373i 0.0103114i 0.999987 + 0.00515571i \(0.00164112\pi\)
−0.999987 + 0.00515571i \(0.998359\pi\)
\(390\) 0 0
\(391\) 3.04782i 0.154135i
\(392\) 3.66150 0.184934
\(393\) 0 0
\(394\) 14.0225 0.706441
\(395\) −36.5111 −1.83707
\(396\) 0 0
\(397\) 16.9003 0.848203 0.424102 0.905615i \(-0.360590\pi\)
0.424102 + 0.905615i \(0.360590\pi\)
\(398\) 0.968012 0.0485221
\(399\) 0 0
\(400\) −5.09572 −0.254786
\(401\) 3.35221i 0.167401i 0.996491 + 0.0837006i \(0.0266739\pi\)
−0.996491 + 0.0837006i \(0.973326\pi\)
\(402\) 0 0
\(403\) 9.68163i 0.482276i
\(404\) −5.97341 −0.297188
\(405\) 0 0
\(406\) 13.3745i 0.663763i
\(407\) 1.62324 0.0855410i 0.0804608 0.00424011i
\(408\) 0 0
\(409\) 33.7432i 1.66849i 0.551391 + 0.834247i \(0.314097\pi\)
−0.551391 + 0.834247i \(0.685903\pi\)
\(410\) 23.9969i 1.18512i
\(411\) 0 0
\(412\) −14.8793 −0.733050
\(413\) 11.2972 0.555900
\(414\) 0 0
\(415\) 18.2132i 0.894049i
\(416\) 1.50882i 0.0739759i
\(417\) 0 0
\(418\) 0.174537 + 3.31203i 0.00853687 + 0.161997i
\(419\) 16.1750i 0.790201i −0.918638 0.395100i \(-0.870710\pi\)
0.918638 0.395100i \(-0.129290\pi\)
\(420\) 0 0
\(421\) −39.0009 −1.90079 −0.950393 0.311052i \(-0.899319\pi\)
−0.950393 + 0.311052i \(0.899319\pi\)
\(422\) 11.5426i 0.561887i
\(423\) 0 0
\(424\) 1.80541i 0.0876785i
\(425\) 9.14358 0.443529
\(426\) 0 0
\(427\) −15.9859 −0.773611
\(428\) 9.02249 0.436118
\(429\) 0 0
\(430\) 21.1276 1.01886
\(431\) 12.6119 0.607492 0.303746 0.952753i \(-0.401763\pi\)
0.303746 + 0.952753i \(0.401763\pi\)
\(432\) 0 0
\(433\) 30.4096 1.46139 0.730697 0.682702i \(-0.239195\pi\)
0.730697 + 0.682702i \(0.239195\pi\)
\(434\) 11.7243i 0.562785i
\(435\) 0 0
\(436\) 7.82316i 0.374661i
\(437\) −1.69855 −0.0812528
\(438\) 0 0
\(439\) 13.2488i 0.632332i 0.948704 + 0.316166i \(0.102396\pi\)
−0.948704 + 0.316166i \(0.897604\pi\)
\(440\) −0.554569 10.5236i −0.0264380 0.501691i
\(441\) 0 0
\(442\) 2.70737i 0.128776i
\(443\) 40.4929i 1.92388i −0.273268 0.961938i \(-0.588104\pi\)
0.273268 0.961938i \(-0.411896\pi\)
\(444\) 0 0
\(445\) −15.8522 −0.751468
\(446\) −9.33268 −0.441915
\(447\) 0 0
\(448\) 1.82716i 0.0863250i
\(449\) 17.6319i 0.832101i 0.909342 + 0.416050i \(0.136586\pi\)
−0.909342 + 0.416050i \(0.863414\pi\)
\(450\) 0 0
\(451\) 25.0139 1.31818i 1.17786 0.0620705i
\(452\) 4.63215i 0.217878i
\(453\) 0 0
\(454\) 1.35999 0.0638275
\(455\) 8.75954i 0.410654i
\(456\) 0 0
\(457\) 10.6107i 0.496348i 0.968716 + 0.248174i \(0.0798304\pi\)
−0.968716 + 0.248174i \(0.920170\pi\)
\(458\) 18.1305 0.847181
\(459\) 0 0
\(460\) 5.39694 0.251634
\(461\) 7.67734 0.357569 0.178785 0.983888i \(-0.442783\pi\)
0.178785 + 0.983888i \(0.442783\pi\)
\(462\) 0 0
