Properties

Label 3800.2.a.bb.1.6
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.79951\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.79951 q^{3} +0.127550 q^{7} +4.83726 q^{9} +5.21326 q^{11} -0.515371 q^{13} +3.58010 q^{17} +1.00000 q^{19} +0.357078 q^{21} -6.50922 q^{23} +5.14343 q^{27} -3.05772 q^{29} +5.44243 q^{31} +14.5946 q^{33} -4.99696 q^{37} -1.44279 q^{39} +11.4394 q^{41} -2.06955 q^{43} +11.9078 q^{47} -6.98373 q^{49} +10.0225 q^{51} +2.25821 q^{53} +2.79951 q^{57} +1.89137 q^{59} -5.83111 q^{61} +0.616994 q^{63} +0.432668 q^{67} -18.2226 q^{69} +4.77748 q^{71} +9.98684 q^{73} +0.664953 q^{77} -3.28280 q^{79} -0.112689 q^{81} +0.496452 q^{83} -8.56013 q^{87} -12.4720 q^{89} -0.0657358 q^{91} +15.2361 q^{93} +7.00361 q^{97} +25.2179 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 2 q^{7} + 10 q^{9} + 3 q^{11} + 3 q^{13} + 2 q^{17} + 6 q^{19} + 11 q^{21} - 4 q^{23} - 20 q^{27} + 7 q^{29} + 5 q^{31} + 16 q^{33} + 8 q^{39} + 11 q^{41} + 7 q^{43} - 20 q^{47} - 2 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.79951 1.61630 0.808149 0.588978i \(-0.200469\pi\)
0.808149 + 0.588978i \(0.200469\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.127550 0.0482095 0.0241047 0.999709i \(-0.492326\pi\)
0.0241047 + 0.999709i \(0.492326\pi\)
\(8\) 0 0
\(9\) 4.83726 1.61242
\(10\) 0 0
\(11\) 5.21326 1.57186 0.785928 0.618318i \(-0.212185\pi\)
0.785928 + 0.618318i \(0.212185\pi\)
\(12\) 0 0
\(13\) −0.515371 −0.142938 −0.0714691 0.997443i \(-0.522769\pi\)
−0.0714691 + 0.997443i \(0.522769\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.58010 0.868302 0.434151 0.900840i \(-0.357048\pi\)
0.434151 + 0.900840i \(0.357048\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.357078 0.0779209
\(22\) 0 0
\(23\) −6.50922 −1.35727 −0.678633 0.734477i \(-0.737427\pi\)
−0.678633 + 0.734477i \(0.737427\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.14343 0.989854
\(28\) 0 0
\(29\) −3.05772 −0.567805 −0.283902 0.958853i \(-0.591629\pi\)
−0.283902 + 0.958853i \(0.591629\pi\)
\(30\) 0 0
\(31\) 5.44243 0.977490 0.488745 0.872427i \(-0.337455\pi\)
0.488745 + 0.872427i \(0.337455\pi\)
\(32\) 0 0
\(33\) 14.5946 2.54059
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.99696 −0.821495 −0.410748 0.911749i \(-0.634732\pi\)
−0.410748 + 0.911749i \(0.634732\pi\)
\(38\) 0 0
\(39\) −1.44279 −0.231031
\(40\) 0 0
\(41\) 11.4394 1.78653 0.893267 0.449527i \(-0.148408\pi\)
0.893267 + 0.449527i \(0.148408\pi\)
\(42\) 0 0
\(43\) −2.06955 −0.315603 −0.157801 0.987471i \(-0.550441\pi\)
−0.157801 + 0.987471i \(0.550441\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.9078 1.73692 0.868462 0.495755i \(-0.165109\pi\)
0.868462 + 0.495755i \(0.165109\pi\)
\(48\) 0 0
\(49\) −6.98373 −0.997676
\(50\) 0 0
\(51\) 10.0225 1.40344
\(52\) 0 0
\(53\) 2.25821 0.310189 0.155095 0.987900i \(-0.450432\pi\)
0.155095 + 0.987900i \(0.450432\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.79951 0.370804
\(58\) 0 0
\(59\) 1.89137 0.246235 0.123118 0.992392i \(-0.460711\pi\)
0.123118 + 0.992392i \(0.460711\pi\)
\(60\) 0 0
\(61\) −5.83111 −0.746597 −0.373299 0.927711i \(-0.621773\pi\)
−0.373299 + 0.927711i \(0.621773\pi\)
\(62\) 0 0
\(63\) 0.616994 0.0777340
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.432668 0.0528588 0.0264294 0.999651i \(-0.491586\pi\)
0.0264294 + 0.999651i \(0.491586\pi\)
\(68\) 0 0
\(69\) −18.2226 −2.19375
\(70\) 0 0
\(71\) 4.77748 0.566983 0.283491 0.958975i \(-0.408507\pi\)
0.283491 + 0.958975i \(0.408507\pi\)
\(72\) 0 0
\(73\) 9.98684 1.16887 0.584436 0.811440i \(-0.301316\pi\)
0.584436 + 0.811440i \(0.301316\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.664953 0.0757784
\(78\) 0 0
\(79\) −3.28280 −0.369344 −0.184672 0.982800i \(-0.559122\pi\)
−0.184672 + 0.982800i \(0.559122\pi\)
\(80\) 0 0
\(81\) −0.112689 −0.0125211
\(82\) 0 0
\(83\) 0.496452 0.0544926 0.0272463 0.999629i \(-0.491326\pi\)
0.0272463 + 0.999629i \(0.491326\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.56013 −0.917742
