Properties

Label 3800.2.a.u.1.1
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.713538\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49086 q^{3} +2.49086 q^{7} +3.20440 q^{9} -3.49086 q^{11} -0.713538 q^{13} +3.91794 q^{17} -1.00000 q^{19} -6.20440 q^{21} -2.20440 q^{23} -0.509136 q^{27} +0.636712 q^{29} -2.14061 q^{31} +8.69527 q^{33} +2.06379 q^{37} +1.77733 q^{39} -4.35025 q^{41} -4.55465 q^{43} +0.268189 q^{47} -0.795598 q^{49} -9.75905 q^{51} +7.98173 q^{53} +2.49086 q^{57} -2.57292 q^{59} -10.8411 q^{61} +7.98173 q^{63} -1.08206 q^{67} +5.49086 q^{69} +6.83588 q^{71} +15.0403 q^{73} -8.69527 q^{77} -7.63671 q^{79} -8.34502 q^{81} +0.923174 q^{83} -1.58596 q^{87} +14.1679 q^{89} -1.77733 q^{91} +5.33198 q^{93} +6.14061 q^{97} -11.1861 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{9} - 3 q^{11} - q^{13} + 2 q^{17} - 3 q^{19} - 10 q^{21} + 2 q^{23} - 9 q^{27} - q^{29} - 3 q^{31} + 10 q^{33} + q^{37} - q^{39} - 9 q^{41} - q^{43} - 13 q^{47} - 11 q^{49} - 8 q^{51} + 9 q^{53}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.49086 −1.43810 −0.719050 0.694958i \(-0.755423\pi\)
−0.719050 + 0.694958i \(0.755423\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.49086 0.941458 0.470729 0.882278i \(-0.343991\pi\)
0.470729 + 0.882278i \(0.343991\pi\)
\(8\) 0 0
\(9\) 3.20440 1.06813
\(10\) 0 0
\(11\) −3.49086 −1.05253 −0.526267 0.850319i \(-0.676409\pi\)
−0.526267 + 0.850319i \(0.676409\pi\)
\(12\) 0 0
\(13\) −0.713538 −0.197900 −0.0989499 0.995092i \(-0.531548\pi\)
−0.0989499 + 0.995092i \(0.531548\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.91794 0.950240 0.475120 0.879921i \(-0.342405\pi\)
0.475120 + 0.879921i \(0.342405\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −6.20440 −1.35391
\(22\) 0 0
\(23\) −2.20440 −0.459649 −0.229825 0.973232i \(-0.573815\pi\)
−0.229825 + 0.973232i \(0.573815\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.509136 −0.0979833
\(28\) 0 0
\(29\) 0.636712 0.118234 0.0591172 0.998251i \(-0.481171\pi\)
0.0591172 + 0.998251i \(0.481171\pi\)
\(30\) 0 0
\(31\) −2.14061 −0.384466 −0.192233 0.981349i \(-0.561573\pi\)
−0.192233 + 0.981349i \(0.561573\pi\)
\(32\) 0 0
\(33\) 8.69527 1.51365
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.06379 0.339285 0.169642 0.985506i \(-0.445739\pi\)
0.169642 + 0.985506i \(0.445739\pi\)
\(38\) 0 0
\(39\) 1.77733 0.284600
\(40\) 0 0
\(41\) −4.35025 −0.679395 −0.339697 0.940535i \(-0.610325\pi\)
−0.339697 + 0.940535i \(0.610325\pi\)
\(42\) 0 0
\(43\) −4.55465 −0.694578 −0.347289 0.937758i \(-0.612898\pi\)
−0.347289 + 0.937758i \(0.612898\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.268189 0.0391194 0.0195597 0.999809i \(-0.493774\pi\)
0.0195597 + 0.999809i \(0.493774\pi\)
\(48\) 0 0
\(49\) −0.795598 −0.113657
\(50\) 0 0
\(51\) −9.75905 −1.36654
\(52\) 0 0
\(53\) 7.98173 1.09637 0.548187 0.836356i \(-0.315318\pi\)
0.548187 + 0.836356i \(0.315318\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.49086 0.329923
\(58\) 0 0
\(59\) −2.57292 −0.334966 −0.167483 0.985875i \(-0.553564\pi\)
−0.167483 + 0.985875i \(0.553564\pi\)
\(60\) 0 0
\(61\) −10.8411 −1.38806 −0.694031 0.719945i \(-0.744167\pi\)
−0.694031 + 0.719945i \(0.744167\pi\)
\(62\) 0 0
\(63\) 7.98173 1.00560
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.08206 −0.132195 −0.0660974 0.997813i \(-0.521055\pi\)
−0.0660974 + 0.997813i \(0.521055\pi\)
\(68\) 0 0
\(69\) 5.49086 0.661022
\(70\) 0 0
\(71\) 6.83588 0.811270 0.405635 0.914035i \(-0.367050\pi\)
0.405635 + 0.914035i \(0.367050\pi\)
\(72\) 0 0
\(73\) 15.0403 1.76033 0.880166 0.474666i \(-0.157431\pi\)
0.880166 + 0.474666i \(0.157431\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.69527 −0.990917
\(78\) 0 0
\(79\) −7.63671 −0.859197 −0.429599 0.903020i \(-0.641345\pi\)
−0.429599 + 0.903020i \(0.641345\pi\)
\(80\) 0 0
\(81\) −8.34502 −0.927224
\(82\) 0 0
\(83\) 0.923174 0.101332 0.0506658 0.998716i \(-0.483866\pi\)
0.0506658 + 0.998716i \(0.483866\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.58596 −0.170033