\(463\) −9.58193 −0.445310 −0.222655 0.974897i \(-0.571472\pi\)
−0.222655 + 0.974897i \(0.571472\pi\)
\(464\) 7.31983 0.339814
\(465\) 0 0
\(466\) −2.77760 −0.128670
\(467\) 23.7973i 1.10121i −0.834767 0.550603i \(-0.814398\pi\)
0.834767 0.550603i \(-0.185602\pi\)
\(468\) 0 0
\(469\) 17.0428i 0.786963i
\(470\) −43.4293 −2.00325
\(471\) 0 0
\(472\) 6.18295i 0.284594i
\(473\) 1.16056 + 22.0230i 0.0533627 + 1.01262i
\(474\) 0 0
\(475\) 5.09572i 0.233808i
\(476\) 3.27858i 0.150274i
\(477\) 0 0
\(478\) 17.7215 0.810561
\(479\) −24.8164 −1.13389 −0.566945 0.823755i \(-0.691875\pi\)
−0.566945 + 0.823755i \(0.691875\pi\)
\(480\) 0 0
\(481\) 0.739476i 0.0337172i
\(482\) 4.99032i 0.227303i
\(483\) 0 0
\(484\) 10.9391 1.15614i 0.497231 0.0525519i
\(485\) 43.2540i 1.96406i
\(486\) 0 0
\(487\) 20.6772 0.936974 0.468487 0.883470i \(-0.344799\pi\)
0.468487 + 0.883470i \(0.344799\pi\)
\(488\) 8.74905i 0.396051i
\(489\) 0 0
\(490\) 11.6340i 0.525569i
\(491\) 27.4835 1.24031 0.620157 0.784477i \(-0.287069\pi\)
0.620157 + 0.784477i \(0.287069\pi\)
\(492\) 0 0
\(493\) −13.1344 −0.591545
\(494\) −1.50882 −0.0678849
\(495\) 0 0
\(496\) 6.41670 0.288118
\(497\) −6.69426 −0.300279
\(498\) 0 0
\(499\) −23.4850 −1.05133 −0.525667 0.850691i \(-0.676184\pi\)
−0.525667 + 0.850691i \(0.676184\pi\)
\(500\) 0.304150i 0.0136020i
\(501\) 0 0
\(502\) 13.0051i 0.580447i
\(503\) −39.5787 −1.76473 −0.882364 0.470567i \(-0.844050\pi\)
−0.882364 + 0.470567i \(0.844050\pi\)
\(504\) 0 0
\(505\) 18.9798i 0.844589i
\(506\) 0.296460 + 5.62566i 0.0131793 + 0.250091i
\(507\) 0 0
\(508\) 0.889796i 0.0394783i
\(509\) 17.1523i 0.760261i −0.924933 0.380130i \(-0.875879\pi\)
0.924933 0.380130i \(-0.124121\pi\)
\(510\) 0 0
\(511\) 24.3702 1.07808
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.96286i 0.174794i
\(515\) 47.2771i 2.08328i
\(516\) 0 0
\(517\) −2.38562 45.2698i −0.104919 1.99096i
\(518\) 0.895495i 0.0393458i
\(519\) 0 0
\(520\) 4.79408 0.210234
\(521\) 16.6778i 0.730669i 0.930876 + 0.365334i \(0.119045\pi\)
−0.930876 + 0.365334i \(0.880955\pi\)
\(522\) 0 0
\(523\) 26.1007i 1.14131i 0.821191 + 0.570653i \(0.193310\pi\)
−0.821191 + 0.570653i \(0.806690\pi\)
\(524\) −2.35311 −0.102796
\(525\) 0 0
\(526\) −18.6239 −0.812041
\(527\) −11.5139 −0.501553
\(528\) 0 0
\(529\) 20.1149 0.874562
\(530\) 5.73647 0.249176
\(531\) 0 0
\(532\) −1.82716 −0.0792173
\(533\) 11.3952i 0.493583i
\(534\) 0 0
\(535\) 28.6678i 1.23942i
\(536\) −9.32749 −0.402886
\(537\) 0 0
\(538\) 25.3246i 1.09182i
\(539\) 12.1270 0.639067i 0.522347 0.0275265i
\(540\) 0 0
\(541\) 28.2740i 1.21559i 0.794093 + 0.607796i \(0.207946\pi\)
−0.794093 + 0.607796i \(0.792054\pi\)
\(542\) 13.5880i 0.583655i
