Properties

Label 3775.2.a.r.1.13
Level 37753775
Weight 22
Character 3775.1
Self dual yes
Analytic conductor 30.14430.144
Analytic rank 00
Dimension 1818
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3775,2,Mod(1,3775)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3775, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3775.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3775=52151 3775 = 5^{2} \cdot 151
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3775.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 30.143526763030.1435267630
Analytic rank: 00
Dimension: 1818
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x182x1732x16+64x15+417x14839x132829x12+5789x11++576 x^{18} - 2 x^{17} - 32 x^{16} + 64 x^{15} + 417 x^{14} - 839 x^{13} - 2829 x^{12} + 5789 x^{11} + \cdots + 576 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 755)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.13
Root 1.475361.47536 of defining polynomial
Character χ\chi == 3775.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.47536q2+2.78489q3+0.176690q4+4.10872q6+0.173538q72.69004q8+4.75562q93.80721q11+0.492061q12+4.71035q13+0.256031q144.32216q16+7.22152q17+7.01626q18+0.641297q19+0.483284q215.61701q22+7.75290q237.49147q24+6.94946q26+4.88922q27+0.0306623q28+3.13775q294.18639q310.996664q3210.6027q33+10.6544q34+0.840269q36+4.45008q37+0.946145q38+13.1178q39+8.48955q41+0.713018q4211.0223q430.672695q44+11.4383q46+10.8184q4712.0367q486.96988q49+20.1112q51+0.832269q5212.8581q53+7.21337q540.466823q56+1.78594q57+4.62932q586.72790q59+9.26506q616.17643q62+0.825280q63+7.17388q6415.6428q66+4.78472q67+1.27597q68+21.5910q6911.7482q7112.7928q72+5.96425q73+6.56548q74+0.113311q760.660695q77+19.3535q78+12.5255q790.650916q81+12.5251q82+2.31172q83+0.0853912q8416.2619q86+8.73830q87+10.2416q886.84864q89+0.817423q91+1.36986q9211.6586q93+15.9611q942.77560q963.06816q9710.2831q9818.1057q99+O(q100)q+1.47536 q^{2} +2.78489 q^{3} +0.176690 q^{4} +4.10872 q^{6} +0.173538 q^{7} -2.69004 q^{8} +4.75562 q^{9} -3.80721 q^{11} +0.492061 q^{12} +4.71035 q^{13} +0.256031 q^{14} -4.32216 q^{16} +7.22152 q^{17} +7.01626 q^{18} +0.641297 q^{19} +0.483284 q^{21} -5.61701 q^{22} +7.75290 q^{23} -7.49147 q^{24} +6.94946 q^{26} +4.88922 q^{27} +0.0306623 q^{28} +3.13775 q^{29} -4.18639 q^{31} -0.996664 q^{32} -10.6027 q^{33} +10.6544 q^{34} +0.840269 q^{36} +4.45008 q^{37} +0.946145 q^{38} +13.1178 q^{39} +8.48955 q^{41} +0.713018 q^{42} -11.0223 q^{43} -0.672695 q^{44} +11.4383 q^{46} +10.8184 q^{47} -12.0367 q^{48} -6.96988 q^{49} +20.1112 q^{51} +0.832269 q^{52} -12.8581 q^{53} +7.21337 q^{54} -0.466823 q^{56} +1.78594 q^{57} +4.62932 q^{58} -6.72790 q^{59} +9.26506 q^{61} -6.17643 q^{62} +0.825280 q^{63} +7.17388 q^{64} -15.6428 q^{66} +4.78472 q^{67} +1.27597 q^{68} +21.5910 q^{69} -11.7482 q^{71} -12.7928 q^{72} +5.96425 q^{73} +6.56548 q^{74} +0.113311 q^{76} -0.660695 q^{77} +19.3535 q^{78} +12.5255 q^{79} -0.650916 q^{81} +12.5251 q^{82} +2.31172 q^{83} +0.0853912 q^{84} -16.2619 q^{86} +8.73830 q^{87} +10.2416 q^{88} -6.84864 q^{89} +0.817423 q^{91} +1.36986 q^{92} -11.6586 q^{93} +15.9611 q^{94} -2.77560 q^{96} -3.06816 q^{97} -10.2831 q^{98} -18.1057 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q+2q22q3+32q4+10q64q7+32q9+11q1112q13+q14+60q16+25q17+9q18+8q19+20q2129q2212q23+15q24+5q26++11q99+O(q100) 18 q + 2 q^{2} - 2 q^{3} + 32 q^{4} + 10 q^{6} - 4 q^{7} + 32 q^{9} + 11 q^{11} - 12 q^{13} + q^{14} + 60 q^{16} + 25 q^{17} + 9 q^{18} + 8 q^{19} + 20 q^{21} - 29 q^{22} - 12 q^{23} + 15 q^{24} + 5 q^{26}+ \cdots + 11 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.47536 1.04324 0.521619 0.853179i 0.325328π-0.325328\pi
0.521619 + 0.853179i 0.325328π0.325328\pi
33 2.78489 1.60786 0.803929 0.594725i 0.202739π-0.202739\pi
0.803929 + 0.594725i 0.202739π0.202739\pi
44 0.176690 0.0883448
55 0 0
66 4.10872 1.67738
77 0.173538 0.0655911 0.0327955 0.999462i 0.489559π-0.489559\pi
0.0327955 + 0.999462i 0.489559π0.489559\pi
88 −2.69004 −0.951073
99 4.75562 1.58521
1010 0 0
1111 −3.80721 −1.14792 −0.573959 0.818884i 0.694593π-0.694593\pi
−0.573959 + 0.818884i 0.694593π0.694593\pi
1212 0.492061 0.142046
1313 4.71035 1.30641 0.653207 0.757179i 0.273423π-0.273423\pi
0.653207 + 0.757179i 0.273423π0.273423\pi
1414 0.256031 0.0684271
1515 0 0
1616 −4.32216 −1.08054
1717 7.22152 1.75148 0.875738 0.482786i 0.160375π-0.160375\pi
0.875738 + 0.482786i 0.160375π0.160375\pi
1818 7.01626 1.65375
1919 0.641297 0.147124 0.0735619 0.997291i 0.476563π-0.476563\pi
0.0735619 + 0.997291i 0.476563π0.476563\pi
2020 0 0
2121 0.483284 0.105461
2222 −5.61701 −1.19755
2323 7.75290 1.61659 0.808296 0.588777i 0.200390π-0.200390\pi
0.808296 + 0.588777i 0.200390π0.200390\pi
2424 −7.49147 −1.52919
2525 0 0
2626 6.94946 1.36290
2727 4.88922 0.940931
2828 0.0306623 0.00579463
2929 3.13775 0.582666 0.291333 0.956622i 0.405901π-0.405901\pi
0.291333 + 0.956622i 0.405901π0.405901\pi
3030 0 0
3131 −4.18639 −0.751898 −0.375949 0.926640i 0.622683π-0.622683\pi
