Properties

Label 38.6.a
Level 3838
Weight 66
Character orbit 38.a
Rep. character χ38(1,)\chi_{38}(1,\cdot)
Character field Q\Q
Dimension 77
Newform subspaces 44
Sturm bound 3030
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 38=219 38 = 2 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 38.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 3030
Trace bound: 22
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(38))M_{6}(\Gamma_0(38)).

Total New Old
Modular forms 27 7 20
Cusp forms 23 7 16
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221919FrickeDim
++++++11
++--22
-++-33
--++11
Plus space++22
Minus space-55

Trace form

7q+4q24q3+112q4+22q5+8q6+194q7+64q8+221q9+200q10+320q1164q12+1338q13+80q14+1868q15+1792q161316q17+628q18++324236q99+O(q100) 7 q + 4 q^{2} - 4 q^{3} + 112 q^{4} + 22 q^{5} + 8 q^{6} + 194 q^{7} + 64 q^{8} + 221 q^{9} + 200 q^{10} + 320 q^{11} - 64 q^{12} + 1338 q^{13} + 80 q^{14} + 1868 q^{15} + 1792 q^{16} - 1316 q^{17} + 628 q^{18}+ \cdots + 324236 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(38))S_{6}^{\mathrm{new}}(\Gamma_0(38)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 19
38.6.a.a 38.a 1.a 11 6.0956.095 Q\Q None 38.6.a.a 4-4 6-6 3131 27-27 ++ ++ SU(2)\mathrm{SU}(2) q4q26q3+24q4+31q5+24q6+q-4q^{2}-6q^{3}+2^{4}q^{4}+31q^{5}+24q^{6}+\cdots
38.6.a.b 38.a 1.a 11 6.0956.095 Q\Q None 38.6.a.b 44 14-14 45-45 121-121 - - SU(2)\mathrm{SU}(2) q+4q214q3+24q445q556q6+q+4q^{2}-14q^{3}+2^{4}q^{4}-45q^{5}-56q^{6}+\cdots
38.6.a.c 38.a 1.a 22 6.0956.095 Q(1441)\Q(\sqrt{1441}) None 38.6.a.c 8-8 33 45-45 114114 ++ - SU(2)\mathrm{SU}(2) q4q2+(2β)q3+24q4+(21+)q5+q-4q^{2}+(2-\beta )q^{3}+2^{4}q^{4}+(-21+\cdots)q^{5}+\cdots
38.6.a.d 38.a 1.a 33 6.0956.095 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 38.6.a.d 1212 1313 8181 228228 - ++ SU(2)\mathrm{SU}(2) q+4q2+(4+β1)q3+24q4+(33β1+)q5+q+4q^{2}+(4+\beta _{1})q^{3}+2^{4}q^{4}+(3^{3}-\beta _{1}+\cdots)q^{5}+\cdots

Decomposition of S6old(Γ0(38))S_{6}^{\mathrm{old}}(\Gamma_0(38)) into lower level spaces

S6old(Γ0(38)) S_{6}^{\mathrm{old}}(\Gamma_0(38)) \simeq S6new(Γ0(19))S_{6}^{\mathrm{new}}(\Gamma_0(19))2^{\oplus 2}