\(543\) 0 0
\(544\) −1.79436 −0.0769327
\(545\) 24.8571 1.06476
\(546\) 0 0
\(547\) 41.8979i 1.79142i 0.444634 + 0.895712i \(0.353334\pi\)
−0.444634 + 0.895712i \(0.646666\pi\)
\(548\) 20.2195i 0.863734i
\(549\) 0 0
\(550\) −16.8772 + 0.889391i −0.719646 + 0.0379238i
\(551\) 7.31983i 0.311835i
\(552\) 0 0
\(553\) 20.9958 0.892832
\(554\) 2.49779i 0.106121i
\(555\) 0 0
\(556\) 20.6561i 0.876013i
\(557\) −19.1209 −0.810178 −0.405089 0.914277i \(-0.632759\pi\)
−0.405089 + 0.914277i \(0.632759\pi\)
\(558\) 0 0
\(559\) −10.0327 −0.424339
\(560\) 5.80556 0.245330
\(561\) 0 0
\(562\) 3.03707 0.128111
\(563\) 6.76385 0.285062 0.142531 0.989790i \(-0.454476\pi\)
0.142531 + 0.989790i \(0.454476\pi\)
\(564\) 0 0
\(565\) 14.7181 0.619194
\(566\) 13.5569i 0.569837i
\(567\) 0 0
\(568\) 3.66376i 0.153728i
\(569\) 34.4928 1.44601 0.723006 0.690842i \(-0.242760\pi\)
0.723006 + 0.690842i \(0.242760\pi\)
\(570\) 0 0
\(571\) 27.2434i 1.14010i −0.821609 0.570051i \(-0.806923\pi\)
0.821609 0.570051i \(-0.193077\pi\)
\(572\) 0.263344 + 4.99725i 0.0110110 + 0.208945i
\(573\) 0 0
\(574\) 13.7995i 0.575979i
\(575\) 8.65536i 0.360953i
\(576\) 0 0
\(577\) 27.7152 1.15380 0.576900 0.816815i \(-0.304262\pi\)
0.576900 + 0.816815i \(0.304262\pi\)
\(578\) −13.7803 −0.573183
\(579\) 0 0
\(580\) 23.2578i 0.965729i
\(581\) 10.4735i 0.434514i
\(582\) 0 0
\(583\) 0.315111 + 5.97957i 0.0130505 + 0.247649i
\(584\) 13.3378i 0.551922i
\(585\) 0 0
\(586\) −6.35638 −0.262580
\(587\) 29.7091i 1.22623i −0.789995 0.613114i \(-0.789917\pi\)
0.789995 0.613114i \(-0.210083\pi\)
\(588\) 0 0
\(589\) 6.41670i 0.264395i
\(590\) −19.6456 −0.808795
\(591\) 0 0
\(592\) 0.490103 0.0201431
\(593\) −3.20901 −0.131778 −0.0658890 0.997827i \(-0.520988\pi\)
−0.0658890 + 0.997827i \(0.520988\pi\)
\(594\) 0 0
\(595\) −10.4173 −0.427067
\(596\) 1.46265 0.0599127
\(597\) 0 0
\(598\) −2.56281 −0.104801
\(599\) 29.2201i 1.19390i 0.802278 + 0.596951i \(0.203621\pi\)
−0.802278 + 0.596951i \(0.796379\pi\)
\(600\) 0 0
\(601\) 19.4961i 0.795262i 0.917545 + 0.397631i \(0.130168\pi\)
−0.917545 + 0.397631i \(0.869832\pi\)
\(602\) −12.1495 −0.495175
\(603\) 0 0
\(604\) 14.3004i 0.581874i
\(605\) −3.67350 34.7576i −0.149349 1.41310i
\(606\) 0 0
\(607\) 23.1552i 0.939839i 0.882709 + 0.469919i \(0.155717\pi\)
−0.882709 + 0.469919i \(0.844283\pi\)
\(608\) 1.00000i 0.0405554i
\(609\) 0 0
\(610\) 27.7990 1.12555
\(611\) 20.6230 0.834316
\(612\) 0 0
\(613\) 16.1215i 0.651141i −0.945518 0.325571i \(-0.894444\pi\)
0.945518 0.325571i \(-0.105556\pi\)
\(614\) 10.5247i 0.424742i
\(615\) 0 0
\(616\) 0.318906 + 6.05159i 0.0128491 + 0.243826i
\(617\) 5.19928i 0.209315i −0.994508 0.104658i \(-0.966625\pi\)