\(88\) 0 0
\(89\) 14.1679 1.50179 0.750895 0.660422i \(-0.229622\pi\)
0.750895 + 0.660422i \(0.229622\pi\)
\(90\) 0 0
\(91\) −1.77733 −0.186314
\(92\) 0 0
\(93\) 5.33198 0.552900
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.14061 0.623485 0.311742 0.950167i \(-0.399087\pi\)
0.311742 + 0.950167i \(0.399087\pi\)
\(98\) 0 0
\(99\) −11.1861 −1.12425
\(100\) 0 0
\(101\) −4.36329 −0.434163 −0.217082 0.976153i \(-0.569654\pi\)
−0.217082 + 0.976153i \(0.569654\pi\)
\(102\) 0 0
\(103\) −5.47259 −0.539230 −0.269615 0.962968i \(-0.586897\pi\)
−0.269615 + 0.962968i \(0.586897\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.240947 −0.0232932 −0.0116466 0.999932i \(-0.503707\pi\)
−0.0116466 + 0.999932i \(0.503707\pi\)
\(108\) 0 0
\(109\) 10.1861 0.975654 0.487827 0.872940i \(-0.337790\pi\)
0.487827 + 0.872940i \(0.337790\pi\)
\(110\) 0 0
\(111\) −5.14061 −0.487925
\(112\) 0 0
\(113\) 11.2682 1.06002 0.530011 0.847991i \(-0.322188\pi\)
0.530011 + 0.847991i \(0.322188\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.28646 −0.211383
\(118\) 0 0
\(119\) 9.75905 0.894611
\(120\) 0 0
\(121\) 1.18613 0.107830
\(122\) 0 0
\(123\) 10.8359 0.977038
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.46736 0.662621 0.331310 0.943522i \(-0.392509\pi\)
0.331310 + 0.943522i \(0.392509\pi\)
\(128\) 0 0
\(129\) 11.3450 0.998873
\(130\) 0 0
\(131\) −7.77733 −0.679508 −0.339754 0.940514i \(-0.610344\pi\)
−0.339754 + 0.940514i \(0.610344\pi\)
\(132\) 0 0
\(133\) −2.49086 −0.215985
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.04028 −0.772363 −0.386182 0.922423i \(-0.626206\pi\)
−0.386182 + 0.922423i \(0.626206\pi\)
\(138\) 0 0
\(139\) −20.6718 −1.75336 −0.876678 0.481078i \(-0.840245\pi\)
−0.876678 + 0.481078i \(0.840245\pi\)
\(140\) 0 0
\(141\) −0.668023 −0.0562577
\(142\) 0 0
\(143\) 2.49086 0.208296
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.98173 0.163450
\(148\) 0 0
\(149\) −12.7591 −1.04526 −0.522631 0.852559i \(-0.675050\pi\)
−0.522631 + 0.852559i \(0.675050\pi\)
\(150\) 0 0
\(151\) −6.28646 −0.511585 −0.255793 0.966732i \(-0.582336\pi\)
−0.255793 + 0.966732i \(0.582336\pi\)
\(152\) 0 0
\(153\) 12.5547 1.01498
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.4308 −1.71036 −0.855182 0.518327i \(-0.826555\pi\)
−0.855182 + 0.518327i \(0.826555\pi\)
\(158\) 0 0
\(159\) −19.8814 −1.57670
\(160\) 0 0
\(161\) −5.49086 −0.432741
\(162\) 0 0
\(163\) −18.1041 −1.41802 −0.709010 0.705198i \(-0.750858\pi\)
−0.709010 + 0.705198i \(0.750858\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.3502 −0.955691 −0.477846 0.878444i \(-0.658582\pi\)
−0.477846 + 0.878444i \(0.658582\pi\)
\(168\) 0 0
\(169\) −12.4909 −0.960836
\(170\) 0 0
\(171\) −3.20440 −0.245047
\(172\) 0 0
\(173\) −7.60017 −0.577830 −0.288915 0.957355i \(-0.593294\pi\)
−0.288915 + 0.957355i \(0.593294\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.40880 0.481715
\(178\) 0 0
\(179\) 7.28123 0.544225 0.272112 0.962266i \(-0.412278\pi\)
0.272112 + 0.962266i \(0.412278\pi\)
\(180\) 0 0
\(181\) 6.79933 0.505390 0.252695 0.967546i \(-0.418683\pi\)
0.252695 + 0.967546i \(0.418683\pi\)
\(182\) 0 0
\(183\) 27.0037 1.99617
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −13.6770 −1.00016
\(188\) 0 0
\(189\) −1.26819 −0.0922472
\(190\) 0 0
\(191\) 14.3085 1.03532 0.517662 0.855585i \(-0.326802\pi\)
0.517662 + 0.855585i \(0.326802\pi\)
\(192\) 0 0
\(193\) −13.4491 −0.968086 −0.484043 0.875044i \(-0.660832\pi\)
−0.484043 + 0.875044i \(0.660832\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.79036 0.198805 0.0994026 0.995047i \(-0.468307\pi\)
0.0994026 + 0.995047i \(0.468307\pi\)
\(198\) 0 0
\(199\) −8.91794 −0.632176 −0.316088 0.948730i \(-0.602369\pi\)
−0.316088 + 0.948730i \(0.602369\pi\)
\(200\) 0 0
\(201\) 2.69527 0.190109
\(202\) 0 0
\(203\) 1.58596 0.111313
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.06379 −0.490967
\(208\) 0 0
\(209\) 3.49086 0.241468