−0.375949 + 0.926640i 0.622683π0.622683\pi
3232 −0.996664 −0.176187
3333 −10.6027 −1.84569
3434 10.6544 1.82721
3535 0 0
3636 0.840269 0.140045
3737 4.45008 0.731589 0.365795 0.930696i 0.380797π-0.380797\pi
0.365795 + 0.930696i 0.380797π0.380797\pi
3838 0.946145 0.153485
3939 13.1178 2.10053
4040 0 0
4141 8.48955 1.32584 0.662922 0.748688i 0.269316π-0.269316\pi
0.662922 + 0.748688i 0.269316π0.269316\pi
4242 0.713018 0.110021
4343 −11.0223 −1.68089 −0.840446 0.541895i 0.817707π-0.817707\pi
−0.840446 + 0.541895i 0.817707π0.817707\pi
4444 −0.672695 −0.101413
4545 0 0
4646 11.4383 1.68649
4747 10.8184 1.57803 0.789015 0.614374i 0.210591π-0.210591\pi
0.789015 + 0.614374i 0.210591π0.210591\pi
4848 −12.0367 −1.73736
4949 −6.96988 −0.995698
5050 0 0
5151 20.1112 2.81613
5252 0.832269 0.115415
5353 −12.8581 −1.76620 −0.883100 0.469184i 0.844548π-0.844548\pi
−0.883100 + 0.469184i 0.844548π0.844548\pi
5454 7.21337 0.981615
5555 0 0
5656 −0.466823 −0.0623819
5757 1.78594 0.236554
5858 4.62932 0.607859
5959 −6.72790 −0.875898 −0.437949 0.899000i 0.644295π-0.644295\pi
−0.437949 + 0.899000i 0.644295π0.644295\pi
6060 0 0
6161 9.26506 1.18627 0.593134 0.805103i 0.297890π-0.297890\pi
0.593134 + 0.805103i 0.297890π0.297890\pi
6262 −6.17643 −0.784408
6363 0.825280 0.103975
6464 7.17388 0.896735
6565 0 0
6666 −15.6428 −1.92549
6767 4.78472 0.584547 0.292273 0.956335i 0.405588π-0.405588\pi
0.292273 + 0.956335i 0.405588π0.405588\pi
6868 1.27597 0.154734
6969 21.5910 2.59925
7070 0 0
7171 −11.7482 −1.39426 −0.697128 0.716947i 0.745539π-0.745539\pi
−0.697128 + 0.716947i 0.745539π0.745539\pi
7272 −12.7928 −1.50765
7373 5.96425 0.698063 0.349031 0.937111i 0.386511π-0.386511\pi
0.349031 + 0.937111i 0.386511π0.386511\pi
7474 6.56548 0.763222
7575 0 0
7676 0.113311 0.0129976
7777 −0.660695 −0.0752932
7878 19.3535 2.19135
7979 12.5255 1.40923 0.704614 0.709591i 0.251120π-0.251120\pi
0.704614 + 0.709591i 0.251120π0.251120\pi
8080 0 0
8181 −0.650916 −0.0723240
8282 12.5251 1.38317
8383 2.31172 0.253744 0.126872 0.991919i 0.459506π-0.459506\pi
0.126872 + 0.991919i 0.459506π0.459506\pi
8484 0.0853912 0.00931694
8585 0 0
8686 −16.2619 −1.75357
8787 8.73830 0.936844
8888 10.2416 1.09175
8989 −6.84864 −0.725955 −0.362977 0.931798i 0.618240π-0.618240\pi
−0.362977 + 0.931798i 0.618240π0.618240\pi
9090 0 0
9191 0.817423 0.0856892
9292 1.36986 0.142817
9393 −11.6586 −1.20894
9494 15.9611 1.64626
9595 0 0
9696 −2.77560 −0.283284
9797 −3.06816 −0.311525 −0.155762 0.987795i 0.549783π-0.549783\pi
−0.155762 + 0.987795i 0.549783π0.549783\pi
9898 −10.2831 −1.03875
9999 −18.1057 −1.81969
100100 0 0
101101 5.39034 0.536359 0.268180 0.963369i 0.413578π-0.413578\pi
0.268180 + 0.963369i 0.413578π0.413578\pi
102102 29.6712 2.93789
103103 −5.71787 −0.563399 −0.281699 0.959503i 0.590898π-0.590898\pi
−0.281699 + 0.959503i 0.590898π0.590898\pi
104104 −12.6710 −1.24250
105105 0 0
106106 −18.9704 −1.84257
107107 −1.49999 −0.145010 −0.0725049 0.997368i 0.523099π-0.523099\pi
−0.0725049 + 0.997368i 0.523099π0.523099\pi
108108 0.863875 0.0831264
109109 18.5905 1.78065 0.890323 0.455329i 0.150478π-0.150478\pi
0.890323 + 0.455329i 0.150478π0.150478\pi
110110 0 0
111111 12.3930 1.17629
112112 −0.750058 −0.0708738
113113 −15.8434 −1.49042 −0.745212 0.666828i 0.767652π-0.767652\pi
−0.745212 + 0.666828i 0.767652π0.767652\pi
114114 2.63491 0.246782
115115 0 0
116116 0.554408 0.0514755
117117 22.4006 2.07094
118118 −9.92608 −0.913770
119119 1.25321 0.114881
120120 0 0
121121 3.49488 0.317716
122122 13.6693 1.23756
123123 23.6425 2.13177
124124 −0.739691 −0.0664262
125125 0 0
126126 1.21759 0.108471
127127 −0.732444 −0.0649939 −0.0324969 0.999472i 0.510346π-0.510346\pi
−0.0324969 + 0.999472i 0.510346π0.510346\pi
128128 12.5774 1.11169
129129 −30.6960 −2.70264
130130 0 0
131131 −7.67556 −0.670617 −0.335309 0.942108i 0.608841π-0.608841\pi
−0.335309 + 0.942108i 0.608841π0.608841\pi
132132 −1.87338 −0.163057
133133 0.111289 0.00965000
134134 7.05919 0.609821
135135 0 0
136136 −19.4262 −1.66578
137137 6.21515 0.530996 0.265498 0.964111i 0.414464π-0.414464\pi
0.265498 + 0.964111i 0.414464π0.414464\pi
138138 31.8545 2.71163
139139 18.5423 1.57274 0.786370 0.617756i 0.211958π-0.211958\pi
0.786370 + 0.617756i 0.211958π0.211958\pi
140140 0 0
141141 30.1282 2.53725
142142 −17.3329 −1.45454
143143 −17.9333 −1.49966
144144 −20.5546 −1.71288
145145 0 0
146146 8.79942 0.728245
147147 −19.4104 −1.60094
148148 0.786284 0.0646321
149149 0.940244 0.0770278 0.0385139 0.999258i 0.487738π-0.487738\pi
0.0385139 + 0.999258i 0.487738π0.487738\pi
150150 0 0
151151 1.00000 0.0813788
152152 −1.72512 −0.139925
153153 34.3428 2.77645
154154 −0.974764 −0.0785487
155155 0 0
156156 2.31778 0.185571
157157 −10.4672 −0.835377 −0.417688 0.908590i 0.637160π-0.637160\pi
−0.417688 + 0.908590i 0.637160π0.637160\pi
158158 18.4796 1.47016
159159 −35.8085 −2.83980
160160 0 0
161161 1.34542 0.106034
162162 −0.960335 −0.0754511
163163 0.469671 0.0367875 0.0183937 0.999831i 0.494145π-0.494145\pi