\(88\) 0 0
\(89\) −12.4720 −1.32203 −0.661013 0.750374i \(-0.729873\pi\)
−0.661013 + 0.750374i \(0.729873\pi\)
\(90\) 0 0
\(91\) −0.0657358 −0.00689098
\(92\) 0 0
\(93\) 15.2361 1.57991
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00361 0.711109 0.355555 0.934655i \(-0.384292\pi\)
0.355555 + 0.934655i \(0.384292\pi\)
\(98\) 0 0
\(99\) 25.2179 2.53449
\(100\) 0 0
\(101\) −10.9573 −1.09029 −0.545147 0.838340i \(-0.683526\pi\)
−0.545147 + 0.838340i \(0.683526\pi\)
\(102\) 0 0
\(103\) −11.0593 −1.08971 −0.544854 0.838531i \(-0.683415\pi\)
−0.544854 + 0.838531i \(0.683415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.0145 −1.25816 −0.629078 0.777342i \(-0.716568\pi\)
−0.629078 + 0.777342i \(0.716568\pi\)
\(108\) 0 0
\(109\) 7.65171 0.732901 0.366450 0.930438i \(-0.380573\pi\)
0.366450 + 0.930438i \(0.380573\pi\)
\(110\) 0 0
\(111\) −13.9890 −1.32778
\(112\) 0 0
\(113\) −9.93850 −0.934935 −0.467468 0.884010i \(-0.654834\pi\)
−0.467468 + 0.884010i \(0.654834\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.49298 −0.230477
\(118\) 0 0
\(119\) 0.456643 0.0418604
\(120\) 0 0
\(121\) 16.1781 1.47073
\(122\) 0 0
\(123\) 32.0247 2.88757
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.54647 −0.758376 −0.379188 0.925320i \(-0.623797\pi\)
−0.379188 + 0.925320i \(0.623797\pi\)
\(128\) 0 0
\(129\) −5.79372 −0.510108
\(130\) 0 0
\(131\) 17.0384 1.48865 0.744327 0.667816i \(-0.232771\pi\)
0.744327 + 0.667816i \(0.232771\pi\)
\(132\) 0 0
\(133\) 0.127550 0.0110600
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.28203 0.536710 0.268355 0.963320i \(-0.413520\pi\)
0.268355 + 0.963320i \(0.413520\pi\)
\(138\) 0 0
\(139\) 1.87860 0.159341 0.0796704 0.996821i \(-0.474613\pi\)
0.0796704 + 0.996821i \(0.474613\pi\)
\(140\) 0 0
\(141\) 33.3359 2.80739
\(142\) 0 0
\(143\) −2.68676 −0.224678
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −19.5510 −1.61254
\(148\) 0 0
\(149\) −1.98213 −0.162383 −0.0811914 0.996699i \(-0.525872\pi\)
−0.0811914 + 0.996699i \(0.525872\pi\)
\(150\) 0 0
\(151\) 1.05971 0.0862378 0.0431189 0.999070i \(-0.486271\pi\)
0.0431189 + 0.999070i \(0.486271\pi\)
\(152\) 0 0
\(153\) 17.3179 1.40007
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.4832 −0.916458 −0.458229 0.888834i \(-0.651516\pi\)
−0.458229 + 0.888834i \(0.651516\pi\)
\(158\) 0 0
\(159\) 6.32189 0.501358
\(160\) 0 0
\(161\) −0.830253 −0.0654331
\(162\) 0 0
\(163\) 0.595407 0.0466359 0.0233179 0.999728i \(-0.492577\pi\)
0.0233179 + 0.999728i \(0.492577\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.77000 0.601260 0.300630 0.953741i \(-0.402803\pi\)
0.300630 + 0.953741i \(0.402803\pi\)
\(168\) 0 0
\(169\) −12.7344 −0.979569
\(170\) 0 0
\(171\) 4.83726 0.369915
\(172\) 0 0
\(173\) −7.63268 −0.580302 −0.290151 0.956981i \(-0.593706\pi\)
−0.290151 + 0.956981i \(0.593706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.29491 0.397990
\(178\) 0 0
\(179\) 21.7950 1.62903 0.814516 0.580141i \(-0.197003\pi\)
0.814516 + 0.580141i \(0.197003\pi\)
\(180\) 0 0
\(181\) 25.0255 1.86013 0.930067 0.367390i \(-0.119749\pi\)
0.930067 + 0.367390i \(0.119749\pi\)
\(182\) 0 0
\(183\) −16.3243 −1.20672
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.6640 1.36485
\(188\) 0 0
\(189\) 0.656046 0.0477204
\(190\) 0 0
\(191\) −0.291147 −0.0210667 −0.0105333 0.999945i \(-0.503353\pi\)
−0.0105333 + 0.999945i \(0.503353\pi\)
\(192\) 0 0
\(193\) −5.23615 −0.376906 −0.188453 0.982082i \(-0.560347\pi\)
−0.188453 + 0.982082i \(0.560347\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.5134 −1.53277 −0.766384 0.642383i \(-0.777946\pi\)
−0.766384 + 0.642383i \(0.777946\pi\)
\(198\) 0 0
\(199\) 22.4064 1.58834 0.794172 0.607693i \(-0.207905\pi\)
0.794172 + 0.607693i \(0.207905\pi\)
\(200\) 0 0
\(201\) 1.21126 0.0854356
\(202\) 0 0
\(203\) −0.390014 −0.0273736
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −31.4868 −2.18848
\(208\) 0 0
\(209\) 5.21326 0.360609
\(210\) 0 0