\(210\) 0 0
\(211\) −24.2264 −1.66781 −0.833907 0.551904i \(-0.813901\pi\)
−0.833907 + 0.551904i \(0.813901\pi\)
\(212\) 0 0
\(213\) −17.0272 −1.16669
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.33198 −0.361958
\(218\) 0 0
\(219\) −37.4633 −2.53153
\(220\) 0 0
\(221\) −2.79560 −0.188052
\(222\) 0 0
\(223\) −16.9269 −1.13351 −0.566755 0.823886i \(-0.691801\pi\)
−0.566755 + 0.823886i \(0.691801\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.6315 −0.705636 −0.352818 0.935692i \(-0.614777\pi\)
−0.352818 + 0.935692i \(0.614777\pi\)
\(228\) 0 0
\(229\) 8.41404 0.556015 0.278008 0.960579i \(-0.410326\pi\)
0.278008 + 0.960579i \(0.410326\pi\)
\(230\) 0 0
\(231\) 21.6587 1.42504
\(232\) 0 0
\(233\) 9.65498 0.632519 0.316260 0.948673i \(-0.397573\pi\)
0.316260 + 0.948673i \(0.397573\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 19.0220 1.23561
\(238\) 0 0
\(239\) 0.395765 0.0255999 0.0127999 0.999918i \(-0.495926\pi\)
0.0127999 + 0.999918i \(0.495926\pi\)
\(240\) 0 0
\(241\) 2.05855 0.132603 0.0663015 0.997800i \(-0.478880\pi\)
0.0663015 + 0.997800i \(0.478880\pi\)
\(242\) 0 0
\(243\) 22.3137 1.43142
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.713538 0.0454013
\(248\) 0 0
\(249\) −2.29950 −0.145725
\(250\) 0 0
\(251\) −24.9034 −1.57189 −0.785944 0.618297i \(-0.787823\pi\)
−0.785944 + 0.618297i \(0.787823\pi\)
\(252\) 0 0
\(253\) 7.69527 0.483797
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.20964 0.387346 0.193673 0.981066i \(-0.437960\pi\)
0.193673 + 0.981066i \(0.437960\pi\)
\(258\) 0 0
\(259\) 5.14061 0.319422
\(260\) 0 0
\(261\) 2.04028 0.126290
\(262\) 0 0
\(263\) −26.2316 −1.61751 −0.808756 0.588144i \(-0.799859\pi\)
−0.808756 + 0.588144i \(0.799859\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −35.2902 −2.15972
\(268\) 0 0
\(269\) −3.10407 −0.189258 −0.0946292 0.995513i \(-0.530167\pi\)
−0.0946292 + 0.995513i \(0.530167\pi\)
\(270\) 0 0
\(271\) 17.0090 1.03322 0.516611 0.856220i \(-0.327193\pi\)
0.516611 + 0.856220i \(0.327193\pi\)
\(272\) 0 0
\(273\) 4.42708 0.267939
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.9269 −0.896871 −0.448436 0.893815i \(-0.648019\pi\)
−0.448436 + 0.893815i \(0.648019\pi\)
\(278\) 0 0
\(279\) −6.85939 −0.410661
\(280\) 0 0
\(281\) −26.6535 −1.59001 −0.795007 0.606601i \(-0.792533\pi\)
−0.795007 + 0.606601i \(0.792533\pi\)
\(282\) 0 0
\(283\) −8.22267 −0.488787 −0.244394 0.969676i \(-0.578589\pi\)
−0.244394 + 0.969676i \(0.578589\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.8359 −0.639622
\(288\) 0 0
\(289\) −1.64975 −0.0970441
\(290\) 0 0
\(291\) −15.2954 −0.896634
\(292\) 0 0
\(293\) −20.1313 −1.17608 −0.588042 0.808830i \(-0.700101\pi\)
−0.588042 + 0.808830i \(0.700101\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.77733 0.103131
\(298\) 0 0
\(299\) 1.57292 0.0909646
\(300\) 0 0
\(301\) −11.3450 −0.653916
\(302\) 0 0
\(303\) 10.8684 0.624371
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −15.7225 −0.897331 −0.448665 0.893700i \(-0.648101\pi\)
−0.448665 + 0.893700i \(0.648101\pi\)
\(308\) 0 0
\(309\) 13.6315 0.775468
\(310\) 0 0
\(311\) 24.1951 1.37198 0.685989 0.727612i \(-0.259370\pi\)
0.685989 + 0.727612i \(0.259370\pi\)
\(312\) 0 0
\(313\) −17.8631 −1.00968 −0.504842 0.863212i \(-0.668449\pi\)
−0.504842 + 0.863212i \(0.668449\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.77733 0.324487 0.162243 0.986751i \(-0.448127\pi\)
0.162243 + 0.986751i \(0.448127\pi\)
\(318\) 0 0
\(319\) −2.22267 −0.124446
\(320\) 0 0
\(321\) 0.600166 0.0334980
\(322\) 0 0
\(323\) −3.91794 −0.218000
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −25.3723 −1.40309
\(328\) 0 0
\(329\) 0.668023 0.0368293
\(330\) 0 0
\(331\) −1.11454 −0.0612605 −0.0306303 0.999531i \(-0.509751\pi\)
−0.0306303 + 0.999531i \(0.509751\pi\)
\(332\) 0 0
\(333\) 6.61320 0.362401
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.54161 −0.0839770 −0.0419885 0.999118i \(-0.513369\pi\)
−0.0419885 + 0.999118i \(0.513369\pi\)
\(338\) 0 0