0.0183937 + 0.999831i 0.494145π0.494145\pi
164164 1.50001 0.117131
165165 0 0
166166 3.41062 0.264716
167167 16.2913 1.26066 0.630331 0.776326i 0.282919π-0.282919\pi
0.630331 + 0.776326i 0.282919π0.282919\pi
168168 −1.30005 −0.100301
169169 9.18736 0.706720
170170 0 0
171171 3.04977 0.233222
172172 −1.94753 −0.148498
173173 −8.43744 −0.641486 −0.320743 0.947166i 0.603933π-0.603933\pi
−0.320743 + 0.947166i 0.603933π0.603933\pi
174174 12.8921 0.977351
175175 0 0
176176 16.4554 1.24037
177177 −18.7365 −1.40832
178178 −10.1042 −0.757343
179179 −24.5628 −1.83591 −0.917955 0.396685i 0.870160π-0.870160\pi
−0.917955 + 0.396685i 0.870160π0.870160\pi
180180 0 0
181181 3.72844 0.277133 0.138566 0.990353i 0.455751π-0.455751\pi
0.138566 + 0.990353i 0.455751π0.455751\pi
182182 1.20599 0.0893942
183183 25.8022 1.90735
184184 −20.8556 −1.53750
185185 0 0
186186 −17.2007 −1.26122
187187 −27.4939 −2.01055
188188 1.91150 0.139411
189189 0.848464 0.0617167
190190 0 0
191191 −23.5169 −1.70162 −0.850812 0.525471i 0.823889π-0.823889\pi
−0.850812 + 0.525471i 0.823889π0.823889\pi
192192 19.9785 1.44182
193193 −23.0958 −1.66248 −0.831238 0.555917i 0.812367π-0.812367\pi
−0.831238 + 0.555917i 0.812367π0.812367\pi
194194 −4.52665 −0.324994
195195 0 0
196196 −1.23151 −0.0879647
197197 7.82625 0.557597 0.278798 0.960350i 0.410064π-0.410064\pi
0.278798 + 0.960350i 0.410064π0.410064\pi
198198 −26.7124 −1.89837
199199 −17.3065 −1.22683 −0.613414 0.789762i 0.710204π-0.710204\pi
−0.613414 + 0.789762i 0.710204π0.710204\pi
200200 0 0
201201 13.3249 0.939868
202202 7.95270 0.559550
203203 0.544518 0.0382177
204204 3.55343 0.248790
205205 0 0
206206 −8.43593 −0.587759
207207 36.8699 2.56263
208208 −20.3589 −1.41163
209209 −2.44156 −0.168886
210210 0 0
211211 −11.1570 −0.768079 −0.384040 0.923317i 0.625467π-0.625467\pi
−0.384040 + 0.923317i 0.625467π0.625467\pi
212212 −2.27190 −0.156035
213213 −32.7175 −2.24177
214214 −2.21303 −0.151280
215215 0 0
216216 −13.1522 −0.894894
217217 −0.726496 −0.0493178
218218 27.4277 1.85764
219219 16.6098 1.12239
220220 0 0
221221 34.0159 2.28816
222222 18.2842 1.22715
223223 −20.4613 −1.37019 −0.685094 0.728454i 0.740239π-0.740239\pi
−0.685094 + 0.728454i 0.740239π0.740239\pi
224224 −0.172959 −0.0115563
225225 0 0
226226 −23.3748 −1.55487
227227 −12.0239 −0.798056 −0.399028 0.916939i 0.630652π-0.630652\pi
−0.399028 + 0.916939i 0.630652π0.630652\pi
228228 0.315558 0.0208983
229229 −4.13374 −0.273166 −0.136583 0.990629i 0.543612π-0.543612\pi
−0.136583 + 0.990629i 0.543612π0.543612\pi
230230 0 0
231231 −1.83996 −0.121061
232232 −8.44068 −0.554158
233233 11.9875 0.785324 0.392662 0.919683i 0.371554π-0.371554\pi
0.392662 + 0.919683i 0.371554π0.371554\pi
234234 33.0490 2.16048
235235 0 0
236236 −1.18875 −0.0773810
237237 34.8822 2.26584
238238 1.84893 0.119848
239239 −2.21028 −0.142971 −0.0714855 0.997442i 0.522774π-0.522774\pi
−0.0714855 + 0.997442i 0.522774π0.522774\pi
240240 0 0
241241 −4.24934 −0.273724 −0.136862 0.990590i 0.543702π-0.543702\pi
−0.136862 + 0.990590i 0.543702π0.543702\pi
242242 5.15621 0.331454
243243 −16.4804 −1.05722
244244 1.63704 0.104801
245245 0 0
246246 34.8812 2.22394
247247 3.02073 0.192205
248248 11.2616 0.715109
249249 6.43789 0.407985
250250 0 0
251251 6.45202 0.407248 0.203624 0.979049i 0.434728π-0.434728\pi
0.203624 + 0.979049i 0.434728π0.434728\pi
252252 0.145818 0.00918569
253253 −29.5169 −1.85571
254254 −1.08062 −0.0678040
255255 0 0
256256 4.20843 0.263027
257257 −4.36198 −0.272093 −0.136046 0.990702i 0.543440π-0.543440\pi
−0.136046 + 0.990702i 0.543440π0.543440\pi
258258 −45.2877 −2.81949
259259 0.772257 0.0479857
260260 0 0
261261 14.9220 0.923647
262262 −11.3242 −0.699613
263263 −22.5697 −1.39171 −0.695854 0.718183i 0.744974π-0.744974\pi
−0.695854 + 0.718183i 0.744974π0.744974\pi
264264 28.5216 1.75539
265265 0 0
266266 0.164192 0.0100672
267267 −19.0727 −1.16723
268268 0.845410 0.0516416
269269 −16.1107 −0.982285 −0.491142 0.871079i 0.663421π-0.663421\pi
−0.491142 + 0.871079i 0.663421π0.663421\pi
270270 0 0
271271 −21.1405 −1.28420 −0.642098 0.766623i 0.721936π-0.721936\pi
−0.642098 + 0.766623i 0.721936π0.721936\pi
272272 −31.2126 −1.89254
273273 2.27643 0.137776
274274 9.16958 0.553955
275275 0 0
276276 3.81490 0.229630
277277 −15.9560 −0.958706 −0.479353 0.877622i 0.659129π-0.659129\pi
−0.479353 + 0.877622i 0.659129π0.659129\pi
278278 27.3566 1.64074
279279 −19.9089 −1.19191
280280 0 0
281281 15.1372 0.903010 0.451505 0.892269i 0.350887π-0.350887\pi
0.451505 + 0.892269i 0.350887π0.350887\pi
282282 44.4499 2.64695
283283 5.47901 0.325693 0.162847 0.986651i 0.447932π-0.447932\pi
0.162847 + 0.986651i 0.447932π0.447932\pi
284284 −2.07579 −0.123175
285285 0 0
286286 −26.4581 −1.56450
287287 1.47326 0.0869636
288288 −4.73976 −0.279293
289289 35.1504 2.06767
290290 0 0
291291 −8.54451 −0.500888
292292 1.05382 0.0616702
293293 6.72375 0.392806 0.196403 0.980523i 0.437074π-0.437074\pi
0.196403 + 0.980523i 0.437074π0.437074\pi