\(211\) −6.01277 −0.413936 −0.206968 0.978348i \(-0.566360\pi\)
−0.206968 + 0.978348i \(0.566360\pi\)
\(212\) 0 0
\(213\) 13.3746 0.916413
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.694184 0.0471243
\(218\) 0 0
\(219\) 27.9583 1.88925
\(220\) 0 0
\(221\) −1.84508 −0.124114
\(222\) 0 0
\(223\) 21.6542 1.45007 0.725035 0.688712i \(-0.241824\pi\)
0.725035 + 0.688712i \(0.241824\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.8894 −1.05462 −0.527308 0.849674i \(-0.676799\pi\)
−0.527308 + 0.849674i \(0.676799\pi\)
\(228\) 0 0
\(229\) 9.32826 0.616429 0.308214 0.951317i \(-0.400269\pi\)
0.308214 + 0.951317i \(0.400269\pi\)
\(230\) 0 0
\(231\) 1.86154 0.122481
\(232\) 0 0
\(233\) 14.5960 0.956215 0.478107 0.878301i \(-0.341323\pi\)
0.478107 + 0.878301i \(0.341323\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −9.19025 −0.596971
\(238\) 0 0
\(239\) 4.85092 0.313780 0.156890 0.987616i \(-0.449853\pi\)
0.156890 + 0.987616i \(0.449853\pi\)
\(240\) 0 0
\(241\) 13.7085 0.883043 0.441521 0.897251i \(-0.354439\pi\)
0.441521 + 0.897251i \(0.354439\pi\)
\(242\) 0 0
\(243\) −15.7458 −1.01009
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.515371 −0.0327923
\(248\) 0 0
\(249\) 1.38982 0.0880764
\(250\) 0 0
\(251\) −26.3986 −1.66626 −0.833131 0.553076i \(-0.813454\pi\)
−0.833131 + 0.553076i \(0.813454\pi\)
\(252\) 0 0
\(253\) −33.9343 −2.13343
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.4439 −0.963363 −0.481681 0.876346i \(-0.659974\pi\)
−0.481681 + 0.876346i \(0.659974\pi\)
\(258\) 0 0
\(259\) −0.637364 −0.0396039
\(260\) 0 0
\(261\) −14.7910 −0.915540
\(262\) 0 0
\(263\) −29.7108 −1.83204 −0.916022 0.401127i \(-0.868619\pi\)
−0.916022 + 0.401127i \(0.868619\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −34.9154 −2.13679
\(268\) 0 0
\(269\) 27.1894 1.65776 0.828882 0.559423i \(-0.188977\pi\)
0.828882 + 0.559423i \(0.188977\pi\)
\(270\) 0 0
\(271\) −28.1742 −1.71146 −0.855731 0.517421i \(-0.826892\pi\)
−0.855731 + 0.517421i \(0.826892\pi\)
\(272\) 0 0
\(273\) −0.184028 −0.0111379
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.63783 −0.518997 −0.259498 0.965744i \(-0.583557\pi\)
−0.259498 + 0.965744i \(0.583557\pi\)
\(278\) 0 0
\(279\) 26.3265 1.57612
\(280\) 0 0
\(281\) 6.87156 0.409923 0.204961 0.978770i \(-0.434293\pi\)
0.204961 + 0.978770i \(0.434293\pi\)
\(282\) 0 0
\(283\) 9.90553 0.588823 0.294411 0.955679i \(-0.404876\pi\)
0.294411 + 0.955679i \(0.404876\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.45910 0.0861279
\(288\) 0 0
\(289\) −4.18287 −0.246051
\(290\) 0 0
\(291\) 19.6067 1.14936
\(292\) 0 0
\(293\) 27.3706 1.59901 0.799504 0.600661i \(-0.205096\pi\)
0.799504 + 0.600661i \(0.205096\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 26.8140 1.55591
\(298\) 0 0
\(299\) 3.35467 0.194005
\(300\) 0 0
\(301\) −0.263971 −0.0152150
\(302\) 0 0
\(303\) −30.6752 −1.76224
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −16.8240 −0.960194 −0.480097 0.877215i \(-0.659399\pi\)
−0.480097 + 0.877215i \(0.659399\pi\)
\(308\) 0 0
\(309\) −30.9607 −1.76129
\(310\) 0 0
\(311\) 22.3539 1.26758 0.633788 0.773507i \(-0.281499\pi\)
0.633788 + 0.773507i \(0.281499\pi\)
\(312\) 0 0
\(313\) −6.08636 −0.344021 −0.172011 0.985095i \(-0.555026\pi\)
−0.172011 + 0.985095i \(0.555026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.8523 1.45201 0.726005 0.687689i \(-0.241375\pi\)
0.726005 + 0.687689i \(0.241375\pi\)
\(318\) 0 0
\(319\) −15.9407 −0.892508
\(320\) 0 0
\(321\) −36.4342 −2.03356
\(322\) 0 0
\(323\) 3.58010 0.199202
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.4210 1.18459
\(328\) 0 0
\(329\) 1.51884 0.0837362
\(330\) 0 0
\(331\) −23.1983 −1.27509 −0.637546 0.770412i \(-0.720050\pi\)
−0.637546 + 0.770412i \(0.720050\pi\)
\(332\) 0 0
\(333\) −24.1716 −1.32460
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −19.1802 −1.04481 −0.522405 0.852698i \(-0.674965\pi\)
−0.522405 + 0.852698i \(0.674965\pi\)
\(338\) 0 0
\(339\) −27.8229 −1.51113
\(340\) 0 0
\(341\) 28.3728 1.53647
