Properties

Label 3800.2.a.bd
Level 38003800
Weight 22
Character orbit 3800.a
Self dual yes
Analytic conductor 30.34330.343
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3800=235219 3800 = 2^{3} \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 30.343152768130.3431527681
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x512x4+16x3+33x24x7 x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β3q7+(β2+β1+1)q9+(β5β3β1)q11+β4q13+(β5+β4β2)q17+q19+(β4β3+1)q21++(β53β4+6β1)q99+O(q100) q + \beta_1 q^{3} - \beta_{3} q^{7} + (\beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{11} + \beta_{4} q^{13} + ( - \beta_{5} + \beta_{4} - \beta_{2}) q^{17} + q^{19} + ( - \beta_{4} - \beta_{3} + 1) q^{21}+ \cdots + (\beta_{5} - 3 \beta_{4} + \cdots - 6 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+2q3+2q7+10q9+3q113q132q17+6q19+11q21+4q23+20q27+7q29+5q3116q33+8q39+11q417q43+20q472q49++10q99+O(q100) 6 q + 2 q^{3} + 2 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} - 2 q^{17} + 6 q^{19} + 11 q^{21} + 4 q^{23} + 20 q^{27} + 7 q^{29} + 5 q^{31} - 16 q^{33} + 8 q^{39} + 11 q^{41} - 7 q^{43} + 20 q^{47} - 2 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x512x4+16x3+33x24x7 x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν4 \nu^{2} - \nu - 4 Copy content Toggle raw display
β3\beta_{3}== (ν39ν3)/2 ( \nu^{3} - 9\nu - 3 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4ν39ν2+6ν+5)/2 ( \nu^{4} - \nu^{3} - 9\nu^{2} + 6\nu + 5 ) / 2 Copy content Toggle raw display
β5\beta_{5}== (ν52ν411ν3+15ν2+24ν2)/2 ( \nu^{5} - 2\nu^{4} - 11\nu^{3} + 15\nu^{2} + 24\nu - 2 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+4 \beta_{2} + \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== 2β3+9β1+3 2\beta_{3} + 9\beta _1 + 3 Copy content Toggle raw display
ν4\nu^{4}== 2β4+2β3+9β2+12β1+34 2\beta_{4} + 2\beta_{3} + 9\beta_{2} + 12\beta _1 + 34 Copy content Toggle raw display
ν5\nu^{5}== 2β5+4β4+26β3+3β2+84β1+43 2\beta_{5} + 4\beta_{4} + 26\beta_{3} + 3\beta_{2} + 84\beta _1 + 43 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.79951
−1.22174
−0.471016
0.486697
2.70452
3.30105
0 −2.79951 0 0 0 −0.127550 0 4.83726 0
1.2 0 −1.22174 0 0 0 −3.08602 0 −1.50735 0
1.3 0 −0.471016 0 0 0 −0.567324 0 −2.77814 0
1.4 0 0.486697 0 0 0 3.63249 0 −2.76313 0
1.5 0 2.70452 0 0 0 3.77934 0 4.31442 0
1.6 0 3.30105 0 0 0 −1.63094 0 7.89694 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3800.2.a.bd yes 6
4.b odd 2 1 7600.2.a.ci 6
5.b even 2 1 3800.2.a.bb 6
5.c odd 4 2 3800.2.d.p 12
20.d odd 2 1 7600.2.a.cm 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3800.2.a.bb 6 5.b even 2 1
3800.2.a.bd yes 6 1.a even 1 1 trivial
3800.2.d.p 12 5.c odd 4 2
7600.2.a.ci 6 4.b odd 2 1
7600.2.a.cm 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3800))S_{2}^{\mathrm{new}}(\Gamma_0(3800)):

T362T3512T34+16T33+33T324T37 T_{3}^{6} - 2T_{3}^{5} - 12T_{3}^{4} + 16T_{3}^{3} + 33T_{3}^{2} - 4T_{3} - 7 Copy content Toggle raw display
T762T7518T74+16T73+87T72+50T7+5 T_{7}^{6} - 2T_{7}^{5} - 18T_{7}^{4} + 16T_{7}^{3} + 87T_{7}^{2} + 50T_{7} + 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T62T5+7 T^{6} - 2 T^{5} + \cdots - 7 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T62T5++5 T^{6} - 2 T^{5} + \cdots + 5 Copy content Toggle raw display
1111 T63T5+5400 T^{6} - 3 T^{5} + \cdots - 5400 Copy content Toggle raw display
1313 T6+3T5++37 T^{6} + 3 T^{5} + \cdots + 37 Copy content Toggle raw display
1717 T6+2T5+745 T^{6} + 2 T^{5} + \cdots - 745 Copy content Toggle raw display
1919 (T1)6 (T - 1)^{6} Copy content Toggle raw display
2323 T64T5+587 T^{6} - 4 T^{5} + \cdots - 587 Copy content Toggle raw display
2929 T67T5+14717 T^{6} - 7 T^{5} + \cdots - 14717 Copy content Toggle raw display
3131 T65T5+296 T^{6} - 5 T^{5} + \cdots - 296 Copy content Toggle raw display
3737 T6208T4+111157 T^{6} - 208 T^{4} + \cdots - 111157 Copy content Toggle raw display
4141 T611T5+3584 T^{6} - 11 T^{5} + \cdots - 3584 Copy content Toggle raw display
4343 T6+7T5+79576 T^{6} + 7 T^{5} + \cdots - 79576 Copy content Toggle raw display
4747 T620T5+90017 T^{6} - 20 T^{5} + \cdots - 90017 Copy content Toggle raw display
5353 T6+7T5+1187 T^{6} + 7 T^{5} + \cdots - 1187 Copy content Toggle raw display
5959 T6+4T5+11944 T^{6} + 4 T^{5} + \cdots - 11944 Copy content Toggle raw display
6161 T613T5+3880 T^{6} - 13 T^{5} + \cdots - 3880 Copy content Toggle raw display
6767 T625T5++14207 T^{6} - 25 T^{5} + \cdots + 14207 Copy content Toggle raw display
7171 T629T5+39960 T^{6} - 29 T^{5} + \cdots - 39960 Copy content Toggle raw display
7373 T6+19T5++1723 T^{6} + 19 T^{5} + \cdots + 1723 Copy content Toggle raw display
7979 T628T5++15040 T^{6} - 28 T^{5} + \cdots + 15040 Copy content Toggle raw display
8383 T6+15T5+200 T^{6} + 15 T^{5} + \cdots - 200 Copy content Toggle raw display
8989 T6+12T5+274808 T^{6} + 12 T^{5} + \cdots - 274808 Copy content Toggle raw display
9797 T6+13T5++1784 T^{6} + 13 T^{5} + \cdots + 1784 Copy content Toggle raw display
show more
show less