Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [378,2,Mod(25,378)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(378, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([10, 12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("378.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 378 = 2 \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 378.w (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.01834519640\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | 0.939693 | − | 0.342020i | −1.63077 | + | 0.583588i | 0.766044 | − | 0.642788i | 2.72763 | + | 0.992778i | −1.33283 | + | 1.10615i | −1.62553 | + | 2.08750i | 0.500000 | − | 0.866025i | 2.31885 | − | 1.90340i | 2.90269 | ||
25.2 | 0.939693 | − | 0.342020i | −1.37994 | − | 1.04679i | 0.766044 | − | 0.642788i | 0.829059 | + | 0.301753i | −1.65474 | − | 0.511691i | 1.89032 | + | 1.85113i | 0.500000 | − | 0.866025i | 0.808471 | + | 2.88901i | 0.882266 | ||
25.3 | 0.939693 | − | 0.342020i | −1.28916 | − | 1.15675i | 0.766044 | − | 0.642788i | −2.54535 | − | 0.926430i | −1.60704 | − | 0.646075i | −2.64478 | − | 0.0716849i | 0.500000 | − | 0.866025i | 0.323845 | + | 2.98247i | −2.70870 | ||
25.4 | 0.939693 | − | 0.342020i | −1.25782 | + | 1.19075i | 0.766044 | − | 0.642788i | −1.38782 | − | 0.505123i | −0.774703 | + | 1.54914i | 0.493387 | − | 2.59934i | 0.500000 | − | 0.866025i | 0.164223 | − | 2.99550i | −1.47688 | ||
25.5 | 0.939693 | − | 0.342020i | −0.902405 | + | 1.47840i | 0.766044 | − | 0.642788i | −3.70320 | − | 1.34785i | −0.342341 | + | 1.69788i | −0.207321 | + | 2.63762i | 0.500000 | − | 0.866025i | −1.37133 | − | 2.66823i | −3.94086 | ||
25.6 | 0.939693 | − | 0.342020i | −0.214796 | + | 1.71868i | 0.766044 | − | 0.642788i | 3.87748 | + | 1.41129i | 0.385982 | + | 1.68850i | 2.09775 | − | 1.61228i | 0.500000 | − | 0.866025i | −2.90773 | − | 0.738330i | 4.12633 | ||
25.7 | 0.939693 | − | 0.342020i | −0.0864462 | − | 1.72989i | 0.766044 | − | 0.642788i | 1.47620 | + | 0.537294i | −0.672891 | − | 1.59600i | 0.815021 | − | 2.51709i | 0.500000 | − | 0.866025i | −2.98505 | + | 0.299085i | 1.57094 | ||
25.8 | 0.939693 | − | 0.342020i | 1.05262 | + | 1.37550i | 0.766044 | − | 0.642788i | −0.324117 | − | 0.117969i | 1.45959 | + | 0.932530i | 0.0472752 | + | 2.64533i | 0.500000 | − | 0.866025i | −0.783993 | + | 2.89575i | −0.344919 | ||
25.9 | 0.939693 | − | 0.342020i | 1.10671 | − | 1.33237i | 0.766044 | − | 0.642788i | −2.28151 | − | 0.830401i | 0.584268 | − | 1.63053i | −2.63284 | − | 0.261069i | 0.500000 | − | 0.866025i | −0.550401 | − | 2.94908i | −2.42793 | ||
25.10 | 0.939693 | − | 0.342020i | 1.47894 | − | 0.901527i | 0.766044 | − | 0.642788i | 1.05304 | + | 0.383275i | 1.08140 | − | 1.35298i | 1.66470 | + | 2.05639i | 0.500000 | − | 0.866025i | 1.37450 | − | 2.66660i | 1.12062 | ||
25.11 | 0.939693 | − | 0.342020i | 1.56589 | + | 0.740254i | 0.766044 | − | 0.642788i | 1.77013 | + | 0.644273i | 1.72464 | + | 0.160044i | −2.34950 | − | 1.21648i | 0.500000 | − | 0.866025i | 1.90405 | + | 2.31832i | 1.88373 | ||