\(342\) 0 0
\(343\) −1.78363 −0.0963069
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.90306 −0.424259 −0.212129 0.977242i \(-0.568040\pi\)
−0.212129 + 0.977242i \(0.568040\pi\)
\(348\) 0 0
\(349\) −0.888437 −0.0475570 −0.0237785 0.999717i \(-0.507570\pi\)
−0.0237785 + 0.999717i \(0.507570\pi\)
\(350\) 0 0
\(351\) −2.65078 −0.141488
\(352\) 0 0
\(353\) 23.0005 1.22419 0.612097 0.790783i \(-0.290326\pi\)
0.612097 + 0.790783i \(0.290326\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.27838 0.0676589
\(358\) 0 0
\(359\) −32.3510 −1.70742 −0.853709 0.520750i \(-0.825653\pi\)
−0.853709 + 0.520750i \(0.825653\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 45.2907 2.37714
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.68117 0.453154 0.226577 0.973993i \(-0.427247\pi\)
0.226577 + 0.973993i \(0.427247\pi\)
\(368\) 0 0
\(369\) 55.3353 2.88064
\(370\) 0 0
\(371\) 0.288036 0.0149541
\(372\) 0 0
\(373\) −28.0175 −1.45069 −0.725346 0.688384i \(-0.758320\pi\)
−0.725346 + 0.688384i \(0.758320\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.57586 0.0811610
\(378\) 0 0
\(379\) −3.74032 −0.192127 −0.0960637 0.995375i \(-0.530625\pi\)
−0.0960637 + 0.995375i \(0.530625\pi\)
\(380\) 0 0
\(381\) −23.9259 −1.22576
\(382\) 0 0
\(383\) 2.88209 0.147268 0.0736340 0.997285i \(-0.476540\pi\)
0.0736340 + 0.997285i \(0.476540\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0109 −0.508884
\(388\) 0 0
\(389\) −6.50836 −0.329987 −0.164994 0.986295i \(-0.552760\pi\)
−0.164994 + 0.986295i \(0.552760\pi\)
\(390\) 0 0
\(391\) −23.3037 −1.17852
\(392\) 0 0
\(393\) 47.6992 2.40611
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.814506 0.0408789 0.0204394 0.999791i \(-0.493493\pi\)
0.0204394 + 0.999791i \(0.493493\pi\)
\(398\) 0 0
\(399\) 0.357078 0.0178763
\(400\) 0 0
\(401\) −20.4471 −1.02108 −0.510540 0.859854i \(-0.670555\pi\)
−0.510540 + 0.859854i \(0.670555\pi\)
\(402\) 0 0
\(403\) −2.80487 −0.139721
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −26.0505 −1.29127
\(408\) 0 0
\(409\) −2.25738 −0.111620 −0.0558102 0.998441i \(-0.517774\pi\)
−0.0558102 + 0.998441i \(0.517774\pi\)
\(410\) 0 0
\(411\) 17.5866 0.867484
\(412\) 0 0
\(413\) 0.241245 0.0118709
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.25916 0.257542
\(418\) 0 0
\(419\) −37.5231 −1.83312 −0.916562 0.399893i \(-0.869047\pi\)
−0.916562 + 0.399893i \(0.869047\pi\)
\(420\) 0 0
\(421\) 26.0909 1.27159 0.635797 0.771856i \(-0.280672\pi\)
0.635797 + 0.771856i \(0.280672\pi\)
\(422\) 0 0
\(423\) 57.6009 2.80065
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.743760 −0.0359931
\(428\) 0 0
\(429\) −7.52162 −0.363147
\(430\) 0 0
\(431\) −31.1228 −1.49913 −0.749566 0.661930i \(-0.769738\pi\)
−0.749566 + 0.661930i \(0.769738\pi\)
\(432\) 0 0
\(433\) −19.0781 −0.916835 −0.458417 0.888737i \(-0.651583\pi\)
−0.458417 + 0.888737i \(0.651583\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.50922 −0.311378
\(438\) 0 0
\(439\) −4.46337 −0.213025 −0.106513 0.994311i \(-0.533968\pi\)
−0.106513 + 0.994311i \(0.533968\pi\)
\(440\) 0 0
\(441\) −33.7821 −1.60867
\(442\) 0 0
\(443\) −29.8652 −1.41894 −0.709469 0.704736i \(-0.751065\pi\)
−0.709469 + 0.704736i \(0.751065\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.54900 −0.262459
\(448\) 0 0
\(449\) 5.65190 0.266730 0.133365 0.991067i \(-0.457422\pi\)
0.133365 + 0.991067i \(0.457422\pi\)
\(450\) 0 0
\(451\) 59.6365 2.80817
\(452\) 0 0
\(453\) 2.96666 0.139386
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.36131 −0.204014 −0.102007 0.994784i \(-0.532526\pi\)
−0.102007 + 0.994784i \(0.532526\pi\)
\(458\) 0 0
\(459\) 18.4140 0.859492
\(460\) 0 0
\(461\) −13.9282 −0.648699 −0.324349 0.945937i \(-0.605145\pi\)
−0.324349 + 0.945937i \(0.605145\pi\)
\(462\) 0 0
\(463\) −39.1712 −1.82044 −0.910221 0.414124i \(-0.864088\pi\)
−0.910221 + 0.414124i \(0.864088\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −28.8967 −1.33718 −0.668589 0.743632i \(-0.733101\pi\)
