Defining parameters
Level: | \( N \) | \(=\) | \( 38 = 2 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 38.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(38))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 27 | 7 | 20 |
Cusp forms | 23 | 7 | 16 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(38))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 19 | |||||||
38.6.a.a | $1$ | $6.095$ | \(\Q\) | None | \(-4\) | \(-6\) | \(31\) | \(-27\) | $+$ | $+$ | \(q-4q^{2}-6q^{3}+2^{4}q^{4}+31q^{5}+24q^{6}+\cdots\) | |
38.6.a.b | $1$ | $6.095$ | \(\Q\) | None | \(4\) | \(-14\) | \(-45\) | \(-121\) | $-$ | $-$ | \(q+4q^{2}-14q^{3}+2^{4}q^{4}-45q^{5}-56q^{6}+\cdots\) | |
38.6.a.c | $2$ | $6.095$ | \(\Q(\sqrt{1441}) \) | None | \(-8\) | \(3\) | \(-45\) | \(114\) | $+$ | $-$ | \(q-4q^{2}+(2-\beta )q^{3}+2^{4}q^{4}+(-21+\cdots)q^{5}+\cdots\) | |
38.6.a.d | $3$ | $6.095$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(12\) | \(13\) | \(81\) | \(228\) | $-$ | $+$ | \(q+4q^{2}+(4+\beta _{1})q^{3}+2^{4}q^{4}+(3^{3}-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(38))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(38)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)