25.12 | 0.939693 | − | 0.342020i | 1.73083 | + | 0.0649612i | 0.766044 | − | 0.642788i | −3.37095 | − | 1.22693i | 1.64867 | − | 0.530936i | 2.18547 | − | 1.49122i | 0.500000 | − | 0.866025i | 2.99156 | + | 0.224874i | −3.58729 | ||
121.1 | 0.939693 | + | 0.342020i | −1.63077 | − | 0.583588i | 0.766044 | + | 0.642788i | 2.72763 | − | 0.992778i | −1.33283 | − | 1.10615i | −1.62553 | − | 2.08750i | 0.500000 | + | 0.866025i | 2.31885 | + | 1.90340i | 2.90269 | ||
121.2 | 0.939693 | + | 0.342020i | −1.37994 | + | 1.04679i | 0.766044 | + | 0.642788i | 0.829059 | − | 0.301753i | −1.65474 | + | 0.511691i | 1.89032 | − | 1.85113i | 0.500000 | + | 0.866025i | 0.808471 | − | 2.88901i | 0.882266 | ||
121.3 | 0.939693 | + | 0.342020i | −1.28916 | + | 1.15675i | 0.766044 | + | 0.642788i | −2.54535 | + | 0.926430i | −1.60704 | + | 0.646075i | −2.64478 | + | 0.0716849i | 0.500000 | + | 0.866025i | 0.323845 | − | 2.98247i | −2.70870 | ||
121.4 | 0.939693 | + | 0.342020i | −1.25782 | − | 1.19075i | 0.766044 | + | 0.642788i | −1.38782 | + | 0.505123i | −0.774703 | − | 1.54914i | 0.493387 | + | 2.59934i | 0.500000 | + | 0.866025i | 0.164223 | + | 2.99550i | −1.47688 | ||
121.5 | 0.939693 | + | 0.342020i | −0.902405 | − | 1.47840i | 0.766044 | + | 0.642788i | −3.70320 | + | 1.34785i | −0.342341 | − | 1.69788i | −0.207321 | − | 2.63762i | 0.500000 | + | 0.866025i | −1.37133 | + | 2.66823i | −3.94086 | ||
121.6 | 0.939693 | + | 0.342020i | −0.214796 | − | 1.71868i | 0.766044 | + | 0.642788i | 3.87748 | − | 1.41129i | 0.385982 | − | 1.68850i | 2.09775 | + | 1.61228i | 0.500000 | + | 0.866025i | −2.90773 | + | 0.738330i | 4.12633 | ||
121.7 | 0.939693 | + | 0.342020i | −0.0864462 | + | 1.72989i | 0.766044 | + | 0.642788i | 1.47620 | − | 0.537294i | −0.672891 | + | 1.59600i | 0.815021 | + | 2.51709i | 0.500000 | + | 0.866025i | −2.98505 | − | 0.299085i | 1.57094 | ||
121.8 | 0.939693 | + | 0.342020i | 1.05262 | − | 1.37550i | 0.766044 | + | 0.642788i | −0.324117 | + | 0.117969i | 1.45959 | − | 0.932530i | 0.0472752 | − | 2.64533i | 0.500000 | + | 0.866025i | −0.783993 | − | 2.89575i | −0.344919 | ||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.w | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 378.2.w.b | yes | 72 |
7.c | even | 3 | 1 | 378.2.v.a | ✓ | 72 | |
27.e | even | 9 | 1 | 378.2.v.a | ✓ | 72 | |
189.w | even | 9 | 1 | inner | 378.2.w.b | yes | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
378.2.v.a | ✓ | 72 | 7.c | even | 3 | 1 | |
378.2.v.a | ✓ | 72 | 27.e | even | 9 | 1 | |
378.2.w.b | yes | 72 | 1.a | even | 1 | 1 | trivial |
378.2.w.b | yes | 72 | 189.w | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{72} - 15 T_{5}^{70} + 41 T_{5}^{69} + 246 T_{5}^{68} - 531 T_{5}^{67} + 4291 T_{5}^{66} + \cdots + 2678994081 \) acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\).