−0.668589 + 0.743632i \(0.733101\pi\)
\(468\) 0 0
\(469\) 0.0551869 0.00254830
\(470\) 0 0
\(471\) −32.1473 −1.48127
\(472\) 0 0
\(473\) −10.7891 −0.496082
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.9236 0.500156
\(478\) 0 0
\(479\) 1.24704 0.0569787 0.0284893 0.999594i \(-0.490930\pi\)
0.0284893 + 0.999594i \(0.490930\pi\)
\(480\) 0 0
\(481\) 2.57529 0.117423
\(482\) 0 0
\(483\) −2.32430 −0.105759
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −25.0138 −1.13348 −0.566742 0.823895i \(-0.691796\pi\)
−0.566742 + 0.823895i \(0.691796\pi\)
\(488\) 0 0
\(489\) 1.66685 0.0753775
\(490\) 0 0
\(491\) 10.3761 0.468267 0.234134 0.972204i \(-0.424775\pi\)
0.234134 + 0.972204i \(0.424775\pi\)
\(492\) 0 0
\(493\) −10.9470 −0.493026
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.609369 0.0273339
\(498\) 0 0
\(499\) 24.7623 1.10851 0.554256 0.832347i \(-0.313003\pi\)
0.554256 + 0.832347i \(0.313003\pi\)
\(500\) 0 0
\(501\) 21.7522 0.971816
\(502\) 0 0
\(503\) −29.5651 −1.31824 −0.659122 0.752036i \(-0.729072\pi\)
−0.659122 + 0.752036i \(0.729072\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −35.6501 −1.58328
\(508\) 0 0
\(509\) −2.82819 −0.125358 −0.0626788 0.998034i \(-0.519964\pi\)
−0.0626788 + 0.998034i \(0.519964\pi\)
\(510\) 0 0
\(511\) 1.27382 0.0563507
\(512\) 0 0
\(513\) 5.14343 0.227088
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 62.0782 2.73020
\(518\) 0 0
\(519\) −21.3678 −0.937941
\(520\) 0 0
\(521\) 21.5226 0.942921 0.471460 0.881887i \(-0.343727\pi\)
0.471460 + 0.881887i \(0.343727\pi\)
\(522\) 0 0
\(523\) −27.1156 −1.18568 −0.592840 0.805320i \(-0.701993\pi\)
−0.592840 + 0.805320i \(0.701993\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.4845 0.848757
\(528\) 0 0
\(529\) 19.3700 0.842172
\(530\) 0 0
\(531\) 9.14905 0.397035
\(532\) 0 0
\(533\) −5.89553 −0.255364
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 61.0152 2.63300
\(538\) 0 0
\(539\) −36.4080 −1.56820
\(540\) 0 0
\(541\) 32.0041 1.37596 0.687982 0.725728i \(-0.258497\pi\)
0.687982 + 0.725728i \(0.258497\pi\)
\(542\) 0 0
\(543\) 70.0593 3.00653
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.4212 1.21520 0.607601 0.794242i \(-0.292132\pi\)
0.607601 + 0.794242i \(0.292132\pi\)
\(548\) 0 0
\(549\) −28.2066 −1.20383
\(550\) 0 0
\(551\) −3.05772 −0.130263
\(552\) 0 0
\(553\) −0.418723 −0.0178059
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.0041 0.551000 0.275500 0.961301i \(-0.411157\pi\)
0.275500 + 0.961301i \(0.411157\pi\)
\(558\) 0 0
\(559\) 1.06658 0.0451117
\(560\) 0 0
\(561\) 52.2501 2.20600
\(562\) 0 0
\(563\) −6.28547 −0.264901 −0.132451 0.991190i \(-0.542285\pi\)
−0.132451 + 0.991190i \(0.542285\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.0143736 −0.000603634 0
\(568\) 0 0
\(569\) −9.12254 −0.382437 −0.191218 0.981548i \(-0.561244\pi\)
−0.191218 + 0.981548i \(0.561244\pi\)
\(570\) 0 0
\(571\) 12.7709 0.534444 0.267222 0.963635i \(-0.413894\pi\)
0.267222 + 0.963635i \(0.413894\pi\)
\(572\) 0 0
\(573\) −0.815070 −0.0340500
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.4160 0.558514 0.279257 0.960216i \(-0.409912\pi\)
0.279257 + 0.960216i \(0.409912\pi\)
\(578\) 0 0
\(579\) −14.6587 −0.609193
\(580\) 0 0
\(581\) 0.0633225 0.00262706
\(582\) 0 0
\(583\) 11.7726 0.487573
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.6937 −1.14304 −0.571521 0.820587i \(-0.693647\pi\)
−0.571521 + 0.820587i \(0.693647\pi\)
\(588\) 0 0
\(589\) 5.44243 0.224252
\(590\) 0 0
\(591\) −60.2271 −2.47741
\(592\) 0 0
\(593\) 46.2283 1.89837 0.949185 0.314718i \(-0.101910\pi\)
0.949185 + 0.314718i \(0.101910\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 62.7268 2.56724
\(598\) 0 0
\(599\) −25.9606 −1.06072 −0.530360 0.847772i \(-0.677943\pi\)
−0.530360 + 0.847772i \(0.677943\pi\)
\(600\) 0 0
\(601\) 35.6322 1.45347 0.726735 0.686918i \(-0.241037\pi\)
0.726735 + 0.686918i \(0.241037\pi\)
\(602\) 0 0
\(603\) 2.09293 0.0852306
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 39.5302 1.60448 0.802242 0.597000i \(-0.203641\pi\)