294294 −28.6373 −1.67016
295295 0 0
296296 −11.9709 −0.695795
297297 −18.6143 −1.08011
298298 1.38720 0.0803583
299299 36.5188 2.11194
300300 0 0
301301 −1.91279 −0.110252
302302 1.47536 0.0848975
303303 15.0115 0.862390
304304 −2.77179 −0.158973
305305 0 0
306306 50.6681 2.89650
307307 18.5754 1.06015 0.530076 0.847950i 0.322164π-0.322164\pi
0.530076 + 0.847950i 0.322164π0.322164\pi
308308 −0.116738 −0.00665176
309309 −15.9237 −0.905865
310310 0 0
311311 −1.09338 −0.0620002 −0.0310001 0.999519i 0.509869π-0.509869\pi
−0.0310001 + 0.999519i 0.509869π0.509869\pi
312312 −35.2874 −1.99776
313313 14.0269 0.792848 0.396424 0.918067i 0.370251π-0.370251\pi
0.396424 + 0.918067i 0.370251π0.370251\pi
314314 −15.4430 −0.871496
315315 0 0
316316 2.21312 0.124498
317317 −8.99835 −0.505398 −0.252699 0.967545i 0.581318π-0.581318\pi
−0.252699 + 0.967545i 0.581318π0.581318\pi
318318 −52.8305 −2.96259
319319 −11.9461 −0.668853
320320 0 0
321321 −4.17732 −0.233155
322322 1.98498 0.110619
323323 4.63114 0.257684
324324 −0.115010 −0.00638944
325325 0 0
326326 0.692934 0.0383781
327327 51.7725 2.86303
328328 −22.8372 −1.26097
329329 1.87741 0.103505
330330 0 0
331331 −15.1047 −0.830231 −0.415116 0.909769i 0.636259π-0.636259\pi
−0.415116 + 0.909769i 0.636259π0.636259\pi
332332 0.408457 0.0224170
333333 21.1629 1.15972
334334 24.0356 1.31517
335335 0 0
336336 −2.08883 −0.113955
337337 27.6940 1.50859 0.754294 0.656537i 0.227979π-0.227979\pi
0.754294 + 0.656537i 0.227979π0.227979\pi
338338 13.5547 0.737277
339339 −44.1222 −2.39639
340340 0 0
341341 15.9385 0.863117
342342 4.49951 0.243306
343343 −2.42430 −0.130900
344344 29.6506 1.59865
345345 0 0
346346 −12.4483 −0.669223
347347 −21.0757 −1.13140 −0.565700 0.824611i 0.691394π-0.691394\pi
−0.565700 + 0.824611i 0.691394π0.691394\pi
348348 1.54397 0.0827653
349349 −7.07610 −0.378775 −0.189388 0.981902i 0.560650π-0.560650\pi
−0.189388 + 0.981902i 0.560650π0.560650\pi
350350 0 0
351351 23.0299 1.22925
352352 3.79451 0.202248
353353 20.7508 1.10446 0.552228 0.833693i 0.313778π-0.313778\pi
0.552228 + 0.833693i 0.313778π0.313778\pi
354354 −27.6431 −1.46921
355355 0 0
356356 −1.21008 −0.0641343
357357 3.49004 0.184713
358358 −36.2390 −1.91529
359359 36.8349 1.94407 0.972036 0.234831i 0.0754537π-0.0754537\pi
0.972036 + 0.234831i 0.0754537π0.0754537\pi
360360 0 0
361361 −18.5887 −0.978355
362362 5.50079 0.289115
363363 9.73286 0.510843
364364 0.144430 0.00757019
365365 0 0
366366 38.0675 1.98982
367367 −14.9639 −0.781108 −0.390554 0.920580i 0.627717π-0.627717\pi
−0.390554 + 0.920580i 0.627717π0.627717\pi
368368 −33.5093 −1.74679
369369 40.3731 2.10174
370370 0 0
371371 −2.23137 −0.115847
372372 −2.05996 −0.106804
373373 12.6009 0.652450 0.326225 0.945292i 0.394223π-0.394223\pi
0.326225 + 0.945292i 0.394223π0.394223\pi
374374 −40.5634 −2.09748
375375 0 0
376376 −29.1020 −1.50082
377377 14.7799 0.761204
378378 1.25179 0.0643852
379379 8.18303 0.420334 0.210167 0.977666i 0.432599π-0.432599\pi
0.210167 + 0.977666i 0.432599π0.432599\pi
380380 0 0
381381 −2.03978 −0.104501
382382 −34.6959 −1.77520
383383 −32.6541 −1.66855 −0.834273 0.551352i 0.814112π-0.814112\pi
−0.834273 + 0.551352i 0.814112π0.814112\pi
384384 35.0267 1.78745
385385 0 0
386386 −34.0747 −1.73436
387387 −52.4181 −2.66456
388388 −0.542113 −0.0275216
389389 −15.6663 −0.794313 −0.397156 0.917751i 0.630003π-0.630003\pi
−0.397156 + 0.917751i 0.630003π0.630003\pi
390390 0 0
391391 55.9877 2.83142
392392 18.7493 0.946981
393393 −21.3756 −1.07826
394394 11.5465 0.581706
395395 0 0
396396 −3.19908 −0.160760
397397 −15.2366 −0.764701 −0.382351 0.924017i 0.624885π-0.624885\pi
−0.382351 + 0.924017i 0.624885π0.624885\pi
398398 −25.5334 −1.27987
399399 0.309929 0.0155158
400400 0 0
401401 29.4129 1.46881 0.734406 0.678711i 0.237461π-0.237461\pi
0.734406 + 0.678711i 0.237461π0.237461\pi
402402 19.6591 0.980506
403403 −19.7193 −0.982290
404404 0.952418 0.0473845
405405 0 0
406406 0.803361 0.0398701
407407 −16.9424 −0.839805
408408 −54.0998 −2.67834
409409 −16.9214 −0.836712 −0.418356 0.908283i 0.637393π-0.637393\pi
−0.418356 + 0.908283i 0.637393π0.637393\pi
410410 0 0
411411 17.3085 0.853766
412412 −1.01029 −0.0497734
413413 −1.16754 −0.0574511
414414 54.3964 2.67344
415415 0 0
416416 −4.69463 −0.230173
417417 51.6384 2.52874
418418 −3.60218 −0.176188
419419 −10.3963 −0.507893 −0.253947 0.967218i 0.581729π-0.581729\pi
−0.253947 + 0.967218i 0.581729π0.581729\pi
420420 0 0
421421 2.99774 0.146101 0.0730504 0.997328i 0.476727π-0.476727\pi
0.0730504 + 0.997328i 0.476727π0.476727\pi
422422 −16.4606 −0.801289
423423 51.4484 2.50151
424424 34.5889 1.67979
425425 0 0
426426 −48.2701 −2.33869
427427 1.60784 0.0778087
428428 −0.265033 −0.0128109
429429 −49.9423 −2.41124
430430 0 0
431431 −26.5082 −1.27686 −0.638428 0.769682i 0.720415π-0.720415\pi
−0.638428 + 0.769682i 0.720415π0.720415\pi
432432 −21.1320 −1.01671
433433 30.7877 1.47956 0.739782 0.672847i 0.234929π-0.234929\pi
0.739782 + 0.672847i 0.234929π0.234929\pi