0.994508 0.104658i \(-0.0333747\pi\)
\(618\) 0 0
\(619\) −14.1637 −0.569289 −0.284644 0.958633i \(-0.591876\pi\)
−0.284644 + 0.958633i \(0.591876\pi\)
\(620\) 20.3883i 0.818812i
\(621\) 0 0
\(622\) 15.9661i 0.640182i
\(623\) 9.11585 0.365219
\(624\) 0 0
\(625\) −24.5122 −0.980489
\(626\) −28.5739 −1.14204
\(627\) 0 0
\(628\) 20.4483 0.815976
\(629\) −0.879423 −0.0350649
\(630\) 0 0
\(631\) −38.3095 −1.52508 −0.762538 0.646944i \(-0.776047\pi\)
−0.762538 + 0.646944i \(0.776047\pi\)
\(632\) 11.4910i 0.457086i
\(633\) 0 0
\(634\) 5.79413i 0.230114i
\(635\) −2.82722 −0.112195
\(636\) 0 0
\(637\) 5.52454i 0.218890i
\(638\) 24.2435 1.27758i 0.959808 0.0505798i
\(639\) 0 0
\(640\) 3.17738i 0.125597i
\(641\) 37.3029i 1.47337i −0.676233 0.736687i \(-0.736389\pi\)
0.676233 0.736687i \(-0.263611\pi\)
\(642\) 0 0
\(643\) −3.25516 −0.128371 −0.0641855 0.997938i \(-0.520445\pi\)
−0.0641855 + 0.997938i \(0.520445\pi\)
\(644\) −3.10352 −0.122296
\(645\) 0 0
\(646\) 1.79436i 0.0705983i
\(647\) 43.4360i 1.70765i −0.520563 0.853823i \(-0.674278\pi\)
0.520563 0.853823i \(-0.325722\pi\)
\(648\) 0 0
\(649\) −1.07915 20.4781i −0.0423605 0.803837i
\(650\) 7.68852i 0.301569i
\(651\) 0 0
\(652\) 2.42589 0.0950052
\(653\) 11.5798i 0.453152i 0.973994 + 0.226576i \(0.0727531\pi\)
−0.973994 + 0.226576i \(0.927247\pi\)
\(654\) 0 0
\(655\) 7.47671i 0.292139i
\(656\) 7.55243 0.294873
\(657\) 0 0
\(658\) 24.9741 0.973592
\(659\) −47.6716 −1.85702 −0.928511 0.371305i \(-0.878910\pi\)
−0.928511 + 0.371305i \(0.878910\pi\)
\(660\) 0 0
\(661\) −35.3062 −1.37325 −0.686627 0.727010i \(-0.740909\pi\)
−0.686627 + 0.727010i \(0.740909\pi\)
\(662\) −20.7981 −0.808341
\(663\) 0 0
\(664\) 5.73214 0.222450
\(665\) 5.80556i 0.225130i
\(666\) 0 0
\(667\) 12.4331i 0.481412i
\(668\) 2.76565 0.107006
\(669\) 0 0
\(670\) 29.6370i 1.14498i
\(671\) 1.52703 + 28.9771i 0.0589504 + 1.11865i
\(672\) 0 0
\(673\) 16.2403i 0.626018i −0.949750 0.313009i \(-0.898663\pi\)
0.949750 0.313009i \(-0.101337\pi\)
\(674\) 1.66130i 0.0639907i
\(675\) 0 0
\(676\) 10.7235 0.412441
\(677\) −6.67184 −0.256420 −0.128210 0.991747i \(-0.540923\pi\)
−0.128210 + 0.991747i \(0.540923\pi\)
\(678\) 0 0
\(679\) 24.8733i 0.954549i
\(680\) 5.70137i 0.218638i
\(681\) 0 0
\(682\) 21.2523 1.11995i 0.813792 0.0428851i
\(683\) 15.3456i 0.587184i 0.955931 + 0.293592i \(0.0948507\pi\)
−0.955931 + 0.293592i \(0.905149\pi\)
\(684\) 0 0
\(685\) 64.2450 2.45467
\(686\) 19.4802i 0.743758i
\(687\) 0 0
\(688\) 6.64939i 0.253505i
\(689\) −2.72404 −0.103778
\(690\) 0 0
\(691\) −2.40671 −0.0915555 −0.0457778 0.998952i \(-0.514577\pi\)
−0.0457778 + 0.998952i \(0.514577\pi\)
\(692\) −18.3305 −0.696823