0.802242 + 0.597000i \(0.203641\pi\)
\(608\) 0 0
\(609\) −1.09185 −0.0442439
\(610\) 0 0
\(611\) −6.13691 −0.248273
\(612\) 0 0
\(613\) −22.2903 −0.900296 −0.450148 0.892954i \(-0.648629\pi\)
−0.450148 + 0.892954i \(0.648629\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −31.2400 −1.25768 −0.628838 0.777537i \(-0.716469\pi\)
−0.628838 + 0.777537i \(0.716469\pi\)
\(618\) 0 0
\(619\) 35.0032 1.40690 0.703449 0.710746i \(-0.251642\pi\)
0.703449 + 0.710746i \(0.251642\pi\)
\(620\) 0 0
\(621\) −33.4797 −1.34350
\(622\) 0 0
\(623\) −1.59080 −0.0637342
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 14.5946 0.582851
\(628\) 0 0
\(629\) −17.8896 −0.713306
\(630\) 0 0
\(631\) −23.0271 −0.916695 −0.458347 0.888773i \(-0.651558\pi\)
−0.458347 + 0.888773i \(0.651558\pi\)
\(632\) 0 0
\(633\) −16.8328 −0.669044
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.59921 0.142606
\(638\) 0 0
\(639\) 23.1099 0.914214
\(640\) 0 0
\(641\) 15.0359 0.593883 0.296942 0.954896i \(-0.404033\pi\)
0.296942 + 0.954896i \(0.404033\pi\)
\(642\) 0 0
\(643\) −26.5794 −1.04819 −0.524095 0.851660i \(-0.675596\pi\)
−0.524095 + 0.851660i \(0.675596\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.9210 1.53014 0.765071 0.643945i \(-0.222704\pi\)
0.765071 + 0.643945i \(0.222704\pi\)
\(648\) 0 0
\(649\) 9.86020 0.387047
\(650\) 0 0
\(651\) 1.94338 0.0761669
\(652\) 0 0
\(653\) −18.7392 −0.733320 −0.366660 0.930355i \(-0.619499\pi\)
−0.366660 + 0.930355i \(0.619499\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 48.3090 1.88471
\(658\) 0 0
\(659\) −45.9031 −1.78813 −0.894066 0.447936i \(-0.852159\pi\)
−0.894066 + 0.447936i \(0.852159\pi\)
\(660\) 0 0
\(661\) −11.3827 −0.442735 −0.221368 0.975190i \(-0.571052\pi\)
−0.221368 + 0.975190i \(0.571052\pi\)
\(662\) 0 0
\(663\) −5.16533 −0.200605
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19.9034 0.770663
\(668\) 0 0
\(669\) 60.6211 2.34375
\(670\) 0 0
\(671\) −30.3991 −1.17354
\(672\) 0 0
\(673\) 33.0693 1.27473 0.637365 0.770562i \(-0.280024\pi\)
0.637365 + 0.770562i \(0.280024\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.3049 0.472917 0.236458 0.971642i \(-0.424013\pi\)
0.236458 + 0.971642i \(0.424013\pi\)
\(678\) 0 0
\(679\) 0.893313 0.0342822
\(680\) 0 0
\(681\) −44.4825 −1.70457
\(682\) 0 0
\(683\) −22.4044 −0.857280 −0.428640 0.903475i \(-0.641007\pi\)
−0.428640 + 0.903475i \(0.641007\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 26.1146 0.996333
\(688\) 0 0
\(689\) −1.16382 −0.0443379
\(690\) 0 0
\(691\) 24.7072 0.939905 0.469952 0.882692i \(-0.344271\pi\)
0.469952 + 0.882692i \(0.344271\pi\)
\(692\) 0 0
\(693\) 3.21655 0.122187
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 40.9542 1.55125
\(698\) 0 0
\(699\) 40.8616 1.54553
\(700\) 0 0
\(701\) 48.4470 1.82982 0.914908 0.403662i \(-0.132263\pi\)
0.914908 + 0.403662i \(0.132263\pi\)
\(702\) 0 0
\(703\) −4.99696 −0.188464
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.39761 −0.0525626
\(708\) 0 0
\(709\) −17.3382 −0.651150 −0.325575 0.945516i \(-0.605558\pi\)
−0.325575 + 0.945516i \(0.605558\pi\)
\(710\) 0 0
\(711\) −15.8798 −0.595538
\(712\) 0 0
\(713\) −35.4260 −1.32671
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.5802 0.507162
\(718\) 0 0
\(719\) −31.3919 −1.17072 −0.585360 0.810774i \(-0.699047\pi\)
−0.585360 + 0.810774i \(0.699047\pi\)
\(720\) 0 0
\(721\) −1.41062 −0.0525342
\(722\) 0 0
\(723\) 38.3771 1.42726
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −19.6191 −0.727633 −0.363816 0.931471i \(-0.618526\pi\)
−0.363816 + 0.931471i \(0.618526\pi\)
\(728\) 0 0
\(729\) −43.7424 −1.62009
\(730\) 0 0
\(731\) −7.40919 −0.274039
\(732\) 0 0
\(733\) 6.22866 0.230061 0.115030 0.993362i \(-0.463303\pi\)
0.115030 + 0.993362i \(0.463303\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.25561 0.0830865
\(738\) 0 0
\(739\) −0.540267 −0.0198741 −0.00993703 0.999951i \(-0.503163\pi\)
−0.00993703 + 0.999951i \(0.503163\pi\)
\(740\) 0 0
