Properties

Label 3800.1.cq.b.899.1
Level $3800$
Weight $1$
Character 3800.899
Analytic conductor $1.896$
Analytic rank $0$
Dimension $12$
Projective image $D_{9}$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,1,Mod(99,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 9, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.99");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3800.cq (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.89644704801\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.69564674215936.1

Embedding invariants

Embedding label 899.1
Root \(-0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 3800.899
Dual form 3800.1.cq.b.1099.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.642788 - 0.766044i) q^{2} +(0.524005 - 1.43969i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(-1.43969 + 0.524005i) q^{6} +(0.866025 - 0.500000i) q^{8} +(-1.03209 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.642788 - 0.766044i) q^{2} +(0.524005 - 1.43969i) q^{3} +(-0.173648 + 0.984808i) q^{4} +(-1.43969 + 0.524005i) q^{6} +(0.866025 - 0.500000i) q^{8} +(-1.03209 - 0.866025i) q^{9} +(0.939693 + 1.62760i) q^{11} +(1.32683 + 0.766044i) q^{12} +(-0.939693 - 0.342020i) q^{16} +(0.642788 + 0.766044i) q^{17} +1.34730i q^{18} +(-0.173648 + 0.984808i) q^{19} +(0.642788 - 1.76604i) q^{22} +(-0.266044 - 1.50881i) q^{24} +(-0.460802 + 0.266044i) q^{27} +(0.342020 + 0.939693i) q^{32} +(2.83564 - 0.500000i) q^{33} +(0.173648 - 0.984808i) q^{34} +(1.03209 - 0.866025i) q^{36} +(0.866025 - 0.500000i) q^{38} +(-0.326352 - 0.118782i) q^{41} +(0.984808 - 0.173648i) q^{43} +(-1.76604 + 0.642788i) q^{44} +(-0.984808 + 1.17365i) q^{48} +(0.500000 + 0.866025i) q^{49} +(1.43969 - 0.524005i) q^{51} +(0.500000 + 0.181985i) q^{54} +(1.32683 + 0.766044i) q^{57} +(1.43969 - 1.20805i) q^{59} +(0.500000 - 0.866025i) q^{64} +(-2.20574 - 1.85083i) q^{66} +(0.223238 - 0.266044i) q^{67} +(-0.866025 + 0.500000i) q^{68} +(-1.32683 - 0.233956i) q^{72} +(-0.642788 + 1.76604i) q^{73} +(-0.939693 - 0.342020i) q^{76} +(-0.0923963 - 0.524005i) q^{81} +(0.118782 + 0.326352i) q^{82} +(-0.300767 - 0.173648i) q^{83} +(-0.766044 - 0.642788i) q^{86} +(1.62760 + 0.939693i) q^{88} +(-0.939693 + 0.342020i) q^{89} +1.53209 q^{96} +(-0.223238 - 0.266044i) q^{97} +(0.342020 - 0.939693i) q^{98} +(0.439693 - 2.49362i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{6} + 6 q^{9} + 6 q^{24} - 6 q^{36} - 6 q^{41} - 12 q^{44} + 6 q^{49} + 6 q^{51} + 6 q^{54} + 6 q^{59} + 6 q^{64} - 6 q^{66} + 6 q^{81} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.642788 0.766044i −0.642788 0.766044i
\(3\) 0.524005 1.43969i 0.524005 1.43969i −0.342020 0.939693i \(-0.611111\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(4\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(5\) 0 0
\(6\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0.866025 0.500000i 0.866025 0.500000i
\(9\) −1.03209 0.866025i −1.03209 0.866025i
\(10\) 0 0
\(11\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(12\) 1.32683 + 0.766044i 1.32683 + 0.766044i
\(13\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.939693 0.342020i −0.939693 0.342020i
\(17\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(18\) 1.34730i 1.34730i
\(19\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(20\) 0 0
\(21\) 0 0
\(22\) 0.642788 1.76604i 0.642788 1.76604i
\(23\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(24\) −0.266044 1.50881i −0.266044 1.50881i
\(25\) 0 0
\(26\) 0 0
\(27\) −0.460802 + 0.266044i −0.460802 + 0.266044i
\(28\) 0 0
\(29\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(33\) 2.83564 0.500000i 2.83564 0.500000i
\(34\) 0.173648 0.984808i 0.173648 0.984808i
\(35\) 0 0