434434 −1.07184 −0.0514502
435435 0 0
436436 3.28475 0.157311
437437 4.97191 0.237839
438438 24.5054 1.17091
439439 −13.5111 −0.644852 −0.322426 0.946595i 0.604498π-0.604498\pi
−0.322426 + 0.946595i 0.604498π0.604498\pi
440440 0 0
441441 −33.1461 −1.57839
442442 50.1857 2.38709
443443 6.07371 0.288571 0.144285 0.989536i 0.453912π-0.453912\pi
0.144285 + 0.989536i 0.453912π0.453912\pi
444444 2.18971 0.103919
445445 0 0
446446 −30.1878 −1.42943
447447 2.61848 0.123850
448448 1.24494 0.0588178
449449 12.4983 0.589830 0.294915 0.955523i 0.404709π-0.404709\pi
0.294915 + 0.955523i 0.404709π0.404709\pi
450450 0 0
451451 −32.3215 −1.52196
452452 −2.79937 −0.131671
453453 2.78489 0.130846
454454 −17.7396 −0.832562
455455 0 0
456456 −4.80426 −0.224980
457457 −38.9960 −1.82416 −0.912078 0.410017i 0.865523π-0.865523\pi
−0.912078 + 0.410017i 0.865523π0.865523\pi
458458 −6.09876 −0.284977
459459 35.3076 1.64802
460460 0 0
461461 −36.4649 −1.69834 −0.849171 0.528119i 0.822898π-0.822898\pi
−0.849171 + 0.528119i 0.822898π0.822898\pi
462462 −2.71461 −0.126295
463463 2.82224 0.131161 0.0655803 0.997847i 0.479110π-0.479110\pi
0.0655803 + 0.997847i 0.479110π0.479110\pi
464464 −13.5619 −0.629594
465465 0 0
466466 17.6858 0.819280
467467 10.3008 0.476666 0.238333 0.971184i 0.423399π-0.423399\pi
0.238333 + 0.971184i 0.423399π0.423399\pi
468468 3.95796 0.182957
469469 0.830329 0.0383410
470470 0 0
471471 −29.1501 −1.34317
472472 18.0983 0.833043
473473 41.9644 1.92953
474474 51.4638 2.36381
475475 0 0
476476 0.221429 0.0101492
477477 −61.1485 −2.79980
478478 −3.26096 −0.149153
479479 27.6022 1.26118 0.630588 0.776118i 0.282814π-0.282814\pi
0.630588 + 0.776118i 0.282814π0.282814\pi
480480 0 0
481481 20.9614 0.955759
482482 −6.26932 −0.285560
483483 3.74685 0.170488
484484 0.617509 0.0280686
485485 0 0
486486 −24.3145 −1.10293
487487 −17.7289 −0.803375 −0.401687 0.915777i 0.631576π-0.631576\pi
−0.401687 + 0.915777i 0.631576π0.631576\pi
488488 −24.9234 −1.12823
489489 1.30798 0.0591491
490490 0 0
491491 1.00695 0.0454429 0.0227214 0.999742i 0.492767π-0.492767\pi
0.0227214 + 0.999742i 0.492767π0.492767\pi
492492 4.17738 0.188331
493493 22.6594 1.02053
494494 4.45667 0.200515
495495 0 0
496496 18.0942 0.812455
497497 −2.03876 −0.0914508
498498 9.49821 0.425625
499499 −10.8623 −0.486261 −0.243131 0.969994i 0.578174π-0.578174\pi
−0.243131 + 0.969994i 0.578174π0.578174\pi
500500 0 0
501501 45.3696 2.02697
502502 9.51906 0.424857
503503 −1.80993 −0.0807010 −0.0403505 0.999186i 0.512847π-0.512847\pi
−0.0403505 + 0.999186i 0.512847π0.512847\pi
504504 −2.22004 −0.0988883
505505 0 0
506506 −43.5481 −1.93595
507507 25.5858 1.13631
508508 −0.129415 −0.00574187
509509 3.56061 0.157821 0.0789106 0.996882i 0.474856π-0.474856\pi
0.0789106 + 0.996882i 0.474856π0.474856\pi
510510 0 0
511511 1.03502 0.0457867
512512 −18.9458 −0.837295
513513 3.13545 0.138433
514514 −6.43549 −0.283857
515515 0 0
516516 −5.42367 −0.238764
517517 −41.1881 −1.81145
518518 1.13936 0.0500605
519519 −23.4973 −1.03142
520520 0 0
521521 23.4154 1.02585 0.512925 0.858434i 0.328562π-0.328562\pi
0.512925 + 0.858434i 0.328562π0.328562\pi
522522 22.0153 0.963583
523523 7.66919 0.335350 0.167675 0.985842i 0.446374π-0.446374\pi
0.167675 + 0.985842i 0.446374π0.446374\pi
524524 −1.35619 −0.0592455
525525 0 0
526526 −33.2985 −1.45188
527527 −30.2321 −1.31693
528528 45.8265 1.99434
529529 37.1074 1.61337
530530 0 0
531531 −31.9954 −1.38848
532532 0.0196637 0.000852527 0
533533 39.9887 1.73210
534534 −28.1392 −1.21770
535535 0 0
536536 −12.8711 −0.555946
537537 −68.4047 −2.95188
538538 −23.7690 −1.02476
539539 26.5358 1.14298
540540 0 0
541541 15.5470 0.668419 0.334210 0.942499i 0.391531π-0.391531\pi
0.334210 + 0.942499i 0.391531π0.391531\pi
542542 −31.1899 −1.33972
543543 10.3833 0.445590
544544 −7.19743 −0.308587
545545 0 0
546546 3.35856 0.143733
547547 8.00310 0.342188 0.171094 0.985255i 0.445270π-0.445270\pi
0.171094 + 0.985255i 0.445270π0.445270\pi
548548 1.09815 0.0469107
549549 44.0611 1.88048
550550 0 0
551551 2.01223 0.0857240
552552 −58.0806 −2.47208
553553 2.17365 0.0924328
554554 −23.5409 −1.00016
555555 0 0
556556 3.27623 0.138943
557557 29.6855 1.25781 0.628907 0.777481i 0.283503π-0.283503\pi
0.628907 + 0.777481i 0.283503π0.283503\pi
558558 −29.3728 −1.24345
559559 −51.9191 −2.19594
560560 0 0
561561 −76.5675 −3.23268
562562 22.3328 0.942054
563563 −6.17526 −0.260256 −0.130128 0.991497i 0.541539π-0.541539\pi
−0.130128 + 0.991497i 0.541539π0.541539\pi
564564 5.32333 0.224153
565565 0 0
566566 8.08352 0.339776
567567 −0.112958 −0.00474381
568568 31.6032 1.32604
569569 −4.48186 −0.187889 −0.0939447 0.995577i 0.529948π-0.529948\pi
−0.0939447 + 0.995577i 0.529948π0.529948\pi
570570 0 0
571571 29.7458 1.24482 0.622411 0.782691i 0.286153π-0.286153\pi
0.622411 + 0.782691i 0.286153π0.286153\pi
572572 −3.16863 −0.132487
573573 −65.4920 −2.73597
574574 2.17358 0.0907237
575575 0 0
576576 34.1163 1.42151
577577 −5.64755 −0.235110 −0.117555 0.993066i 0.537506π-0.537506\pi