\(741\) −1.44279 −0.0530021
\(742\) 0 0
\(743\) 13.6809 0.501904 0.250952 0.967999i \(-0.419256\pi\)
0.250952 + 0.967999i \(0.419256\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.40147 0.0878650
\(748\) 0 0
\(749\) −1.66000 −0.0606551
\(750\) 0 0
\(751\) −27.2771 −0.995356 −0.497678 0.867362i \(-0.665814\pi\)
−0.497678 + 0.867362i \(0.665814\pi\)
\(752\) 0 0
\(753\) −73.9031 −2.69318
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −38.4230 −1.39651 −0.698254 0.715850i \(-0.746039\pi\)
−0.698254 + 0.715850i \(0.746039\pi\)
\(758\) 0 0
\(759\) −94.9993 −3.44826
\(760\) 0 0
\(761\) −51.5643 −1.86920 −0.934602 0.355695i \(-0.884244\pi\)
−0.934602 + 0.355695i \(0.884244\pi\)
\(762\) 0 0
\(763\) 0.975978 0.0353328
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.974757 −0.0351964
\(768\) 0 0
\(769\) 52.1060 1.87899 0.939496 0.342561i \(-0.111294\pi\)
0.939496 + 0.342561i \(0.111294\pi\)
\(770\) 0 0
\(771\) −43.2353 −1.55708
\(772\) 0 0
\(773\) 10.3653 0.372814 0.186407 0.982473i \(-0.440316\pi\)
0.186407 + 0.982473i \(0.440316\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.78431 −0.0640117
\(778\) 0 0
\(779\) 11.4394 0.409859
\(780\) 0 0
\(781\) 24.9062 0.891215
\(782\) 0 0
\(783\) −15.7272 −0.562044
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 29.7162 1.05927 0.529635 0.848226i \(-0.322329\pi\)
0.529635 + 0.848226i \(0.322329\pi\)
\(788\) 0 0
\(789\) −83.1756 −2.96113
\(790\) 0 0
\(791\) −1.26766 −0.0450727
\(792\) 0 0
\(793\) 3.00519 0.106717
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −39.2872 −1.39162 −0.695812 0.718224i \(-0.744955\pi\)
−0.695812 + 0.718224i \(0.744955\pi\)
\(798\) 0 0
\(799\) 42.6310 1.50818
\(800\) 0 0
\(801\) −60.3302 −2.13166
\(802\) 0 0
\(803\) 52.0640 1.83730
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 76.1169 2.67944
\(808\) 0 0
\(809\) −39.0027 −1.37126 −0.685630 0.727950i \(-0.740473\pi\)
−0.685630 + 0.727950i \(0.740473\pi\)
\(810\) 0 0
\(811\) 4.49460 0.157827 0.0789133 0.996881i \(-0.474855\pi\)
0.0789133 + 0.996881i \(0.474855\pi\)
\(812\) 0 0
\(813\) −78.8740 −2.76623
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −2.06955 −0.0724042
\(818\) 0 0
\(819\) −0.317981 −0.0111112
\(820\) 0 0
\(821\) 18.2356 0.636426 0.318213 0.948019i \(-0.396917\pi\)
0.318213 + 0.948019i \(0.396917\pi\)
\(822\) 0 0
\(823\) −21.7245 −0.757268 −0.378634 0.925546i \(-0.623606\pi\)
−0.378634 + 0.925546i \(0.623606\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −17.5265 −0.609455 −0.304727 0.952440i \(-0.598565\pi\)
−0.304727 + 0.952440i \(0.598565\pi\)
\(828\) 0 0
\(829\) −33.5267 −1.16443 −0.582215 0.813035i \(-0.697814\pi\)
−0.582215 + 0.813035i \(0.697814\pi\)
\(830\) 0 0
\(831\) −24.1817 −0.838853
\(832\) 0 0
\(833\) −25.0025 −0.866284
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.9928 0.967572
\(838\) 0 0
\(839\) −20.4096 −0.704617 −0.352309 0.935884i \(-0.614603\pi\)
−0.352309 + 0.935884i \(0.614603\pi\)
\(840\) 0 0
\(841\) −19.6503 −0.677598
\(842\) 0 0
\(843\) 19.2370 0.662558
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.06352 0.0709033
\(848\) 0 0
\(849\) 27.7306 0.951713
\(850\) 0 0
\(851\) 32.5263 1.11499
\(852\) 0 0
\(853\) −19.1968 −0.657287 −0.328644 0.944454i \(-0.606592\pi\)
−0.328644 + 0.944454i \(0.606592\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.7861 −0.505083 −0.252542 0.967586i \(-0.581266\pi\)
−0.252542 + 0.967586i \(0.581266\pi\)
\(858\) 0 0
\(859\) −6.83929 −0.233353 −0.116677 0.993170i \(-0.537224\pi\)
−0.116677 + 0.993170i \(0.537224\pi\)
\(860\) 0 0
\(861\) 4.08476 0.139208
\(862\) 0 0
\(863\) −41.6367 −1.41733 −0.708666 0.705545i \(-0.750702\pi\)
−0.708666 + 0.705545i \(0.750702\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11.7100 −0.397692
\(868\) 0 0
\(869\) −17.1141 −0.580557
\(870\) 0 0
\(871\) −0.222985 −0.00755554
\(872\) 0 0
\(873\) 33.8783 1.14661
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 45.0143 1.52002 0.760012 0.649909i \(-0.225193\pi\)