\(36\) 1.03209 0.866025i 1.03209 0.866025i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0.866025 0.500000i 0.866025 0.500000i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(44\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(48\) −0.984808 + 1.17365i −0.984808 + 1.17365i
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 1.43969 0.524005i 1.43969 0.524005i
\(52\) 0 0
\(53\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(54\) 0.500000 + 0.181985i 0.500000 + 0.181985i
\(55\) 0 0
\(56\) 0 0
\(57\) 1.32683 + 0.766044i 1.32683 + 0.766044i
\(58\) 0 0
\(59\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(60\) 0 0
\(61\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.500000 0.866025i 0.500000 0.866025i
\(65\) 0 0
\(66\) −2.20574 1.85083i −2.20574 1.85083i
\(67\) 0.223238 0.266044i 0.223238 0.266044i −0.642788 0.766044i \(-0.722222\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(68\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(72\) −1.32683 0.233956i −1.32683 0.233956i
\(73\) −0.642788 + 1.76604i −0.642788 + 1.76604i 1.00000i \(0.5\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −0.939693 0.342020i −0.939693 0.342020i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(80\) 0 0
\(81\) −0.0923963 0.524005i −0.0923963 0.524005i
\(82\) 0.118782 + 0.326352i 0.118782 + 0.326352i
\(83\) −0.300767 0.173648i −0.300767 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.766044 0.642788i −0.766044 0.642788i
\(87\) 0 0
\(88\) 1.62760 + 0.939693i 1.62760 + 0.939693i
\(89\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.53209 1.53209
\(97\) −0.223238 0.266044i −0.223238 0.266044i 0.642788 0.766044i \(-0.277778\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(98\) 0.342020 0.939693i 0.342020 0.939693i
\(99\) 0.439693 2.49362i 0.439693 2.49362i
\(100\) 0 0
\(101\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(102\) −1.32683 0.766044i −1.32683 0.766044i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) −0.181985 0.500000i −0.181985 0.500000i
\(109\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.87939i 1.87939i −0.342020 0.939693i \(-0.611111\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(114\) −0.266044 1.50881i −0.266044 1.50881i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.85083 0.326352i −1.85083 0.326352i
\(119\) 0 0
\(120\) 0 0
\(121\) −1.26604 + 2.19285i −1.26604 + 2.19285i
\(122\) 0 0
\(123\) −0.342020 + 0.407604i −0.342020 + 0.407604i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(128\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(129\) 0.266044 1.50881i 0.266044 1.50881i
\(130\) 0 0
\(131\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(132\) 2.87939i 2.87939i
\(133\) 0 0
\(134\) −0.347296 −0.347296
\(135\) 0 0
\(136\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(137\) −1.50881 0.266044i −1.50881 0.266044i −0.642788 0.766044i \(-0.722222\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) 0 0
\(139\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(145\) 0 0
\(146\) 1.76604 0.642788i 1.76604 0.642788i
\(147\) 1.50881 0.266044i 1.50881 0.266044i
\(148\) 0 0
\(149\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(153\) 1.34730i 1.34730i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.342020 + 0.407604i −0.342020 + 0.407604i
\(163\) 1.32683 0.766044i 1.32683 0.766044i 0.342020 0.939693i \(-0.388889\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(164\) 0.173648 0.300767i 0.173648 0.300767i
\(165\) 0 0
\(166\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(167\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(168\) 0 0
\(169\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(170\) 0 0
\(171\) 1.03209 0.866025i 1.03209 0.866025i