\(693\) 0 0
\(694\) −11.1045 −0.421521
\(695\) −65.6322 −2.48957
\(696\) 0 0
\(697\) −13.5518 −0.513311
\(698\) 19.0884i 0.722508i
\(699\) 0 0
\(700\) 9.31068i 0.351911i
\(701\) −42.0831 −1.58946 −0.794728 0.606965i \(-0.792387\pi\)
−0.794728 + 0.606965i \(0.792387\pi\)
\(702\) 0 0
\(703\) 0.490103i 0.0184846i
\(704\) 3.31203 0.174537i 0.124827 0.00657810i
\(705\) 0 0
\(706\) 3.14424i 0.118335i
\(707\) 10.9144i 0.410477i
\(708\) 0 0
\(709\) −32.6922 −1.22778 −0.613890 0.789392i \(-0.710396\pi\)
−0.613890 + 0.789392i \(0.710396\pi\)
\(710\) 11.6411 0.436885
\(711\) 0 0
\(712\) 4.98909i 0.186974i
\(713\) 10.8991i 0.408174i
\(714\) 0 0
\(715\) 15.8781 0.836744i 0.593809 0.0312925i
\(716\) 6.72559i 0.251347i
\(717\) 0 0
\(718\) 31.9249 1.19143
\(719\) 26.5299i 0.989398i 0.869064 + 0.494699i \(0.164722\pi\)
−0.869064 + 0.494699i \(0.835278\pi\)
\(720\) 0 0
\(721\) 27.1868i 1.01249i
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) 10.4185 0.387200
\(725\) −37.2998 −1.38528
\(726\) 0 0
\(727\) 0.487378 0.0180759 0.00903793 0.999959i \(-0.497123\pi\)
0.00903793 + 0.999959i \(0.497123\pi\)
\(728\) −2.75685 −0.102176
\(729\) 0 0
\(730\) −42.3792 −1.56852
\(731\) 11.9314i 0.441300i
\(732\) 0 0
\(733\) 46.5957i 1.72105i −0.509406 0.860526i \(-0.670135\pi\)
0.509406 0.860526i \(-0.329865\pi\)
\(734\) −33.0623 −1.22035
\(735\) 0 0
\(736\) 1.69855i 0.0626095i
\(737\) −30.8929 + 1.62799i −1.13796 + 0.0599678i
\(738\) 0 0
\(739\) 3.29041i 0.121040i 0.998167 + 0.0605198i \(0.0192758\pi\)
−0.998167 + 0.0605198i \(0.980724\pi\)
\(740\) 1.55724i 0.0572454i
\(741\) 0 0
\(742\) −3.29877 −0.121102
\(743\) −2.11739 −0.0776794 −0.0388397 0.999245i \(-0.512366\pi\)
−0.0388397 + 0.999245i \(0.512366\pi\)
\(744\) 0 0
\(745\) 4.64740i 0.170268i
\(746\) 6.27558i 0.229765i
\(747\) 0 0
\(748\) −5.94299 + 0.313183i −0.217297 + 0.0114511i
\(749\) 16.4855i 0.602367i
\(750\) 0 0
\(751\) 2.66024 0.0970734 0.0485367 0.998821i \(-0.484544\pi\)
0.0485367 + 0.998821i \(0.484544\pi\)
\(752\) 13.6683i 0.498431i
\(753\) 0 0
\(754\) 11.0443i 0.402209i
\(755\) −45.4377 −1.65365
\(756\) 0 0
\(757\) −11.7079 −0.425532 −0.212766 0.977103i \(-0.568247\pi\)
−0.212766 + 0.977103i \(0.568247\pi\)
\(758\) −35.9059 −1.30416
\(759\) 0 0
\(760\) 3.17738 0.115256
\(761\) 2.37573 0.0861202 0.0430601 0.999072i \(-0.486289\pi\)
0.0430601 + 0.999072i \(0.486289\pi\)
\(762\) 0 0
\(763\) −14.2941 −0.517482
\(764\) 0.767620i 0.0277715i
\(765\) 0 0
\(766\) 21.0829i 0.761758i
\(767\) 9.32895 0.336849
\(768\) 0 0
\(769\) 10.2270i 0.368793i −0.982852 0.184397i \(-0.940967\pi\)
0.982852 0.184397i \(-0.0590331\pi\)
\(770\) 19.2282 1.01328i 0.692936 0.0365162i
\(771\) 0 0