−0.117555 + 0.993066i 0.537506π0.537506\pi
578578 51.8595 2.15707
579579 −64.3194 −2.67302
580580 0 0
581581 0.401170 0.0166434
582582 −12.6062 −0.522545
583583 48.9537 2.02745
584584 −16.0441 −0.663908
585585 0 0
586586 9.91996 0.409790
587587 8.70796 0.359416 0.179708 0.983720i 0.442485π-0.442485\pi
0.179708 + 0.983720i 0.442485π0.442485\pi
588588 −3.42961 −0.141435
589589 −2.68472 −0.110622
590590 0 0
591591 21.7953 0.896537
592592 −19.2340 −0.790512
593593 1.26578 0.0519793 0.0259897 0.999662i 0.491726π-0.491726\pi
0.0259897 + 0.999662i 0.491726π0.491726\pi
594594 −27.4628 −1.12681
595595 0 0
596596 0.166131 0.00680500
597597 −48.1968 −1.97256
598598 53.8785 2.20325
599599 −12.1470 −0.496312 −0.248156 0.968720i 0.579825π-0.579825\pi
−0.248156 + 0.968720i 0.579825π0.579825\pi
600600 0 0
601601 −2.95538 −0.120552 −0.0602762 0.998182i 0.519198π-0.519198\pi
−0.0602762 + 0.998182i 0.519198π0.519198\pi
602602 −2.82206 −0.115019
603603 22.7543 0.926628
604604 0.176690 0.00718940
605605 0 0
606606 22.1474 0.899677
607607 9.99565 0.405711 0.202856 0.979209i 0.434978π-0.434978\pi
0.202856 + 0.979209i 0.434978π0.434978\pi
608608 −0.639158 −0.0259213
609609 1.51642 0.0614486
610610 0 0
611611 50.9586 2.06156
612612 6.06802 0.245285
613613 −2.00209 −0.0808637 −0.0404318 0.999182i 0.512873π-0.512873\pi
−0.0404318 + 0.999182i 0.512873π0.512873\pi
614614 27.4053 1.10599
615615 0 0
616616 1.77730 0.0716093
617617 33.6582 1.35503 0.677513 0.735511i 0.263058π-0.263058\pi
0.677513 + 0.735511i 0.263058π0.263058\pi
618618 −23.4931 −0.945033
619619 −8.28261 −0.332906 −0.166453 0.986049i 0.553231π-0.553231\pi
−0.166453 + 0.986049i 0.553231π0.553231\pi
620620 0 0
621621 37.9056 1.52110
622622 −1.61314 −0.0646809
623623 −1.18850 −0.0476161
624624 −56.6973 −2.26971
625625 0 0
626626 20.6948 0.827129
627627 −6.79947 −0.271545
628628 −1.84945 −0.0738012
629629 32.1364 1.28136
630630 0 0
631631 −45.6467 −1.81717 −0.908584 0.417702i 0.862836π-0.862836\pi
−0.908584 + 0.417702i 0.862836π0.862836\pi
632632 −33.6941 −1.34028
633633 −31.0710 −1.23496
634634 −13.2758 −0.527250
635635 0 0
636636 −6.32699 −0.250882
637637 −32.8306 −1.30079
638638 −17.6248 −0.697773
639639 −55.8701 −2.21019
640640 0 0
641641 29.0348 1.14680 0.573402 0.819274i 0.305623π-0.305623\pi
0.573402 + 0.819274i 0.305623π0.305623\pi
642642 −6.16306 −0.243236
643643 8.92069 0.351798 0.175899 0.984408i 0.443717π-0.443717\pi
0.175899 + 0.984408i 0.443717π0.443717\pi
644644 0.237722 0.00936755
645645 0 0
646646 6.83261 0.268825
647647 5.68328 0.223433 0.111716 0.993740i 0.464365π-0.464365\pi
0.111716 + 0.993740i 0.464365π0.464365\pi
648648 1.75099 0.0687854
649649 25.6146 1.00546
650650 0 0
651651 −2.02321 −0.0792960
652652 0.0829860 0.00324998
653653 8.99659 0.352064 0.176032 0.984384i 0.443674π-0.443674\pi
0.176032 + 0.984384i 0.443674π0.443674\pi
654654 76.3832 2.98682
655655 0 0
656656 −36.6932 −1.43263
657657 28.3637 1.10657
658658 2.76985 0.107980
659659 26.2820 1.02380 0.511902 0.859044i 0.328941π-0.328941\pi
0.511902 + 0.859044i 0.328941π0.328941\pi
660660 0 0
661661 −45.5396 −1.77129 −0.885643 0.464367i 0.846282π-0.846282\pi
−0.885643 + 0.464367i 0.846282π0.846282\pi
662662 −22.2849 −0.866128
663663 94.7305 3.67903
664664 −6.21862 −0.241329
665665 0 0
666666 31.2230 1.20986
667667 24.3267 0.941933
668668 2.87851 0.111373
669669 −56.9825 −2.20307
670670 0 0
671671 −35.2741 −1.36174
672672 −0.481671 −0.0185809
673673 16.2158 0.625071 0.312536 0.949906i 0.398822π-0.398822\pi
0.312536 + 0.949906i 0.398822π0.398822\pi
674674 40.8586 1.57382
675675 0 0
676676 1.62331 0.0624350
677677 19.1783 0.737082 0.368541 0.929612i 0.379857π-0.379857\pi
0.368541 + 0.929612i 0.379857π0.379857\pi
678678 −65.0962 −2.50000
679679 −0.532442 −0.0204332
680680 0 0
681681 −33.4853 −1.28316
682682 23.5150 0.900436
683683 30.7996 1.17851 0.589257 0.807946i 0.299421π-0.299421\pi
0.589257 + 0.807946i 0.299421π0.299421\pi
684684 0.538862 0.0206039
685685 0 0
686686 −3.57672 −0.136560
687687 −11.5120 −0.439211
688688 47.6403 1.81627
689689 −60.5663 −2.30739
690690 0 0
691691 19.4614 0.740346 0.370173 0.928963i 0.379298π-0.379298\pi
0.370173 + 0.928963i 0.379298π0.379298\pi
692692 −1.49081 −0.0566720
693693 −3.14202 −0.119355
694694 −31.0942 −1.18032
695695 0 0
696696 −23.5064 −0.891007
697697 61.3075 2.32219
698698 −10.4398 −0.395153
699699 33.3838 1.26269
700700 0 0
701701 37.6707 1.42280 0.711402 0.702786i 0.248061π-0.248061\pi
0.711402 + 0.702786i 0.248061π0.248061\pi
702702 33.9775 1.28240
703703 2.85383 0.107634
704704 −27.3125 −1.02938
705705 0 0
706706 30.6150 1.15221
707707 0.935428 0.0351804
708708 −3.31054 −0.124418
709709 17.1573 0.644357 0.322179 0.946679i 0.395585π-0.395585\pi
0.322179 + 0.946679i 0.395585π0.395585\pi
710710 0 0
711711 59.5665 2.23392
712712 18.4231 0.690436
713713 −32.4566 −1.21551
714714 5.14907 0.192699
715715 0 0
716716 −4.33999 −0.162193
717717 −6.15539 −0.229877
718718 54.3448 2.02813