\(172\) 1.00000i 1.00000i
\(173\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.326352 1.85083i −0.326352 1.85083i
\(177\) −0.984808 2.70574i −0.984808 2.70574i
\(178\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(179\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(180\) 0 0
\(181\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.642788 + 1.76604i −0.642788 + 1.76604i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.984808 1.17365i −0.984808 1.17365i
\(193\) −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i \(0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(194\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(195\) 0 0
\(196\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) −2.19285 + 1.26604i −2.19285 + 1.26604i
\(199\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(200\) 0 0
\(201\) −0.266044 0.460802i −0.266044 0.460802i
\(202\) 0 0
\(203\) 0 0
\(204\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(210\) 0 0
\(211\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(215\) 0 0
\(216\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(217\) 0 0
\(218\) 0 0
\(219\) 2.20574 + 1.85083i 2.20574 + 1.85083i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(227\) 0.347296i 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(228\) −0.984808 + 1.17365i −0.984808 + 1.17365i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.50881 + 0.266044i −1.50881 + 0.266044i −0.866025 0.500000i \(-0.833333\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 2.49362 0.439693i 2.49362 0.439693i
\(243\) −1.32683 0.233956i −1.32683 0.233956i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.532089 0.532089
\(247\) 0 0
\(248\) 0 0
\(249\) −0.407604 + 0.342020i −0.407604 + 0.342020i
\(250\) 0 0
\(251\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(257\) 0.984808 1.17365i 0.984808 1.17365i 1.00000i \(-0.5\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(258\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.50881 0.266044i −1.50881 0.266044i
\(263\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(264\) 2.20574 1.85083i 2.20574 1.85083i
\(265\) 0 0
\(266\) 0 0
\(267\) 1.53209i 1.53209i
\(268\) 0.223238 + 0.266044i 0.223238 + 0.266044i
\(269\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(270\) 0 0
\(271\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(272\) −0.342020 0.939693i −0.342020 0.939693i
\(273\) 0 0
\(274\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −0.300767 0.173648i −0.300767 0.173648i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(282\) 0 0
\(283\) −1.20805 1.43969i −1.20805 1.43969i −0.866025 0.500000i \(-0.833333\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.460802 1.26604i 0.460802 1.26604i
\(289\) 0 0
\(290\) 0 0
\(291\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(292\) −1.62760 0.939693i −1.62760 0.939693i
\(293\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(294\) −1.17365 0.984808i −1.17365 0.984808i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.866025 0.500000i −0.866025 0.500000i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0.500000 0.866025i 0.500000 0.866025i
\(305\) 0 0
\(306\) −1.03209 + 0.866025i −1.03209 + 0.866025i
\(307\) 0.642788 1.76604i 0.642788 1.76604i 1.00000i \(-0.5\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −0.984808 + 1.17365i −0.984808 + 1.17365i 1.00000i \(0.5\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(322\) 0 0
\(323\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(324\) 0.532089 0.532089
\(325\) 0 0
\(326\) −1.43969 0.524005i −1.43969 0.524005i
\(327\) 0 0