\(339\) −28.0675 −1.52442
\(340\) 0 0
\(341\) 7.47259 0.404663
\(342\) 0 0
\(343\) −19.4178 −1.04846
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.3007 −1.57294 −0.786471 0.617627i \(-0.788094\pi\)
−0.786471 + 0.617627i \(0.788094\pi\)
\(348\) 0 0
\(349\) −8.09626 −0.433383 −0.216692 0.976240i \(-0.569527\pi\)
−0.216692 + 0.976240i \(0.569527\pi\)
\(350\) 0 0
\(351\) 0.363288 0.0193909
\(352\) 0 0
\(353\) 5.17716 0.275552 0.137776 0.990463i \(-0.456005\pi\)
0.137776 + 0.990463i \(0.456005\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −24.3085 −1.28654
\(358\) 0 0
\(359\) 30.3122 1.59982 0.799908 0.600122i \(-0.204881\pi\)
0.799908 + 0.600122i \(0.204881\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −2.95449 −0.155070
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −18.3398 −0.957329 −0.478664 0.877998i \(-0.658879\pi\)
−0.478664 + 0.877998i \(0.658879\pi\)
\(368\) 0 0
\(369\) −13.9399 −0.725685
\(370\) 0 0
\(371\) 19.8814 1.03219
\(372\) 0 0
\(373\) 32.8956 1.70327 0.851635 0.524136i \(-0.175612\pi\)
0.851635 + 0.524136i \(0.175612\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.454318 −0.0233986
\(378\) 0 0
\(379\) −15.2865 −0.785213 −0.392606 0.919707i \(-0.628427\pi\)
−0.392606 + 0.919707i \(0.628427\pi\)
\(380\) 0 0
\(381\) −18.6002 −0.952915
\(382\) 0 0
\(383\) 6.14061 0.313771 0.156885 0.987617i \(-0.449855\pi\)
0.156885 + 0.987617i \(0.449855\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −14.5949 −0.741902
\(388\) 0 0
\(389\) 36.1899 1.83490 0.917449 0.397852i \(-0.130244\pi\)
0.917449 + 0.397852i \(0.130244\pi\)
\(390\) 0 0
\(391\) −8.63671 −0.436777
\(392\) 0 0
\(393\) 19.3723 0.977201
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 32.3775 1.62498 0.812490 0.582975i \(-0.198112\pi\)
0.812490 + 0.582975i \(0.198112\pi\)
\(398\) 0 0
\(399\) 6.20440 0.310609
\(400\) 0 0
\(401\) −16.0090 −0.799450 −0.399725 0.916635i \(-0.630894\pi\)
−0.399725 + 0.916635i \(0.630894\pi\)
\(402\) 0 0
\(403\) 1.52741 0.0760857
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.20440 −0.357109
\(408\) 0 0
\(409\) −26.2954 −1.30023 −0.650113 0.759838i \(-0.725278\pi\)
−0.650113 + 0.759838i \(0.725278\pi\)
\(410\) 0 0
\(411\) 22.5181 1.11074
\(412\) 0 0
\(413\) −6.40880 −0.315357
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 51.4905 2.52150
\(418\) 0 0
\(419\) 22.9399 1.12069 0.560345 0.828259i \(-0.310669\pi\)
0.560345 + 0.828259i \(0.310669\pi\)
\(420\) 0 0
\(421\) −5.03131 −0.245211 −0.122606 0.992455i \(-0.539125\pi\)
−0.122606 + 0.992455i \(0.539125\pi\)
\(422\) 0 0
\(423\) 0.859386 0.0417848
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −27.0037 −1.30680
\(428\) 0 0
\(429\) −6.20440 −0.299551
\(430\) 0 0
\(431\) −10.4621 −0.503943 −0.251971 0.967735i \(-0.581079\pi\)
−0.251971 + 0.967735i \(0.581079\pi\)
\(432\) 0 0
\(433\) −4.21487 −0.202554 −0.101277 0.994858i \(-0.532293\pi\)
−0.101277 + 0.994858i \(0.532293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.20440 0.105451
\(438\) 0 0
\(439\) 5.86312 0.279832 0.139916 0.990163i \(-0.455317\pi\)
0.139916 + 0.990163i \(0.455317\pi\)
\(440\) 0 0
\(441\) −2.54942 −0.121401
\(442\) 0 0
\(443\) 13.7303 0.652347 0.326173 0.945310i \(-0.394241\pi\)
0.326173 + 0.945310i \(0.394241\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 31.7811 1.50319
\(448\) 0 0
\(449\) −18.6039 −0.877972 −0.438986 0.898494i \(-0.644662\pi\)
−0.438986 + 0.898494i \(0.644662\pi\)
\(450\) 0 0
\(451\) 15.1861 0.715087
\(452\) 0 0
\(453\) 15.6587 0.735711
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.750083 0.0350874 0.0175437 0.999846i \(-0.494415\pi\)
0.0175437 + 0.999846i \(0.494415\pi\)
\(458\) 0 0
\(459\) −1.99477 −0.0931077
\(460\) 0 0
\(461\) −16.9139 −0.787757 −0.393879 0.919162i \(-0.628867\pi\)
−0.393879 + 0.919162i \(0.628867\pi\)
\(462\) 0 0
\(463\) −13.4323 −0.624252 −0.312126 0.950041i \(-0.601041\pi\)
−0.312126 + 0.950041i \(0.601041\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.1757 1.11872 0.559358 0.828926i \(-0.311048\pi\)