\(772\) 9.46804i 0.340762i
\(773\) 34.1124i 1.22694i −0.789719 0.613469i \(-0.789773\pi\)
0.789719 0.613469i \(-0.210227\pi\)
\(774\) 0 0
\(775\) −32.6977 −1.17454
\(776\) −13.6131 −0.488682
\(777\) 0 0
\(778\) 0.203373i 0.00729128i
\(779\) 7.55243i 0.270594i
\(780\) 0 0
\(781\) 0.639461 + 12.1345i 0.0228817 + 0.434206i
\(782\) 3.04782i 0.108990i
\(783\) 0 0
\(784\) 3.66150 0.130768
\(785\) 64.9719i 2.31895i
\(786\) 0 0
\(787\) 2.86764i 0.102220i −0.998693 0.0511102i \(-0.983724\pi\)
0.998693 0.0511102i \(-0.0162760\pi\)
\(788\) 14.0225 0.499529
\(789\) 0 0
\(790\) −36.5111 −1.29901
\(791\) −8.46366 −0.300933
\(792\) 0 0
\(793\) −13.2007 −0.468771
\(794\) 16.9003 0.599770
\(795\) 0 0
\(796\) 0.968012 0.0343103
\(797\) 30.7339i 1.08865i −0.838874 0.544325i \(-0.816786\pi\)
0.838874 0.544325i \(-0.183214\pi\)
\(798\) 0 0
\(799\) 24.5259i 0.867664i
\(800\) −5.09572 −0.180161
\(801\) 0 0
\(802\) 3.35221i 0.118371i
\(803\) −2.32794 44.1752i −0.0821511 1.55891i
\(804\) 0 0
\(805\) 9.86106i 0.347557i
\(806\) 9.68163i 0.341021i
\(807\) 0 0
\(808\) −5.97341 −0.210144
\(809\) −11.6209 −0.408568 −0.204284 0.978912i \(-0.565487\pi\)
−0.204284 + 0.978912i \(0.565487\pi\)
\(810\) 0 0
\(811\) 32.4565i 1.13970i 0.821748 + 0.569851i \(0.192999\pi\)
−0.821748 + 0.569851i \(0.807001\pi\)
\(812\) 13.3745i 0.469352i
\(813\) 0 0
\(814\) 1.62324 0.0855410i 0.0568944 0.00299821i
\(815\) 7.70797i 0.269998i
\(816\) 0 0
\(817\) −6.64939 −0.232633
\(818\) 33.7432i 1.17980i
\(819\) 0 0
\(820\) 23.9969i 0.838009i
\(821\) 17.9441 0.626254 0.313127 0.949711i \(-0.398623\pi\)
0.313127 + 0.949711i \(0.398623\pi\)
\(822\) 0 0
\(823\) −44.8724 −1.56416 −0.782078 0.623181i \(-0.785840\pi\)
−0.782078 + 0.623181i \(0.785840\pi\)
\(824\) −14.8793 −0.518345
\(825\) 0 0
\(826\) 11.2972 0.393081
\(827\) 7.92207 0.275477 0.137739 0.990469i \(-0.456017\pi\)
0.137739 + 0.990469i \(0.456017\pi\)
\(828\) 0 0
\(829\) 35.8468 1.24501 0.622506 0.782615i \(-0.286115\pi\)
0.622506 + 0.782615i \(0.286115\pi\)
\(830\) 18.2132i 0.632188i
\(831\) 0 0
\(832\) 1.50882i 0.0523089i
\(833\) −6.57007 −0.227639
\(834\) 0 0
\(835\) 8.78752i 0.304105i
\(836\) 0.174537 + 3.31203i 0.00603648 + 0.114549i
\(837\) 0 0
\(838\) 16.1750i 0.558756i
\(839\) 5.81287i 0.200683i −0.994953 0.100341i \(-0.968007\pi\)
0.994953 0.100341i \(-0.0319935\pi\)
\(840\) 0 0
\(841\) 24.5798 0.847581
\(842\) −39.0009 −1.34406
\(843\) 0 0
\(844\) 11.5426i 0.397314i
\(845\) 34.0725i 1.17213i
\(846\) 0 0
\(847\) 2.11245 + 19.9874i 0.0725847 + 0.686775i
\(848\) 1.80541i 0.0619981i
\(849\) 0 0
\(850\) 9.14358 0.313622
\(851\) 0.832466i 0.0285366i
\(852\) 0 0
\(853\) 36.5333i 1.25088i 0.780274 + 0.625438i \(0.215080\pi\)