\(328\) −0.342020 + 0.0603074i −0.342020 + 0.0603074i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 0.223238 0.266044i 0.223238 0.266044i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.50881 0.266044i 1.50881 0.266044i 0.642788 0.766044i \(-0.277778\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(338\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(339\) −2.70574 0.984808i −2.70574 0.984808i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.32683 0.233956i −1.32683 0.233956i
\(343\) 0 0
\(344\) 0.766044 0.642788i 0.766044 0.642788i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.342020 0.0603074i 0.342020 0.0603074i 1.00000i \(-0.5\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.20805 + 1.43969i −1.20805 + 1.43969i
\(353\) 0.300767 0.173648i 0.300767 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(354\) −1.43969 + 2.49362i −1.43969 + 2.49362i
\(355\) 0 0
\(356\) −0.173648 0.984808i −0.173648 0.984808i
\(357\) 0 0
\(358\) 0.118782 0.326352i 0.118782 0.326352i
\(359\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(360\) 0 0
\(361\) −0.939693 0.342020i −0.939693 0.342020i
\(362\) 0 0
\(363\) 2.49362 + 2.97178i 2.49362 + 2.97178i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(368\) 0 0
\(369\) 0.233956 + 0.405223i 0.233956 + 0.405223i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 1.76604 0.642788i 1.76604 0.642788i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(384\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(385\) 0 0
\(386\) 0.939693 0.342020i 0.939693 0.342020i
\(387\) −1.16679 0.673648i −1.16679 0.673648i
\(388\) 0.300767 0.173648i 0.300767 0.173648i
\(389\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(393\) −0.802823 2.20574i −0.802823 2.20574i
\(394\) 0 0
\(395\) 0 0
\(396\) 2.37939 + 0.866025i 2.37939 + 0.866025i
\(397\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(402\) −0.181985 + 0.500000i −0.181985 + 0.500000i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.984808 1.17365i 0.984808 1.17365i
\(409\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) −1.17365 + 2.03282i −1.17365 + 2.03282i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.532089i 0.532089i
\(418\) 1.62760 + 0.939693i 1.62760 + 0.939693i
\(419\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0 0
\(421\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(422\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.642788 0.766044i 0.642788 0.766044i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(432\) 0.524005 0.0923963i 0.524005 0.0923963i
\(433\) 1.96962 + 0.347296i 1.96962 + 0.347296i 0.984808 + 0.173648i \(0.0555556\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 2.87939i 2.87939i
\(439\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) 0 0
\(441\) 0.233956 1.32683i 0.233956 1.32683i
\(442\) 0 0
\(443\) −0.524005 1.43969i −0.524005 1.43969i −0.866025 0.500000i \(-0.833333\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(450\) 0 0
\(451\) −0.113341 0.642788i −0.113341 0.642788i
\(452\) 1.85083 + 0.326352i 1.85083 + 0.326352i
\(453\) 0 0
\(454\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(455\) 0 0
\(456\) 1.53209 1.53209
\(457\) 0.347296i 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(458\) 0 0
\(459\) −0.500000 0.181985i −0.500000 0.181985i
\(460\) 0 0
\(461\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(462\) 0 0
\(463\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(467\) −0.300767 + 0.173648i −0.300767 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.642788 1.76604i 0.642788 1.76604i
\(473\) 1.20805 + 1.43969i 1.20805 + 1.43969i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.32683 + 0.766044i 1.32683 + 0.766044i
\(483\) 0 0
\(484\) −1.93969 1.62760i −1.93969 1.62760i
\(485\) 0 0
\(486\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0 0
