Properties

Label 378.2.g.a
Level 378378
Weight 22
Character orbit 378.g
Analytic conductor 3.0183.018
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(109,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 378=2337 378 = 2 \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 378.g (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.018345196403.01834519640
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q2+(ζ61)q43ζ6q5+(2ζ63)q7+q8+(3ζ63)q104q13+(ζ6+2)q14ζ6q16+(6ζ66)q17++(3ζ68)q98+O(q100) q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - 3 \zeta_{6} q^{5} + (2 \zeta_{6} - 3) q^{7} + q^{8} + (3 \zeta_{6} - 3) q^{10} - 4 q^{13} + (\zeta_{6} + 2) q^{14} - \zeta_{6} q^{16} + (6 \zeta_{6} - 6) q^{17} + \cdots + (3 \zeta_{6} - 8) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q43q54q7+2q83q108q13+5q14q166q17+4q19+6q206q234q25+4q26q286q298q31q32+13q98+O(q100) 2 q - q^{2} - q^{4} - 3 q^{5} - 4 q^{7} + 2 q^{8} - 3 q^{10} - 8 q^{13} + 5 q^{14} - q^{16} - 6 q^{17} + 4 q^{19} + 6 q^{20} - 6 q^{23} - 4 q^{25} + 4 q^{26} - q^{28} - 6 q^{29} - 8 q^{31} - q^{32}+ \cdots - 13 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/378Z)×\left(\mathbb{Z}/378\mathbb{Z}\right)^\times.

nn 2929 325325
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −1.50000 2.59808i 0 −2.00000 + 1.73205i 1.00000 0 −1.50000 + 2.59808i
163.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −1.50000 + 2.59808i 0 −2.00000 1.73205i 1.00000 0 −1.50000 2.59808i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.2.g.a 2
3.b odd 2 1 378.2.g.f yes 2
7.c even 3 1 inner 378.2.g.a 2
7.c even 3 1 2646.2.a.bc 1
7.d odd 6 1 2646.2.a.r 1
9.c even 3 1 1134.2.e.j 2
9.c even 3 1 1134.2.h.g 2
9.d odd 6 1 1134.2.e.f 2
9.d odd 6 1 1134.2.h.k 2
21.g even 6 1 2646.2.a.m 1
21.h odd 6 1 378.2.g.f yes 2
21.h odd 6 1 2646.2.a.b 1
63.g even 3 1 1134.2.e.j 2
63.h even 3 1 1134.2.h.g 2
63.j odd 6 1 1134.2.h.k 2
63.n odd 6 1 1134.2.e.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.a 2 1.a even 1 1 trivial
378.2.g.a 2 7.c even 3 1 inner
378.2.g.f yes 2 3.b odd 2 1
378.2.g.f yes 2 21.h odd 6 1
1134.2.e.f 2 9.d odd 6 1
1134.2.e.f 2 63.n odd 6 1
1134.2.e.j 2 9.c even 3 1
1134.2.e.j 2 63.g even 3 1
1134.2.h.g 2 9.c even 3 1
1134.2.h.g 2 63.h even 3 1
1134.2.h.k 2 9.d odd 6 1
1134.2.h.k 2 63.j odd 6 1
2646.2.a.b 1 21.h odd 6 1
2646.2.a.m 1 21.g even 6 1
2646.2.a.r 1 7.d odd 6 1
2646.2.a.bc 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(378,[χ])S_{2}^{\mathrm{new}}(378, [\chi]):

T52+3T5+9 T_{5}^{2} + 3T_{5} + 9 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1717 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1919 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
2323 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
2929 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
3131 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
3737 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5353 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
5959 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
6161 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
6767 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T27T+49 T^{2} - 7T + 49 Copy content Toggle raw display
7979 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
show more
show less