0.760012 + 0.649909i \(0.225193\pi\)
\(878\) 0 0
\(879\) 76.6243 2.58447
\(880\) 0 0
\(881\) −40.4549 −1.36296 −0.681479 0.731837i \(-0.738663\pi\)
−0.681479 + 0.731837i \(0.738663\pi\)
\(882\) 0 0
\(883\) 45.2872 1.52403 0.762017 0.647557i \(-0.224209\pi\)
0.762017 + 0.647557i \(0.224209\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.589628 0.0197978 0.00989888 0.999951i \(-0.496849\pi\)
0.00989888 + 0.999951i \(0.496849\pi\)
\(888\) 0 0
\(889\) −1.09010 −0.0365609
\(890\) 0 0
\(891\) −0.587479 −0.0196813
\(892\) 0 0
\(893\) 11.9078 0.398478
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.39142 0.313570
\(898\) 0 0
\(899\) −16.6415 −0.555023
\(900\) 0 0
\(901\) 8.08463 0.269338
\(902\) 0 0
\(903\) −0.738990 −0.0245921
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 38.4290 1.27601 0.638007 0.770031i \(-0.279759\pi\)
0.638007 + 0.770031i \(0.279759\pi\)
\(908\) 0 0
\(909\) −53.0034 −1.75801
\(910\) 0 0
\(911\) −16.9694 −0.562220 −0.281110 0.959676i \(-0.590703\pi\)
−0.281110 + 0.959676i \(0.590703\pi\)
\(912\) 0 0
\(913\) 2.58813 0.0856546
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.17326 0.0717672
\(918\) 0 0
\(919\) 20.1099 0.663364 0.331682 0.943391i \(-0.392384\pi\)
0.331682 + 0.943391i \(0.392384\pi\)
\(920\) 0 0
\(921\) −47.0988 −1.55196
\(922\) 0 0
\(923\) −2.46218 −0.0810435
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −53.4968 −1.75707
\(928\) 0 0
\(929\) −6.46013 −0.211950 −0.105975 0.994369i \(-0.533796\pi\)
−0.105975 + 0.994369i \(0.533796\pi\)
\(930\) 0 0
\(931\) −6.98373 −0.228883
\(932\) 0 0
\(933\) 62.5801 2.04878
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −40.2458 −1.31477 −0.657387 0.753553i \(-0.728338\pi\)
−0.657387 + 0.753553i \(0.728338\pi\)
\(938\) 0 0
\(939\) −17.0388 −0.556041
\(940\) 0 0
\(941\) 40.2467 1.31201 0.656003 0.754759i \(-0.272246\pi\)
0.656003 + 0.754759i \(0.272246\pi\)
\(942\) 0 0
\(943\) −74.4616 −2.42480
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35.9987 −1.16980 −0.584900 0.811106i \(-0.698866\pi\)
−0.584900 + 0.811106i \(0.698866\pi\)
\(948\) 0 0
\(949\) −5.14693 −0.167076
\(950\) 0 0
\(951\) 72.3738 2.34688
\(952\) 0 0
\(953\) 61.0774 1.97849 0.989246 0.146264i \(-0.0467247\pi\)
0.989246 + 0.146264i \(0.0467247\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −44.6262 −1.44256
\(958\) 0 0
\(959\) 0.801275 0.0258745
\(960\) 0 0
\(961\) −1.37993 −0.0445139
\(962\) 0 0
\(963\) −62.9544 −2.02868
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −23.6689 −0.761142 −0.380571 0.924752i \(-0.624272\pi\)
−0.380571 + 0.924752i \(0.624272\pi\)
\(968\) 0 0
\(969\) 10.0225 0.321970
\(970\) 0 0
\(971\) −52.4851 −1.68433 −0.842163 0.539223i \(-0.818718\pi\)
−0.842163 + 0.539223i \(0.818718\pi\)
\(972\) 0 0
\(973\) 0.239616 0.00768173
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24.8813 −0.796025 −0.398012 0.917380i \(-0.630300\pi\)
−0.398012 + 0.917380i \(0.630300\pi\)
\(978\) 0 0
\(979\) −65.0196 −2.07804
\(980\) 0 0
\(981\) 37.0133 1.18174
\(982\) 0 0
\(983\) 33.1585 1.05759 0.528795 0.848749i \(-0.322644\pi\)
0.528795 + 0.848749i \(0.322644\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.25200 0.135343
\(988\) 0 0
\(989\) 13.4711 0.428357
\(990\) 0 0
\(991\) 32.2866 1.02562 0.512808 0.858503i \(-0.328605\pi\)
0.512808 + 0.858503i \(0.328605\pi\)
\(992\) 0 0
\(993\) −64.9438 −2.06093
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.00638 −0.0952131 −0.0476066 0.998866i \(-0.515159\pi\)
−0.0476066 + 0.998866i \(0.515159\pi\)
\(998\) 0 0
\(999\) −25.7015 −0.813161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.bb.1.6 6
4.3 odd 2 7600.2.a.cm.1.1 6
5.2 odd 4 3800.2.d.p.3649.2 12
5.3 odd 4 3800.2.d.p.3649.11 12
5.4 even 2 3800.2.a.bd.1.1 yes 6
20.19 odd 2 7600.2.a.ci.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.bb.1.6 6 1.1 even 1 trivial
3800.2.a.bd.1.1 yes 6 5.4 even 2
3800.2.d.p.3649.2 12 5.2 odd 4
3800.2.d.p.3649.11 12 5.3 odd 4
7600.2.a.ci.1.6 6 20.19 odd 2
7600.2.a.cm.1.1 6 4.3 odd 2