\(489\) −0.407604 2.31164i −0.407604 2.31164i
\(490\) 0 0
\(491\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(492\) −0.342020 0.407604i −0.342020 0.407604i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.524005 + 0.0923963i 0.524005 + 0.0923963i
\(499\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(503\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.524005 + 1.43969i 0.524005 + 1.43969i
\(508\) 0 0
\(509\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −0.181985 0.500000i −0.181985 0.500000i
\(514\) −1.53209 −1.53209
\(515\) 0 0
\(516\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(522\) 0 0
\(523\) −1.28558 + 1.53209i −1.28558 + 1.53209i −0.642788 + 0.766044i \(0.722222\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(524\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −2.83564 0.500000i −2.83564 0.500000i
\(529\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(530\) 0 0
\(531\) −2.53209 −2.53209
\(532\) 0 0
\(533\) 0 0
\(534\) 1.17365 0.984808i 1.17365 0.984808i
\(535\) 0 0
\(536\) 0.0603074 0.342020i 0.0603074 0.342020i
\(537\) 0.524005 0.0923963i 0.524005 0.0923963i
\(538\) 0 0
\(539\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(540\) 0 0
\(541\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(548\) 0.524005 1.43969i 0.524005 1.43969i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(557\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.20574 + 1.85083i 2.20574 + 1.85083i
\(562\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(563\) 1.62760 + 0.939693i 1.62760 + 0.939693i 0.984808 + 0.173648i \(0.0555556\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.26604 + 0.460802i −1.26604 + 0.460802i
\(577\) −1.62760 0.939693i −1.62760 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 0.766044i \(-0.722222\pi\)
\(578\) 0 0
\(579\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.460802 + 0.266044i 0.460802 + 0.266044i
\(583\) 0 0
\(584\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(585\) 0 0
\(586\) 0 0
\(587\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(588\) 1.53209i 1.53209i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.85083 0.326352i −1.85083 0.326352i −0.866025 0.500000i \(-0.833333\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(594\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(600\) 0 0
\(601\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(602\) 0 0
\(603\) −0.460802 + 0.0812519i −0.460802 + 0.0812519i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.32683 + 0.233956i 1.32683 + 0.233956i
\(613\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(614\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.20805 + 1.43969i −1.20805 + 1.43969i −0.342020 + 0.939693i \(0.611111\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(618\) 0 0
\(619\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 1.53209 1.53209
\(627\) 2.87939i 2.87939i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(632\) 0 0
\(633\) 0.524005 + 1.43969i 0.524005 + 1.43969i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(642\) 1.50881 + 0.266044i 1.50881 + 0.266044i
\(643\) 0.524005 1.43969i 0.524005 1.43969i −0.342020 0.939693i \(-0.611111\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −0.342020 0.407604i −0.342020 0.407604i
\(649\) 3.31908 + 1.20805i 3.31908 + 1.20805i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.524005 + 1.43969i 0.524005 + 1.43969i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(657\) 2.19285 1.26604i 2.19285 1.26604i
\(658\) 0 0
\(659\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(660\) 0 0
\(661\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(662\) 0.642788 1.76604i 0.642788 1.76604i