719719 38.4140 1.43260 0.716300 0.697793i 0.245834π-0.245834\pi
0.716300 + 0.697793i 0.245834π0.245834\pi
720720 0 0
721721 −0.992267 −0.0369539
722722 −27.4251 −1.02066
723723 −11.8340 −0.440110
724724 0.658776 0.0244832
725725 0 0
726726 14.3595 0.532930
727727 15.3354 0.568760 0.284380 0.958712i 0.408212π-0.408212\pi
0.284380 + 0.958712i 0.408212π0.408212\pi
728728 −2.19890 −0.0814967
729729 −43.9434 −1.62753
730730 0 0
731731 −79.5981 −2.94404
732732 4.55898 0.168505
733733 −35.0005 −1.29277 −0.646386 0.763011i 0.723720π-0.723720\pi
−0.646386 + 0.763011i 0.723720π0.723720\pi
734734 −22.0771 −0.814881
735735 0 0
736736 −7.72704 −0.284822
737737 −18.2165 −0.671012
738738 59.5649 2.19261
739739 17.1231 0.629882 0.314941 0.949111i 0.398015π-0.398015\pi
0.314941 + 0.949111i 0.398015π0.398015\pi
740740 0 0
741741 8.41241 0.309038
742742 −3.29208 −0.120856
743743 46.3566 1.70066 0.850330 0.526250i 0.176402π-0.176402\pi
0.850330 + 0.526250i 0.176402π0.176402\pi
744744 31.3622 1.14979
745745 0 0
746746 18.5909 0.680660
747747 10.9937 0.402237
748748 −4.85788 −0.177622
749749 −0.260305 −0.00951135
750750 0 0
751751 22.2542 0.812066 0.406033 0.913858i 0.366912π-0.366912\pi
0.406033 + 0.913858i 0.366912π0.366912\pi
752752 −46.7590 −1.70513
753753 17.9682 0.654797
754754 21.8057 0.794116
755755 0 0
756756 0.149915 0.00545235
757757 20.9163 0.760214 0.380107 0.924942i 0.375887π-0.375887\pi
0.380107 + 0.924942i 0.375887π0.375887\pi
758758 12.0729 0.438508
759759 −82.2015 −2.98373
760760 0 0
761761 −4.33724 −0.157225 −0.0786124 0.996905i 0.525049π-0.525049\pi
−0.0786124 + 0.996905i 0.525049π0.525049\pi
762762 −3.00941 −0.109019
763763 3.22615 0.116795
764764 −4.15519 −0.150330
765765 0 0
766766 −48.1766 −1.74069
767767 −31.6907 −1.14429
768768 11.7200 0.422910
769769 −4.64226 −0.167404 −0.0837021 0.996491i 0.526674π-0.526674\pi
−0.0837021 + 0.996491i 0.526674π0.526674\pi
770770 0 0
771771 −12.1476 −0.437486
772772 −4.08080 −0.146871
773773 5.10251 0.183524 0.0917622 0.995781i 0.470750π-0.470750\pi
0.0917622 + 0.995781i 0.470750π0.470750\pi
774774 −77.3357 −2.77977
775775 0 0
776776 8.25349 0.296283
777777 2.15065 0.0771543
778778 −23.1134 −0.828657
779779 5.44432 0.195063
780780 0 0
781781 44.7280 1.60049
782782 82.6021 2.95385
783783 15.3412 0.548249
784784 30.1250 1.07589
785785 0 0
786786 −31.5367 −1.12488
787787 −18.5582 −0.661527 −0.330763 0.943714i 0.607306π-0.607306\pi
−0.330763 + 0.943714i 0.607306π0.607306\pi
788788 1.38282 0.0492608
789789 −62.8542 −2.23767
790790 0 0
791791 −2.74943 −0.0977585
792792 48.7050 1.73066
793793 43.6416 1.54976
794794 −22.4794 −0.797765
795795 0 0
796796 −3.05788 −0.108384
797797 −8.18241 −0.289836 −0.144918 0.989444i 0.546292π-0.546292\pi
−0.144918 + 0.989444i 0.546292π0.546292\pi
798798 0.457256 0.0161867
799799 78.1256 2.76388
800800 0 0
801801 −32.5696 −1.15079
802802 43.3947 1.53232
803803 −22.7072 −0.801319
804804 2.35438 0.0830324
805805 0 0
806806 −29.0931 −1.02476
807807 −44.8665 −1.57937
808808 −14.5002 −0.510117
809809 23.0092 0.808962 0.404481 0.914546i 0.367452π-0.367452\pi
0.404481 + 0.914546i 0.367452π0.367452\pi
810810 0 0
811811 −11.8798 −0.417158 −0.208579 0.978006i 0.566884π-0.566884\pi
−0.208579 + 0.978006i 0.566884π0.566884\pi
812812 0.0962107 0.00337633
813813 −58.8741 −2.06480
814814 −24.9962 −0.876116
815815 0 0
816816 −86.9237 −3.04294
817817 −7.06860 −0.247299
818818 −24.9652 −0.872889
819819 3.88735 0.135835
820820 0 0
821821 17.1711 0.599277 0.299638 0.954053i 0.403134π-0.403134\pi
0.299638 + 0.954053i 0.403134π0.403134\pi
822822 25.5363 0.890681
823823 1.55628 0.0542487 0.0271243 0.999632i 0.491365π-0.491365\pi
0.0271243 + 0.999632i 0.491365π0.491365\pi
824824 15.3813 0.535833
825825 0 0
826826 −1.72255 −0.0599351
827827 21.2420 0.738655 0.369328 0.929299i 0.379588π-0.379588\pi
0.369328 + 0.929299i 0.379588π0.379588\pi
828828 6.51452 0.226395
829829 −29.1520 −1.01249 −0.506245 0.862390i 0.668967π-0.668967\pi
−0.506245 + 0.862390i 0.668967π0.668967\pi
830830 0 0
831831 −44.4359 −1.54146
832832 33.7915 1.17151
833833 −50.3332 −1.74394
834834 76.1852 2.63808
835835 0 0
836836 −0.431398 −0.0149202
837837 −20.4682 −0.707484
838838 −15.3383 −0.529853
839839 16.9390 0.584799 0.292400 0.956296i 0.405546π-0.405546\pi
0.292400 + 0.956296i 0.405546π0.405546\pi
840840 0 0
841841 −19.1545 −0.660500
842842 4.42275 0.152418
843843 42.1555 1.45191
844844 −1.97133 −0.0678558
845845 0 0
846846 75.9049 2.60967
847847 0.606493 0.0208394
848848 55.5749 1.90845
849849 15.2585 0.523669
850850 0 0
851851 34.5011 1.18268
852852 −5.78084 −0.198048
853853 −54.6344 −1.87065 −0.935323 0.353796i 0.884891π-0.884891\pi
−0.935323 + 0.353796i 0.884891π0.884891\pi
854854 2.37214 0.0811729
855855 0 0
856856 4.03504 0.137915
857857 −36.5265 −1.24772 −0.623861 0.781535i 0.714437π-0.714437\pi
−0.623861 + 0.781535i 0.714437π0.714437\pi
858858 −73.6829 −2.51549
859859 −8.22360 −0.280586 −0.140293 0.990110i 0.544804π-0.544804\pi
−0.140293 + 0.990110i 0.544804π0.544804\pi
860860 0 0