0.559358 + 0.828926i \(0.311048\pi\)
\(468\) 0 0
\(469\) −2.69527 −0.124456
\(470\) 0 0
\(471\) 53.3812 2.45968
\(472\) 0 0
\(473\) 15.8997 0.731067
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 25.5767 1.17107
\(478\) 0 0
\(479\) 18.7915 0.858607 0.429303 0.903160i \(-0.358759\pi\)
0.429303 + 0.903160i \(0.358759\pi\)
\(480\) 0 0
\(481\) −1.47259 −0.0671444
\(482\) 0 0
\(483\) 13.6770 0.622325
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 19.4125 0.879666 0.439833 0.898080i \(-0.355038\pi\)
0.439833 + 0.898080i \(0.355038\pi\)
\(488\) 0 0
\(489\) 45.0948 2.03926
\(490\) 0 0
\(491\) −15.7408 −0.710371 −0.355186 0.934796i \(-0.615582\pi\)
−0.355186 + 0.934796i \(0.615582\pi\)
\(492\) 0 0
\(493\) 2.49460 0.112351
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.0272 0.763776
\(498\) 0 0
\(499\) 8.45432 0.378467 0.189234 0.981932i \(-0.439400\pi\)
0.189234 + 0.981932i \(0.439400\pi\)
\(500\) 0 0
\(501\) 30.7628 1.37438
\(502\) 0 0
\(503\) −40.8161 −1.81990 −0.909950 0.414718i \(-0.863880\pi\)
−0.909950 + 0.414718i \(0.863880\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 31.1130 1.38178
\(508\) 0 0
\(509\) 1.56919 0.0695531 0.0347765 0.999395i \(-0.488928\pi\)
0.0347765 + 0.999395i \(0.488928\pi\)
\(510\) 0 0
\(511\) 37.4633 1.65728
\(512\) 0 0
\(513\) 0.509136 0.0224789
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.936212 −0.0411746
\(518\) 0 0
\(519\) 18.9310 0.830978
\(520\) 0 0
\(521\) 38.2081 1.67393 0.836964 0.547257i \(-0.184328\pi\)
0.836964 + 0.547257i \(0.184328\pi\)
\(522\) 0 0
\(523\) 33.3630 1.45886 0.729430 0.684055i \(-0.239785\pi\)
0.729430 + 0.684055i \(0.239785\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.38680 −0.365335
\(528\) 0 0
\(529\) −18.1406 −0.788722
\(530\) 0 0
\(531\) −8.24468 −0.357789
\(532\) 0 0
\(533\) 3.10407 0.134452
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −18.1365 −0.782650
\(538\) 0 0
\(539\) 2.77733 0.119628
\(540\) 0 0
\(541\) −45.2171 −1.94404 −0.972018 0.234908i \(-0.924521\pi\)
−0.972018 + 0.234908i \(0.924521\pi\)
\(542\) 0 0
\(543\) −16.9362 −0.726802
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.5416 1.13484 0.567419 0.823429i \(-0.307942\pi\)
0.567419 + 0.823429i \(0.307942\pi\)
\(548\) 0 0
\(549\) −34.7393 −1.48264
\(550\) 0 0
\(551\) −0.636712 −0.0271248
\(552\) 0 0
\(553\) −19.0220 −0.808898
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.89967 0.122863 0.0614314 0.998111i \(-0.480433\pi\)
0.0614314 + 0.998111i \(0.480433\pi\)
\(558\) 0 0
\(559\) 3.24992 0.137457
\(560\) 0 0
\(561\) 34.0675 1.43833
\(562\) 0 0
\(563\) 36.0817 1.52066 0.760332 0.649535i \(-0.225036\pi\)
0.760332 + 0.649535i \(0.225036\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −20.7863 −0.872942
\(568\) 0 0
\(569\) −39.3540 −1.64980 −0.824902 0.565275i \(-0.808770\pi\)
−0.824902 + 0.565275i \(0.808770\pi\)
\(570\) 0 0
\(571\) 17.4596 0.730660 0.365330 0.930878i \(-0.380956\pi\)
0.365330 + 0.930878i \(0.380956\pi\)
\(572\) 0 0
\(573\) −35.6404 −1.48890
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 21.1548 0.880687 0.440343 0.897829i \(-0.354857\pi\)
0.440343 + 0.897829i \(0.354857\pi\)
\(578\) 0 0
\(579\) 33.4998 1.39221
\(580\) 0 0
\(581\) 2.29950 0.0953994
\(582\) 0 0
\(583\) −27.8631 −1.15397
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.76429 0.361741 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(588\) 0 0
\(589\) 2.14061 0.0882025
\(590\) 0 0
\(591\) −6.95042 −0.285902
\(592\) 0 0
\(593\) −25.0127 −1.02715 −0.513574 0.858045i \(-0.671679\pi\)
−0.513574 + 0.858045i \(0.671679\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 22.2134 0.909133
\(598\) 0 0
\(599\) 3.97276 0.162322 0.0811612 0.996701i \(-0.474137\pi\)
0.0811612 + 0.996701i \(0.474137\pi\)
\(600\) 0 0
\(601\) 21.0768 0.859742 0.429871 0.902890i \(-0.358559\pi\)
0.429871 + 0.902890i \(0.358559\pi\)
\(602\) 0 0
\(603\) −3.46736 −0.141202