\(663\) 0 0
\(664\) −0.347296 −0.347296
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(674\) −1.17365 0.984808i −1.17365 0.984808i
\(675\) 0 0
\(676\) −0.500000 0.866025i −0.500000 0.866025i
\(677\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0.984808 + 2.70574i 0.984808 + 2.70574i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.500000 0.181985i −0.500000 0.181985i
\(682\) 0 0
\(683\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(684\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.984808 0.173648i −0.984808 0.173648i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.266044 0.223238i −0.266044 0.223238i
\(695\) 0 0
\(696\) 0 0
\(697\) −0.118782 0.326352i −0.118782 0.326352i
\(698\) 0 0
\(699\) −0.407604 + 2.31164i −0.407604 + 2.31164i
\(700\) 0 0
\(701\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.87939 1.87939
\(705\) 0 0
\(706\) −0.326352 0.118782i −0.326352 0.118782i
\(707\) 0 0
\(708\) 2.83564 0.500000i 2.83564 0.500000i
\(709\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(723\) 2.34730i 2.34730i
\(724\) 0 0
\(725\) 0 0
\(726\) 0.673648 3.82045i 0.673648 3.82045i
\(727\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(728\) 0 0
\(729\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(730\) 0 0
\(731\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(732\) 0 0
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.642788 + 0.113341i 0.642788 + 0.113341i
\(738\) 0.160035 0.439693i 0.160035 0.439693i
\(739\) −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.160035 + 0.439693i 0.160035 + 0.439693i
\(748\) −1.62760 0.939693i −1.62760 0.939693i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(752\) 0 0
\(753\) −2.03282 1.17365i −2.03282 1.17365i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(758\) 1.28558 + 1.53209i 1.28558 + 1.53209i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.32683 0.766044i 1.32683 0.766044i
\(769\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) −1.17365 2.03282i −1.17365 2.03282i
\(772\) −0.866025 0.500000i −0.866025 0.500000i
\(773\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(774\) 0.233956 + 1.32683i 0.233956 + 1.32683i
\(775\) 0 0
\(776\) −0.326352 0.118782i −0.326352 0.118782i
\(777\) 0 0
\(778\) 0 0
\(779\) 0.173648 0.300767i 0.173648 0.300767i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.173648 0.984808i −0.173648 0.984808i
\(785\) 0 0
\(786\) −1.17365 + 2.03282i −1.17365 + 2.03282i
\(787\) 1.62760 0.939693i 1.62760 0.939693i 0.642788 0.766044i \(-0.277778\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.866025 2.37939i −0.866025 2.37939i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.26604 + 0.460802i 1.26604 + 0.460802i
\(802\) 1.85083 + 0.326352i 1.85083 + 0.326352i
\(803\) −3.47843 + 0.613341i −3.47843 + 0.613341i
\(804\) 0.500000 0.181985i 0.500000 0.181985i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(810\) 0 0
\(811\) −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i \(0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −1.53209 −1.53209
\(817\) 1.00000i 1.00000i
\(818\) 1.87939i 1.87939i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) 2.31164 0.407604i 2.31164 0.407604i
\(823\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.20805 + 1.43969i −1.20805 + 1.43969i −0.342020 + 0.939693i \(0.611111\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(834\) −0.407604 + 0.342020i −0.407604 + 0.342020i
\(835\) 0 0
\(836\) −0.326352 1.85083i −0.326352 1.85083i
\(837\) 0 0
\(838\) −0.642788 0.766044i −0.642788 0.766044i
\(839\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(840\) 0 0
\(841\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(842\) 0 0
\(843\) −2.03282 1.17365i −2.03282 1.17365i