−0.780274 + 0.625438i \(0.784920\pi\)
\(854\) −15.9859 −0.547026
\(855\) 0 0
\(856\) 9.02249 0.308382
\(857\) −52.0819 −1.77908 −0.889542 0.456854i \(-0.848976\pi\)
−0.889542 + 0.456854i \(0.848976\pi\)
\(858\) 0 0
\(859\) −10.5108 −0.358624 −0.179312 0.983792i \(-0.557387\pi\)
−0.179312 + 0.983792i \(0.557387\pi\)
\(860\) 21.1276 0.720445
\(861\) 0 0
\(862\) 12.6119 0.429561
\(863\) 26.3954i 0.898510i 0.893404 + 0.449255i \(0.148311\pi\)
−0.893404 + 0.449255i \(0.851689\pi\)
\(864\) 0 0
\(865\) 58.2430i 1.98032i
\(866\) 30.4096 1.03336
\(867\) 0 0
\(868\) 11.7243i 0.397949i
\(869\) −2.00560 38.0584i −0.0680352 1.29104i
\(870\) 0 0
\(871\) 14.0735i 0.476862i
\(872\) 7.82316i 0.264926i
\(873\) 0 0
\(874\) −1.69855 −0.0574544
\(875\) −0.555729 −0.0187871
\(876\) 0 0
\(877\) 8.99322i 0.303680i −0.988405 0.151840i \(-0.951480\pi\)
0.988405 0.151840i \(-0.0485198\pi\)
\(878\) 13.2488i 0.447126i
\(879\) 0 0
\(880\) −0.554569 10.5236i −0.0186945 0.354749i
\(881\) 49.6843i 1.67391i −0.547275 0.836953i \(-0.684335\pi\)
0.547275 0.836953i \(-0.315665\pi\)
\(882\) 0 0
\(883\) −14.1235 −0.475295 −0.237647 0.971352i \(-0.576376\pi\)
−0.237647 + 0.971352i \(0.576376\pi\)
\(884\) 2.70737i 0.0910587i
\(885\) 0 0
\(886\) 40.4929i 1.36039i
\(887\) 40.1577 1.34836 0.674182 0.738565i \(-0.264496\pi\)
0.674182 + 0.738565i \(0.264496\pi\)
\(888\) 0 0
\(889\) 1.62580 0.0545275
\(890\) −15.8522 −0.531368
\(891\) 0 0
\(892\) −9.33268 −0.312481
\(893\) 13.6683 0.457392
\(894\) 0 0
\(895\) 21.3697 0.714312
\(896\) 1.82716i 0.0610410i
\(897\) 0 0
\(898\) 17.6319i 0.588384i
\(899\) 46.9691 1.56651
\(900\) 0 0
\(901\) 3.23956i 0.107926i
\(902\) 25.0139 1.31818i 0.832871 0.0438905i
\(903\) 0 0
\(904\) 4.63215i 0.154063i
\(905\) 33.1034i 1.10040i
\(906\) 0 0
\(907\) 50.3788 1.67280 0.836401 0.548118i \(-0.184656\pi\)
0.836401 + 0.548118i \(0.184656\pi\)
\(908\) 1.35999 0.0451329
\(909\) 0 0
\(910\) 8.75954i 0.290376i
\(911\) 3.98937i 0.132174i 0.997814 + 0.0660869i \(0.0210515\pi\)
−0.997814 + 0.0660869i \(0.978949\pi\)
\(912\) 0 0
\(913\) 18.9850 1.00047i 0.628312 0.0331107i
\(914\) 10.6107i 0.350971i
\(915\) 0 0
\(916\) 18.1305 0.599047
\(917\) 4.29949i 0.141982i
\(918\) 0 0
\(919\) 8.58101i 0.283061i 0.989934 + 0.141531i \(0.0452024\pi\)
−0.989934 + 0.141531i \(0.954798\pi\)
\(920\) 5.39694 0.177932
\(921\) 0 0
\(922\) 7.67734 0.252840
\(923\) −5.52795 −0.181955
\(924\) 0 0
\(925\) −2.49743 −0.0821150
\(926\) −9.58193 −0.314882
\(927\) 0 0
\(928\) 7.31983 0.240285
\(929\) 16.1305i 0.529225i −0.964355 0.264612i \(-0.914756\pi\)
0.964355 0.264612i \(-0.0852440\pi\)
\(930\) 0 0
\(931\) 3.66150i 0.120001i
\(932\) −2.77760 −0.0909834
