Properties

Label 3800.2.a.bd
Level $3800$
Weight $2$
Character orbit 3800.a
Self dual yes
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{3} q^{7} + (\beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{11} + \beta_{4} q^{13} + ( - \beta_{5} + \beta_{4} - \beta_{2}) q^{17} + q^{19} + ( - \beta_{4} - \beta_{3} + 1) q^{21}+ \cdots + (\beta_{5} - 3 \beta_{4} + \cdots - 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} + 2 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} - 2 q^{17} + 6 q^{19} + 11 q^{21} + 4 q^{23} + 20 q^{27} + 7 q^{29} + 5 q^{31} - 16 q^{33} + 8 q^{39} + 11 q^{41} - 7 q^{43} + 20 q^{47} - 2 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 9\nu - 3 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - \nu^{3} - 9\nu^{2} + 6\nu + 5 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - 2\nu^{4} - 11\nu^{3} + 15\nu^{2} + 24\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 9\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 2\beta_{3} + 9\beta_{2} + 12\beta _1 + 34 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} + 4\beta_{4} + 26\beta_{3} + 3\beta_{2} + 84\beta _1 + 43 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.79951
−1.22174
−0.471016
0.486697
2.70452
3.30105
0 −2.79951 0 0 0 −0.127550 0 4.83726 0
1.2 0 −1.22174 0 0 0 −3.08602 0 −1.50735 0
1.3 0 −0.471016 0 0 0 −0.567324 0 −2.77814 0
1.4 0 0.486697 0 0 0 3.63249 0 −2.76313 0
1.5 0 2.70452 0 0 0 3.77934 0 4.31442 0
1.6 0 3.30105 0 0 0 −1.63094 0 7.89694 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3800.2.a.bd yes 6
4.b odd 2 1 7600.2.a.ci 6
5.b even 2 1 3800.2.a.bb 6
5.c odd 4 2 3800.2.d.p 12
20.d odd 2 1 7600.2.a.cm 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3800.2.a.bb 6 5.b even 2 1
3800.2.a.bd yes 6 1.a even 1 1 trivial
3800.2.d.p 12 5.c odd 4 2
7600.2.a.ci 6 4.b odd 2 1
7600.2.a.cm 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3800))\):

\( T_{3}^{6} - 2T_{3}^{5} - 12T_{3}^{4} + 16T_{3}^{3} + 33T_{3}^{2} - 4T_{3} - 7 \) Copy content Toggle raw display
\( T_{7}^{6} - 2T_{7}^{5} - 18T_{7}^{4} + 16T_{7}^{3} + 87T_{7}^{2} + 50T_{7} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 2 T^{5} + \cdots - 7 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 2 T^{5} + \cdots + 5 \) Copy content Toggle raw display
$11$ \( T^{6} - 3 T^{5} + \cdots - 5400 \) Copy content Toggle raw display
$13$ \( T^{6} + 3 T^{5} + \cdots + 37 \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots - 745 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots - 587 \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + \cdots - 14717 \) Copy content Toggle raw display
$31$ \( T^{6} - 5 T^{5} + \cdots - 296 \) Copy content Toggle raw display
$37$ \( T^{6} - 208 T^{4} + \cdots - 111157 \) Copy content Toggle raw display
$41$ \( T^{6} - 11 T^{5} + \cdots - 3584 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots - 79576 \) Copy content Toggle raw display
$47$ \( T^{6} - 20 T^{5} + \cdots - 90017 \) Copy content Toggle raw display
$53$ \( T^{6} + 7 T^{5} + \cdots - 1187 \) Copy content Toggle raw display
$59$ \( T^{6} + 4 T^{5} + \cdots - 11944 \) Copy content Toggle raw display
$61$ \( T^{6} - 13 T^{5} + \cdots - 3880 \) Copy content Toggle raw display
$67$ \( T^{6} - 25 T^{5} + \cdots + 14207 \) Copy content Toggle raw display
$71$ \( T^{6} - 29 T^{5} + \cdots - 39960 \) Copy content Toggle raw display
$73$ \( T^{6} + 19 T^{5} + \cdots + 1723 \) Copy content Toggle raw display
$79$ \( T^{6} - 28 T^{5} + \cdots + 15040 \) Copy content Toggle raw display
$83$ \( T^{6} + 15 T^{5} + \cdots - 200 \) Copy content Toggle raw display
$89$ \( T^{6} + 12 T^{5} + \cdots - 274808 \) Copy content Toggle raw display
$97$ \( T^{6} + 13 T^{5} + \cdots + 1784 \) Copy content Toggle raw display
show more
show less