\(844\) −0.500000 0.866025i −0.500000 0.866025i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.00000 −1.00000
\(857\) −0.984808 1.17365i −0.984808 1.17365i −0.984808 0.173648i \(-0.944444\pi\)
1.00000i \(-0.5\pi\)
\(858\) 0 0
\(859\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) −0.407604 0.342020i −0.407604 0.342020i
\(865\) 0 0
\(866\) −1.00000 1.73205i −1.00000 1.73205i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.467911i 0.467911i
\(874\) 0 0
\(875\) 0 0
\(876\) −2.20574 + 1.85083i −2.20574 + 1.85083i
\(877\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(882\) −1.16679 + 0.673648i −1.16679 + 0.673648i
\(883\) −0.223238 + 0.266044i −0.223238 + 0.266044i −0.866025 0.500000i \(-0.833333\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(887\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.766044 0.642788i 0.766044 0.642788i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.50881 + 0.266044i −1.50881 + 0.266044i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −0.419550 + 0.500000i −0.419550 + 0.500000i
\(903\) 0 0
\(904\) −0.939693 1.62760i −0.939693 1.62760i
\(905\) 0 0
\(906\) 0 0
\(907\) −1.85083 + 0.326352i −1.85083 + 0.326352i −0.984808 0.173648i \(-0.944444\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0.342020 + 0.0603074i 0.342020 + 0.0603074i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −0.984808 1.17365i −0.984808 1.17365i
\(913\) 0.652704i 0.652704i
\(914\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.181985 + 0.500000i 0.181985 + 0.500000i
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) −2.20574 1.85083i −2.20574 1.85083i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(930\) 0 0
\(931\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(932\) 1.53209i 1.53209i
\(933\) 0 0
\(934\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(935\) 0 0
\(936\) 0 0
\(937\) 0.524005 + 1.43969i 0.524005 + 1.43969i 0.866025 + 0.500000i \(0.166667\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(938\) 0 0
\(939\) 1.17365 + 2.03282i 1.17365 + 2.03282i
\(940\) 0 0
\(941\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(945\) 0 0
\(946\) 0.326352 1.85083i 0.326352 1.85083i
\(947\) −0.684040 + 1.87939i −0.684040 + 1.87939i −0.342020 + 0.939693i \(0.611111\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.642788 + 1.76604i −0.642788 + 1.76604i 1.00000i \(0.5\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0.460802 + 1.26604i 0.460802 + 1.26604i
\(964\) −0.266044 1.50881i −0.266044 1.50881i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(968\) 2.53209i 2.53209i
\(969\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(970\) 0 0
\(971\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(972\) 0.460802 1.26604i 0.460802 1.26604i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.32683 + 0.766044i −1.32683 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(978\) −1.50881 + 1.79813i −1.50881 + 1.79813i
\(979\) −1.43969 1.20805i −1.43969 1.20805i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.342020 0.939693i −0.342020 0.939693i
\(983\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(984\) −0.0923963 + 0.524005i −0.0923963 + 0.524005i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(992\) 0 0
\(993\) 2.83564 0.500000i 2.83564 0.500000i
\(994\) 0 0
\(995\) 0 0
\(996\) −0.266044 0.460802i −0.266044 0.460802i
\(997\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(998\) 1.20805 1.43969i 1.20805 1.43969i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.1.cq.b.899.1 12
5.2 odd 4 152.1.u.a.139.1 yes 6
5.3 odd 4 3800.1.cv.c.1051.1 6
5.4 even 2 inner 3800.1.cq.b.899.2 12
8.3 odd 2 CM 3800.1.cq.b.899.1 12
15.2 even 4 1368.1.eh.a.595.1 6