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 38.9672 1.58163 0.790815 0.612056i \(-0.209657\pi\)
0.790815 + 0.612056i \(0.209657\pi\)
\(608\) 0 0
\(609\) −3.95042 −0.160079
\(610\) 0 0
\(611\) −0.191363 −0.00774173
\(612\) 0 0
\(613\) −35.7680 −1.44466 −0.722328 0.691550i \(-0.756928\pi\)
−0.722328 + 0.691550i \(0.756928\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.2447 0.815020 0.407510 0.913201i \(-0.366397\pi\)
0.407510 + 0.913201i \(0.366397\pi\)
\(618\) 0 0
\(619\) 2.87616 0.115603 0.0578013 0.998328i \(-0.481591\pi\)
0.0578013 + 0.998328i \(0.481591\pi\)
\(620\) 0 0
\(621\) 1.12234 0.0450380
\(622\) 0 0
\(623\) 35.2902 1.41387
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −8.69527 −0.347255
\(628\) 0 0
\(629\) 8.08580 0.322402
\(630\) 0 0
\(631\) −46.3212 −1.84402 −0.922008 0.387170i \(-0.873453\pi\)
−0.922008 + 0.387170i \(0.873453\pi\)
\(632\) 0 0
\(633\) 60.3447 2.39849
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.567690 0.0224927
\(638\) 0 0
\(639\) 21.9049 0.866544
\(640\) 0 0
\(641\) −19.5804 −0.773379 −0.386690 0.922210i \(-0.626381\pi\)
−0.386690 + 0.922210i \(0.626381\pi\)
\(642\) 0 0
\(643\) −24.8542 −0.980152 −0.490076 0.871680i \(-0.663031\pi\)
−0.490076 + 0.871680i \(0.663031\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2589 1.74000 0.869998 0.493055i \(-0.164120\pi\)
0.869998 + 0.493055i \(0.164120\pi\)
\(648\) 0 0
\(649\) 8.98173 0.352564
\(650\) 0 0
\(651\) 13.2812 0.520532
\(652\) 0 0
\(653\) −0.113372 −0.00443657 −0.00221829 0.999998i \(-0.500706\pi\)
−0.00221829 + 0.999998i \(0.500706\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 48.1951 1.88027
\(658\) 0 0
\(659\) 7.65092 0.298037 0.149019 0.988834i \(-0.452389\pi\)
0.149019 + 0.988834i \(0.452389\pi\)
\(660\) 0 0
\(661\) −35.3488 −1.37491 −0.687454 0.726228i \(-0.741271\pi\)
−0.687454 + 0.726228i \(0.741271\pi\)
\(662\) 0 0
\(663\) 6.96345 0.270438
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.40357 −0.0543464
\(668\) 0 0
\(669\) 42.1626 1.63010
\(670\) 0 0
\(671\) 37.8448 1.46098
\(672\) 0 0
\(673\) −29.2301 −1.12674 −0.563370 0.826205i \(-0.690495\pi\)
−0.563370 + 0.826205i \(0.690495\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.97276 −0.152685 −0.0763427 0.997082i \(-0.524324\pi\)
−0.0763427 + 0.997082i \(0.524324\pi\)
\(678\) 0 0
\(679\) 15.2954 0.586985
\(680\) 0 0
\(681\) 26.4816 1.01478
\(682\) 0 0
\(683\) 11.8083 0.451832 0.225916 0.974147i \(-0.427462\pi\)
0.225916 + 0.974147i \(0.427462\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −20.9582 −0.799606
\(688\) 0 0
\(689\) −5.69527 −0.216972
\(690\) 0 0
\(691\) 3.14585 0.119674 0.0598369 0.998208i \(-0.480942\pi\)
0.0598369 + 0.998208i \(0.480942\pi\)
\(692\) 0 0
\(693\) −27.8631 −1.05843
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −17.0440 −0.645588
\(698\) 0 0
\(699\) −24.0492 −0.909626
\(700\) 0 0
\(701\) −52.2313 −1.97275 −0.986375 0.164514i \(-0.947394\pi\)
−0.986375 + 0.164514i \(0.947394\pi\)
\(702\) 0 0
\(703\) −2.06379 −0.0778372
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.8684 −0.408747
\(708\) 0 0
\(709\) 42.1951 1.58467 0.792335 0.610086i \(-0.208865\pi\)
0.792335 + 0.610086i \(0.208865\pi\)
\(710\) 0 0
\(711\) −24.4711 −0.917738
\(712\) 0 0
\(713\) 4.71877 0.176719
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.985796 −0.0368152
\(718\) 0 0
\(719\) −14.6770 −0.547359 −0.273680 0.961821i \(-0.588241\pi\)
−0.273680 + 0.961821i \(0.588241\pi\)
\(720\) 0 0
\(721\) −13.6315 −0.507663
\(722\) 0 0
\(723\) −5.12758 −0.190697
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.3189 0.642324 0.321162 0.947024i \(-0.395927\pi\)
0.321162 + 0.947024i \(0.395927\pi\)
\(728\) 0 0
\(729\) −30.5453 −1.13131
\(730\) 0 0
\(731\) −17.8448 −0.660016
\(732\) 0 0
\(733\) −22.4271 −0.828363 −0.414181 0.910194i \(-0.635932\pi\)
−0.414181 + 0.910194i \(0.635932\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.77733 0.139140
\(738\) 0 0
\(739\) 7.60390 0.279714 0.139857 0.990172i \(-0.455336\pi\)