\(933\) 0 0
\(934\) 23.7973i 0.778671i
\(935\) 0.995099 + 18.8831i 0.0325432 + 0.617544i
\(936\) 0 0
\(937\) 33.6080i 1.09793i 0.835847 + 0.548963i \(0.184977\pi\)
−0.835847 + 0.548963i \(0.815023\pi\)
\(938\) 17.0428i 0.556467i
\(939\) 0 0
\(940\) −43.4293 −1.41651
\(941\) −45.2091 −1.47377 −0.736886 0.676017i \(-0.763705\pi\)
−0.736886 + 0.676017i \(0.763705\pi\)
\(942\) 0 0
\(943\) 12.8282i 0.417744i
\(944\) 6.18295i 0.201238i
\(945\) 0 0
\(946\) 1.16056 + 22.0230i 0.0377331 + 0.716028i
\(947\) 9.53878i 0.309969i −0.987917 0.154984i \(-0.950467\pi\)
0.987917 0.154984i \(-0.0495327\pi\)
\(948\) 0 0
\(949\) 20.1243 0.653262
\(950\) 5.09572i 0.165327i
\(951\) 0 0
\(952\) 3.27858i 0.106259i
\(953\) −33.4860 −1.08472 −0.542359 0.840147i \(-0.682469\pi\)
−0.542359 + 0.840147i \(0.682469\pi\)
\(954\) 0 0
\(955\) 2.43902 0.0789247
\(956\) 17.7215 0.573153
\(957\) 0 0
\(958\) −24.8164 −0.801782
\(959\) −36.9442 −1.19299
\(960\) 0 0
\(961\) 10.1740 0.328193
\(962\) 0.739476i 0.0238417i
\(963\) 0 0
\(964\) 4.99032i 0.160728i
\(965\) 30.0835 0.968423
\(966\) 0 0
\(967\) 27.1687i 0.873686i 0.899538 + 0.436843i \(0.143903\pi\)
−0.899538 + 0.436843i \(0.856097\pi\)
\(968\) 10.9391 1.15614i 0.351595 0.0371598i
\(969\) 0 0
\(970\) 43.2540i 1.38880i
\(971\) 8.56106i 0.274738i 0.990520 + 0.137369i \(0.0438645\pi\)
−0.990520 + 0.137369i \(0.956135\pi\)
\(972\) 0 0
\(973\) 37.7419 1.20995
\(974\) 20.6772 0.662541
\(975\) 0 0
\(976\) 8.74905i 0.280050i
\(977\) 0.787147i 0.0251831i −0.999921 0.0125915i \(-0.995992\pi\)
0.999921 0.0125915i \(-0.00400812\pi\)
\(978\) 0 0
\(979\) −0.870780 16.5240i −0.0278303 0.528110i
\(980\) 11.6340i 0.371633i
\(981\) 0 0
\(982\) 27.4835 0.877035
\(983\) 56.2836i 1.79517i 0.440842 + 0.897585i \(0.354680\pi\)
−0.440842 + 0.897585i \(0.645320\pi\)
\(984\) 0 0
\(985\) 44.5546i 1.41963i
\(986\) −13.1344 −0.418286
\(987\) 0 0
\(988\) −1.50882 −0.0480019
\(989\) −11.2943 −0.359139
\(990\) 0 0
\(991\) −14.3654 −0.456332 −0.228166 0.973622i \(-0.573273\pi\)
−0.228166 + 0.973622i \(0.573273\pi\)
\(992\) 6.41670 0.203730
\(993\) 0 0
\(994\) −6.69426 −0.212329
\(995\) 3.07574i 0.0975075i
\(996\) 0 0
\(997\) 9.15770i 0.290027i −0.989430 0.145014i \(-0.953677\pi\)
0.989430 0.145014i \(-0.0463226\pi\)
\(998\) −23.4850 −0.743405
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3762.2.b.b.989.4 yes 36
3.2 odd 2 3762.2.b.a.989.33 yes 36
11.10 odd 2 3762.2.b.a.989.4 36
33.32 even 2 inner 3762.2.b.b.989.33 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3762.2.b.a.989.4 36 11.10 odd 2
3762.2.b.a.989.33 yes 36 3.2 odd 2
3762.2.b.b.989.4 yes 36 1.1 even 1 trivial
3762.2.b.b.989.33 yes 36 33.32 even 2 inner