19.16 even 9 inner 3800.1.cq.b.1099.2 12
20.7 even 4 608.1.bg.a.367.1 6
40.3 even 4 3800.1.cv.c.1051.1 6
40.19 odd 2 inner 3800.1.cq.b.899.2 12
40.27 even 4 152.1.u.a.139.1 yes 6
40.37 odd 4 608.1.bg.a.367.1 6
95.2 even 36 2888.1.u.f.1867.1 6
95.7 odd 12 2888.1.u.g.2555.1 6
95.12 even 12 2888.1.u.a.2555.1 6
95.17 odd 36 2888.1.u.b.1867.1 6
95.22 even 36 2888.1.u.e.1859.1 6
95.27 even 12 2888.1.u.f.99.1 6
95.32 even 36 2888.1.k.c.2819.3 6
95.37 even 4 2888.1.u.e.595.1 6
95.42 odd 36 2888.1.f.d.723.3 3
95.47 odd 36 2888.1.k.b.2595.1 6
95.52 even 36 2888.1.u.a.2411.1 6
95.54 even 18 inner 3800.1.cq.b.1099.1 12
95.62 odd 36 2888.1.u.g.2411.1 6
95.67 even 36 2888.1.k.c.2595.3 6
95.72 even 36 2888.1.f.c.723.1 3
95.73 odd 36 3800.1.cv.c.1251.1 6
95.82 odd 36 2888.1.k.b.2819.1 6
95.87 odd 12 2888.1.u.b.99.1 6
95.92 odd 36 152.1.u.a.35.1 6
120.107 odd 4 1368.1.eh.a.595.1 6
152.35 odd 18 inner 3800.1.cq.b.1099.2 12
285.92 even 36 1368.1.eh.a.1099.1 6
380.187 even 36 608.1.bg.a.111.1 6
760.27 odd 12 2888.1.u.f.99.1 6
760.67 odd 36 2888.1.k.c.2595.3 6
760.107 odd 12 2888.1.u.a.2555.1 6
760.147 odd 36 2888.1.u.a.2411.1 6
760.187 even 36 152.1.u.a.35.1 6
760.227 odd 4 2888.1.u.e.595.1 6
760.307 odd 36 2888.1.u.e.1859.1 6
760.339 odd 18 inner 3800.1.cq.b.1099.1 12
760.347 even 36 2888.1.u.g.2411.1 6
760.387 even 12 2888.1.u.g.2555.1 6
760.427 even 36 2888.1.k.b.2595.1 6
760.467 even 12 2888.1.u.b.99.1 6
760.507 odd 36 2888.1.k.c.2819.3 6
760.547 odd 36 2888.1.f.c.723.1 3
760.587 even 36 2888.1.u.b.1867.1 6
760.643 even 36 3800.1.cv.c.1251.1 6
760.667 odd 36 2888.1.u.f.1867.1 6
760.707 even 36 2888.1.f.d.723.3 3
760.747 even 36 2888.1.k.b.2819.1 6
760.757 odd 36 608.1.bg.a.111.1 6
2280.947 odd 36 1368.1.eh.a.1099.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.1.u.a.35.1 6 95.92 odd 36
152.1.u.a.35.1 6 760.187 even 36
152.1.u.a.139.1 yes 6 5.2 odd 4
152.1.u.a.139.1 yes 6 40.27 even 4
608.1.bg.a.111.1 6 380.187 even 36
608.1.bg.a.111.1 6 760.757 odd 36
608.1.bg.a.367.1 6 20.7 even 4
608.1.bg.a.367.1 6 40.37 odd 4
1368.1.eh.a.595.1 6 15.2 even 4
1368.1.eh.a.595.1 6 120.107 odd 4
1368.1.eh.a.1099.1 6 285.92 even 36
1368.1.eh.a.1099.1 6 2280.947 odd 36
2888.1.f.c.723.1 3 95.72 even 36
2888.1.f.c.723.1 3 760.547 odd 36
2888.1.f.d.723.3 3 95.42 odd 36
2888.1.f.d.723.3 3 760.707 even 36
2888.1.k.b.2595.1 6 95.47 odd 36
2888.1.k.b.2595.1 6 760.427 even 36
2888.1.k.b.2819.1 6 95.82 odd 36
2888.1.k.b.2819.1 6 760.747 even 36
2888.1.k.c.2595.3 6 95.67 even 36
2888.1.k.c.2595.3 6 760.67 odd 36
2888.1.k.c.2819.3 6 95.32 even 36
2888.1.k.c.2819.3 6 760.507 odd 36
2888.1.u.a.2411.1 6 95.52 even 36
2888.1.u.a.2411.1 6 760.147 odd 36
2888.1.u.a.2555.1 6 95.12 even 12
2888.1.u.a.2555.1 6 760.107 odd 12
2888.1.u.b.99.1 6 95.87 odd 12
2888.1.u.b.99.1 6 760.467 even 12
2888.1.u.b.1867.1 6 95.17 odd 36
2888.1.u.b.1867.1 6 760.587 even 36
2888.1.u.e.595.1 6 95.37 even 4
2888.1.u.e.595.1 6 760.227 odd 4
2888.1.u.e.1859.1 6 95.22 even 36
2888.1.u.e.1859.1 6 760.307 odd 36
2888.1.u.f.99.1 6 95.27 even 12
2888.1.u.f.99.1 6 760.27 odd 12
2888.1.u.f.1867.1 6 95.2 even 36
2888.1.u.f.1867.1 6 760.667 odd 36
2888.1.u.g.2411.1 6 95.62 odd 36
2888.1.u.g.2411.1 6 760.347 even 36
2888.1.u.g.2555.1 6 95.7 odd 12
2888.1.u.g.2555.1 6 760.387 even 12
3800.1.cq.b.899.1 12 1.1 even 1 trivial
3800.1.cq.b.899.1 12 8.3 odd 2 CM
3800.1.cq.b.899.2 12 5.4 even 2 inner
3800.1.cq.b.899.2 12 40.19 odd 2 inner
3800.1.cq.b.1099.1 12 95.54 even 18 inner
3800.1.cq.b.1099.1 12 760.339 odd 18 inner
3800.1.cq.b.1099.2 12 19.16 even 9 inner
3800.1.cq.b.1099.2 12 152.35 odd 18 inner
3800.1.cv.c.1051.1 6 5.3 odd 4
3800.1.cv.c.1051.1 6 40.3 even 4
3800.1.cv.c.1251.1 6 95.73 odd 36
3800.1.cv.c.1251.1 6 760.643 even 36