0.139857 + 0.990172i \(0.455336\pi\)
\(740\) 0 0
\(741\) −1.77733 −0.0652917
\(742\) 0 0
\(743\) −28.8423 −1.05812 −0.529060 0.848584i \(-0.677455\pi\)
−0.529060 + 0.848584i \(0.677455\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.95822 0.108236
\(748\) 0 0
\(749\) −0.600166 −0.0219296
\(750\) 0 0
\(751\) −7.79560 −0.284465 −0.142233 0.989833i \(-0.545428\pi\)
−0.142233 + 0.989833i \(0.545428\pi\)
\(752\) 0 0
\(753\) 62.0310 2.26053
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.2227 1.06212 0.531058 0.847335i \(-0.321795\pi\)
0.531058 + 0.847335i \(0.321795\pi\)
\(758\) 0 0
\(759\) −19.1679 −0.695749
\(760\) 0 0
\(761\) 0.996265 0.0361146 0.0180573 0.999837i \(-0.494252\pi\)
0.0180573 + 0.999837i \(0.494252\pi\)
\(762\) 0 0
\(763\) 25.3723 0.918537
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.83588 0.0662897
\(768\) 0 0
\(769\) −3.33605 −0.120301 −0.0601504 0.998189i \(-0.519158\pi\)
−0.0601504 + 0.998189i \(0.519158\pi\)
\(770\) 0 0
\(771\) −15.4674 −0.557043
\(772\) 0 0
\(773\) −29.8866 −1.07495 −0.537474 0.843281i \(-0.680621\pi\)
−0.537474 + 0.843281i \(0.680621\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12.8046 −0.459361
\(778\) 0 0
\(779\) 4.35025 0.155864
\(780\) 0 0
\(781\) −23.8631 −0.853890
\(782\) 0 0
\(783\) −0.324173 −0.0115850
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.38796 −0.120768 −0.0603839 0.998175i \(-0.519232\pi\)
−0.0603839 + 0.998175i \(0.519232\pi\)
\(788\) 0 0
\(789\) 65.3394 2.32615
\(790\) 0 0
\(791\) 28.0675 0.997966
\(792\) 0 0
\(793\) 7.73555 0.274697
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 49.5296 1.75443 0.877215 0.480098i \(-0.159399\pi\)
0.877215 + 0.480098i \(0.159399\pi\)
\(798\) 0 0
\(799\) 1.05075 0.0371728
\(800\) 0 0
\(801\) 45.3995 1.60411
\(802\) 0 0
\(803\) −52.5036 −1.85281
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.73181 0.272173
\(808\) 0 0
\(809\) −11.6042 −0.407983 −0.203992 0.978973i \(-0.565392\pi\)
−0.203992 + 0.978973i \(0.565392\pi\)
\(810\) 0 0
\(811\) 29.1301 1.02290 0.511449 0.859314i \(-0.329109\pi\)
0.511449 + 0.859314i \(0.329109\pi\)
\(812\) 0 0
\(813\) −42.3670 −1.48588
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.55465 0.159347
\(818\) 0 0
\(819\) −5.69527 −0.199009
\(820\) 0 0
\(821\) 4.06902 0.142010 0.0710049 0.997476i \(-0.477379\pi\)
0.0710049 + 0.997476i \(0.477379\pi\)
\(822\) 0 0
\(823\) −3.98430 −0.138884 −0.0694419 0.997586i \(-0.522122\pi\)
−0.0694419 + 0.997586i \(0.522122\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.6770 −0.892877 −0.446438 0.894814i \(-0.647308\pi\)
−0.446438 + 0.894814i \(0.647308\pi\)
\(828\) 0 0
\(829\) −13.1533 −0.456834 −0.228417 0.973563i \(-0.573355\pi\)
−0.228417 + 0.973563i \(0.573355\pi\)
\(830\) 0 0
\(831\) 37.1809 1.28979
\(832\) 0 0
\(833\) −3.11711 −0.108001
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.08986 0.0376712
\(838\) 0 0
\(839\) 16.9948 0.586724 0.293362 0.956001i \(-0.405226\pi\)
0.293362 + 0.956001i \(0.405226\pi\)
\(840\) 0 0
\(841\) −28.5946 −0.986021
\(842\) 0 0
\(843\) 66.3902 2.28660
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.95449 0.101517
\(848\) 0 0
\(849\) 20.4816 0.702925
\(850\) 0 0
\(851\) −4.54942 −0.155952
\(852\) 0 0
\(853\) −29.1186 −0.997002 −0.498501 0.866889i \(-0.666116\pi\)
−0.498501 + 0.866889i \(0.666116\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.8486 −1.29288 −0.646441 0.762964i \(-0.723744\pi\)
−0.646441 + 0.762964i \(0.723744\pi\)
\(858\) 0 0
\(859\) 47.9019 1.63439 0.817196 0.576360i \(-0.195527\pi\)
0.817196 + 0.576360i \(0.195527\pi\)
\(860\) 0 0
\(861\) 26.9907 0.919840
\(862\) 0 0
\(863\) −7.16412 −0.243870 −0.121935 0.992538i \(-0.538910\pi\)
−0.121935 + 0.992538i \(0.538910\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.10930 0.139559
\(868\) 0 0
\(869\) 26.6587 0.904335
\(870\) 0 0
\(871\) 0.772091 0.0261613
\(872\) 0 0
\(873\) 19.6770 0.665965
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.3801 0.451813 0.225906 0.974149i \(-0.427466\pi\)
