Properties

Label 378.4.a.g
Level 378378
Weight 44
Character orbit 378.a
Self dual yes
Analytic conductor 22.30322.303
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,4,Mod(1,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 378=2337 378 = 2 \cdot 3^{3} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 378.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 22.302721982222.3027219822
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q2+4q415q5+7q7+8q830q10+42q1188q13+14q14+16q16+45q17106q1960q20+84q22114q23+100q25176q26++98q98+O(q100) q + 2 q^{2} + 4 q^{4} - 15 q^{5} + 7 q^{7} + 8 q^{8} - 30 q^{10} + 42 q^{11} - 88 q^{13} + 14 q^{14} + 16 q^{16} + 45 q^{17} - 106 q^{19} - 60 q^{20} + 84 q^{22} - 114 q^{23} + 100 q^{25} - 176 q^{26}+ \cdots + 98 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
2.00000 0 4.00000 −15.0000 0 7.00000 8.00000 0 −30.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.4.a.g yes 1
3.b odd 2 1 378.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.4.a.f 1 3.b odd 2 1
378.4.a.g yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(378))S_{4}^{\mathrm{new}}(\Gamma_0(378)):

T5+15 T_{5} + 15 Copy content Toggle raw display
T1142 T_{11} - 42 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T - 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+15 T + 15 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T42 T - 42 Copy content Toggle raw display
1313 T+88 T + 88 Copy content Toggle raw display
1717 T45 T - 45 Copy content Toggle raw display
1919 T+106 T + 106 Copy content Toggle raw display
2323 T+114 T + 114 Copy content Toggle raw display
2929 T+66 T + 66 Copy content Toggle raw display
3131 T+304 T + 304 Copy content Toggle raw display
3737 T+187 T + 187 Copy content Toggle raw display
4141 T+69 T + 69 Copy content Toggle raw display
4343 T29 T - 29 Copy content Toggle raw display
4747 T+471 T + 471 Copy content Toggle raw display
5353 T414 T - 414 Copy content Toggle raw display
5959 T597 T - 597 Copy content Toggle raw display
6161 T218 T - 218 Copy content Toggle raw display
6767 T+628 T + 628 Copy content Toggle raw display
7171 T+288 T + 288 Copy content Toggle raw display
7373 T1190 T - 1190 Copy content Toggle raw display
7979 T+295 T + 295 Copy content Toggle raw display
8383 T1311 T - 1311 Copy content Toggle raw display
8989 T+1206 T + 1206 Copy content Toggle raw display
9797 T+1186 T + 1186 Copy content Toggle raw display
show more
show less