861861 4.10286 0.139825
862862 −39.1092 −1.33206
863863 −12.1416 −0.413305 −0.206653 0.978414i 0.566257π-0.566257\pi
−0.206653 + 0.978414i 0.566257π0.566257\pi
864864 −4.87291 −0.165780
865865 0 0
866866 45.4230 1.54354
867867 97.8901 3.32452
868868 −0.128364 −0.00435697
869869 −47.6872 −1.61768
870870 0 0
871871 22.5377 0.763660
872872 −50.0092 −1.69353
873873 −14.5910 −0.493832
874874 7.33537 0.248122
875875 0 0
876876 2.93478 0.0991569
877877 8.35977 0.282289 0.141145 0.989989i 0.454922π-0.454922\pi
0.141145 + 0.989989i 0.454922π0.454922\pi
878878 −19.9338 −0.672734
879879 18.7249 0.631576
880880 0 0
881881 0.277228 0.00934005 0.00467002 0.999989i 0.498513π-0.498513\pi
0.00467002 + 0.999989i 0.498513π0.498513\pi
882882 −48.9025 −1.64663
883883 −17.3785 −0.584832 −0.292416 0.956291i 0.594459π-0.594459\pi
−0.292416 + 0.956291i 0.594459π0.594459\pi
884884 6.01025 0.202147
885885 0 0
886886 8.96092 0.301048
887887 −24.3042 −0.816056 −0.408028 0.912969i 0.633783π-0.633783\pi
−0.408028 + 0.912969i 0.633783π0.633783\pi
888888 −33.3377 −1.11874
889889 −0.127107 −0.00426302
890890 0 0
891891 2.47818 0.0830220
892892 −3.61529 −0.121049
893893 6.93783 0.232166
894894 3.86320 0.129205
895895 0 0
896896 2.18265 0.0729173
897897 101.701 3.39570
898898 18.4395 0.615333
899899 −13.1358 −0.438105
900900 0 0
901901 −92.8553 −3.09346
902902 −47.6859 −1.58777
903903 −5.32692 −0.177269
904904 42.6194 1.41750
905905 0 0
906906 4.10872 0.136503
907907 −42.0612 −1.39662 −0.698309 0.715796i 0.746064π-0.746064\pi
−0.698309 + 0.715796i 0.746064π0.746064\pi
908908 −2.12450 −0.0705041
909909 25.6344 0.850241
910910 0 0
911911 13.2981 0.440587 0.220293 0.975434i 0.429299π-0.429299\pi
0.220293 + 0.975434i 0.429299π0.429299\pi
912912 −7.71914 −0.255606
913913 −8.80121 −0.291278
914914 −57.5332 −1.90303
915915 0 0
916916 −0.730390 −0.0241327
917917 −1.33200 −0.0439865
918918 52.0915 1.71928
919919 43.0777 1.42100 0.710501 0.703697i 0.248469π-0.248469\pi
0.710501 + 0.703697i 0.248469π0.248469\pi
920920 0 0
921921 51.7303 1.70457
922922 −53.7989 −1.77177
923923 −55.3381 −1.82148
924924 −0.325103 −0.0106951
925925 0 0
926926 4.16382 0.136832
927927 −27.1921 −0.893104
928928 −3.12728 −0.102658
929929 50.9373 1.67120 0.835600 0.549339i 0.185120π-0.185120\pi
0.835600 + 0.549339i 0.185120π0.185120\pi
930930 0 0
931931 −4.46977 −0.146491
932932 2.11806 0.0693793
933933 −3.04496 −0.0996875
934934 15.1974 0.497276
935935 0 0
936936 −60.2586 −1.96961
937937 −41.8394 −1.36683 −0.683417 0.730028i 0.739507π-0.739507\pi
−0.683417 + 0.730028i 0.739507π0.739507\pi
938938 1.22504 0.0399988
939939 39.0635 1.27479
940940 0 0
941941 −22.5373 −0.734696 −0.367348 0.930084i 0.619734π-0.619734\pi
−0.367348 + 0.930084i 0.619734π0.619734\pi
942942 −43.0070 −1.40124
943943 65.8186 2.14335
944944 29.0791 0.946443
945945 0 0
946946 61.9127 2.01295
947947 16.9670 0.551355 0.275677 0.961250i 0.411098π-0.411098\pi
0.275677 + 0.961250i 0.411098π0.411098\pi
948948 6.16331 0.200175
949949 28.0937 0.911959
950950 0 0
951951 −25.0594 −0.812608
952952 −3.37118 −0.109260
953953 −45.8873 −1.48644 −0.743218 0.669049i 0.766702π-0.766702\pi
−0.743218 + 0.669049i 0.766702π0.766702\pi
954954 −90.2160 −2.92085
955955 0 0
956956 −0.390533 −0.0126307
957957 −33.2686 −1.07542
958958 40.7232 1.31571
959959 1.07856 0.0348286
960960 0 0
961961 −13.4742 −0.434650
962962 30.9257 0.997084
963963 −7.13341 −0.229871
964964 −0.750815 −0.0241821
965965 0 0
966966 5.52796 0.177859
967967 19.8373 0.637926 0.318963 0.947767i 0.396665π-0.396665\pi
0.318963 + 0.947767i 0.396665π0.396665\pi
968968 −9.40137 −0.302171
969969 12.8972 0.414319
970970 0 0
971971 60.8748 1.95357 0.976783 0.214231i 0.0687244π-0.0687244\pi
0.976783 + 0.214231i 0.0687244π0.0687244\pi
972972 −2.91191 −0.0933997
973973 3.21779 0.103158
974974 −26.1566 −0.838111
975975 0 0
976976 −40.0451 −1.28181
977977 −8.96312 −0.286756 −0.143378 0.989668i 0.545796π-0.545796\pi
−0.143378 + 0.989668i 0.545796π0.545796\pi
978978 1.92975 0.0617065
979979 26.0742 0.833337
980980 0 0
981981 88.4094 2.82270
982982 1.48561 0.0474077
983983 49.3888 1.57526 0.787630 0.616149i 0.211308π-0.211308\pi
0.787630 + 0.616149i 0.211308π0.211308\pi
984984 −63.5992 −2.02747
985985 0 0
986986 33.4307 1.06465
987987 5.22837 0.166421
988988 0.533732 0.0169803
989989 −85.4551 −2.71732
990990 0 0
991991 40.5105 1.28686 0.643430 0.765505i 0.277511π-0.277511\pi
0.643430 + 0.765505i 0.277511π0.277511\pi
992992 4.17242 0.132475
993993 −42.0651 −1.33489
994994 −3.00790 −0.0954049
995995 0 0
996996 1.13751 0.0360433
997997 27.0457 0.856544 0.428272 0.903650i 0.359122π-0.359122\pi
0.428272 + 0.903650i 0.359122π0.359122\pi
998998 −16.0257 −0.507286
999999 21.7575 0.688375
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3775.2.a.r.1.13 18
5.4 even 2 755.2.a.k.1.6 18
15.14 odd 2 6795.2.a.bi.1.13 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.a.k.1.6 18 5.4 even 2
3775.2.a.r.1.13 18 1.1 even 1 trivial
6795.2.a.bi.1.13 18 15.14 odd 2