0.225906 + 0.974149i \(0.427466\pi\)
\(878\) 0 0
\(879\) 50.1443 1.69133
\(880\) 0 0
\(881\) 30.8579 1.03963 0.519814 0.854279i \(-0.326001\pi\)
0.519814 + 0.854279i \(0.326001\pi\)
\(882\) 0 0
\(883\) −1.20183 −0.0404449 −0.0202224 0.999796i \(-0.506437\pi\)
−0.0202224 + 0.999796i \(0.506437\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.3189 0.782973 0.391487 0.920184i \(-0.371961\pi\)
0.391487 + 0.920184i \(0.371961\pi\)
\(888\) 0 0
\(889\) 18.6002 0.623830
\(890\) 0 0
\(891\) 29.1313 0.975936
\(892\) 0 0
\(893\) −0.268189 −0.00897461
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.91794 −0.130816
\(898\) 0 0
\(899\) −1.36295 −0.0454571
\(900\) 0 0
\(901\) 31.2719 1.04182
\(902\) 0 0
\(903\) 28.2589 0.940397
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31.3137 1.03975 0.519877 0.854241i \(-0.325978\pi\)
0.519877 + 0.854241i \(0.325978\pi\)
\(908\) 0 0
\(909\) −13.9817 −0.463745
\(910\) 0 0
\(911\) 20.6665 0.684712 0.342356 0.939570i \(-0.388775\pi\)
0.342356 + 0.939570i \(0.388775\pi\)
\(912\) 0 0
\(913\) −3.22267 −0.106655
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.3723 −0.639728
\(918\) 0 0
\(919\) −43.1846 −1.42453 −0.712265 0.701911i \(-0.752330\pi\)
−0.712265 + 0.701911i \(0.752330\pi\)
\(920\) 0 0
\(921\) 39.1626 1.29045
\(922\) 0 0
\(923\) −4.87766 −0.160550
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −17.5364 −0.575970
\(928\) 0 0
\(929\) −40.6964 −1.33521 −0.667603 0.744517i \(-0.732680\pi\)
−0.667603 + 0.744517i \(0.732680\pi\)
\(930\) 0 0
\(931\) 0.795598 0.0260747
\(932\) 0 0
\(933\) −60.2667 −1.97304
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.06379 0.165427 0.0827134 0.996573i \(-0.473641\pi\)
0.0827134 + 0.996573i \(0.473641\pi\)
\(938\) 0 0
\(939\) 44.4946 1.45203
\(940\) 0 0
\(941\) 14.2876 0.465763 0.232882 0.972505i \(-0.425185\pi\)
0.232882 + 0.972505i \(0.425185\pi\)
\(942\) 0 0
\(943\) 9.58970 0.312284
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.0843 −0.717643 −0.358822 0.933406i \(-0.616821\pi\)
−0.358822 + 0.933406i \(0.616821\pi\)
\(948\) 0 0
\(949\) −10.7318 −0.348369
\(950\) 0 0
\(951\) −14.3905 −0.466645
\(952\) 0 0
\(953\) 7.92051 0.256570 0.128285 0.991737i \(-0.459053\pi\)
0.128285 + 0.991737i \(0.459053\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.53638 0.178966
\(958\) 0 0
\(959\) −22.5181 −0.727148
\(960\) 0 0
\(961\) −26.4178 −0.852186
\(962\) 0 0
\(963\) −0.772091 −0.0248803
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 49.1041 1.57908 0.789540 0.613699i \(-0.210319\pi\)
0.789540 + 0.613699i \(0.210319\pi\)
\(968\) 0 0
\(969\) 9.75905 0.313506
\(970\) 0 0
\(971\) 23.2264 0.745371 0.372685 0.927958i \(-0.378437\pi\)
0.372685 + 0.927958i \(0.378437\pi\)
\(972\) 0 0
\(973\) −51.4905 −1.65071
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.2290 −0.999104 −0.499552 0.866284i \(-0.666502\pi\)
−0.499552 + 0.866284i \(0.666502\pi\)
\(978\) 0 0
\(979\) −49.4581 −1.58069
\(980\) 0 0
\(981\) 32.6404 1.04213
\(982\) 0 0
\(983\) −57.8251 −1.84433 −0.922167 0.386793i \(-0.873583\pi\)
−0.922167 + 0.386793i \(0.873583\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.66395 −0.0529642
\(988\) 0 0
\(989\) 10.0403 0.319262
\(990\) 0 0
\(991\) −11.4125 −0.362531 −0.181266 0.983434i \(-0.558019\pi\)
−0.181266 + 0.983434i \(0.558019\pi\)
\(992\) 0 0
\(993\) 2.77616 0.0880988
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15.3137 0.484990 0.242495 0.970153i \(-0.422034\pi\)
0.242495 + 0.970153i \(0.422034\pi\)
\(998\) 0 0
\(999\) −1.05075 −0.0332442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.u.1.1 3
4.3 odd 2 7600.2.a.bt.1.3 3
5.2 odd 4 3800.2.d.m.3649.6 6
5.3 odd 4 3800.2.d.m.3649.1 6
5.4 even 2 3800.2.a.v.1.3 yes 3
20.19 odd 2 7600.2.a.bu.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.u.1.1 3 1.1 even 1 trivial
3800.2.a.v.1.3 yes 3 5.4 even 2
3800.2.d.m.3649.1 6 5.3 odd 4
3800.2.d.m.3649.6 6 5.2 odd 4
7600.2.a.bt.1.3 3 4.3 odd 2
7600.2.a.bu.1.1 3 20.19 odd 2