Properties

Label 3800.2.a.y.1.2
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.568.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.363328\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.363328 q^{3} -1.14134 q^{7} -2.86799 q^{9} -2.72666 q^{11} +4.64600 q^{13} +0.858664 q^{17} -1.00000 q^{19} +0.414680 q^{21} +4.41468 q^{23} +2.13201 q^{27} +9.42401 q^{29} -10.2827 q^{31} +0.990671 q^{33} -6.77801 q^{37} -1.68802 q^{39} -7.55602 q^{41} -9.29200 q^{43} +7.00933 q^{47} -5.69735 q^{49} -0.311977 q^{51} +8.64600 q^{53} +0.363328 q^{57} -5.14134 q^{59} +9.45331 q^{61} +3.27334 q^{63} +13.6553 q^{67} -1.60398 q^{69} -5.45331 q^{71} -6.87732 q^{73} +3.11203 q^{77} +17.2920 q^{79} +7.82936 q^{81} +14.2827 q^{83} -3.42401 q^{87} +13.0093 q^{89} -5.30265 q^{91} +3.73599 q^{93} +9.68463 q^{97} +7.82003 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} + 5 q^{7} + 4 q^{9} - 4 q^{11} - 5 q^{13} + 11 q^{17} - 3 q^{19} - 3 q^{21} + 9 q^{23} + 19 q^{27} + 3 q^{29} - 14 q^{31} + 24 q^{33} - 14 q^{37} - 5 q^{39} - 10 q^{41} + 10 q^{43} + 4 q^{49}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.363328 −0.209768 −0.104884 0.994484i \(-0.533447\pi\)
−0.104884 + 0.994484i \(0.533447\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.14134 −0.431385 −0.215692 0.976461i \(-0.569201\pi\)
−0.215692 + 0.976461i \(0.569201\pi\)
\(8\) 0 0
\(9\) −2.86799 −0.955998
\(10\) 0 0
\(11\) −2.72666 −0.822118 −0.411059 0.911609i \(-0.634841\pi\)
−0.411059 + 0.911609i \(0.634841\pi\)
\(12\) 0 0
\(13\) 4.64600 1.28857 0.644284 0.764786i \(-0.277155\pi\)
0.644284 + 0.764786i \(0.277155\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.858664 0.208257 0.104128 0.994564i \(-0.466795\pi\)
0.104128 + 0.994564i \(0.466795\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.414680 0.0904905
\(22\) 0 0
\(23\) 4.41468 0.920524 0.460262 0.887783i \(-0.347755\pi\)
0.460262 + 0.887783i \(0.347755\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.13201 0.410305
\(28\) 0 0
\(29\) 9.42401 1.74999 0.874997 0.484128i \(-0.160863\pi\)
0.874997 + 0.484128i \(0.160863\pi\)
\(30\) 0 0
\(31\) −10.2827 −1.84682 −0.923411 0.383812i \(-0.874611\pi\)
−0.923411 + 0.383812i \(0.874611\pi\)
\(32\) 0 0
\(33\) 0.990671 0.172454
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.77801 −1.11430 −0.557149 0.830413i \(-0.688105\pi\)
−0.557149 + 0.830413i \(0.688105\pi\)
\(38\) 0 0
\(39\) −1.68802 −0.270300
\(40\) 0 0
\(41\) −7.55602 −1.18005 −0.590026 0.807384i \(-0.700882\pi\)
−0.590026 + 0.807384i \(0.700882\pi\)
\(42\) 0 0
\(43\) −9.29200 −1.41702 −0.708508 0.705702i \(-0.750632\pi\)
−0.708508 + 0.705702i \(0.750632\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00933 1.02242 0.511208 0.859457i \(-0.329198\pi\)
0.511208 + 0.859457i \(0.329198\pi\)
\(48\) 0 0
\(49\) −5.69735 −0.813907
\(50\) 0 0
\(51\) −0.311977 −0.0436855
\(52\) 0 0
\(53\) 8.64600 1.18762 0.593810 0.804605i \(-0.297623\pi\)
0.593810 + 0.804605i \(0.297623\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.363328 0.0481240
\(58\) 0 0
\(59\) −5.14134 −0.669345 −0.334672 0.942335i \(-0.608626\pi\)
−0.334672 + 0.942335i \(0.608626\pi\)
\(60\) 0 0
\(61\) 9.45331 1.21037 0.605186 0.796084i \(-0.293099\pi\)
0.605186 + 0.796084i \(0.293099\pi\)
\(62\) 0 0
\(63\) 3.27334 0.412403
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.6553 1.66826 0.834132 0.551565i \(-0.185969\pi\)
0.834132 + 0.551565i \(0.185969\pi\)
\(68\) 0 0
\(69\) −1.60398 −0.193096
\(70\) 0 0
\(71\) −5.45331 −0.647189 −0.323595 0.946196i \(-0.604891\pi\)
−0.323595 + 0.946196i \(0.604891\pi\)
\(72\) 0 0
\(73\) −6.87732 −0.804930 −0.402465 0.915435i \(-0.631846\pi\)
−0.402465 + 0.915435i \(0.631846\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.11203 0.354649
\(78\) 0 0
\(79\) 17.2920 1.94550 0.972751 0.231852i \(-0.0744785\pi\)
0.972751 + 0.231852i \(0.0744785\pi\)
\(80\) 0 0
\(81\) 7.82936 0.869929
\(82\) 0 0
\(83\) 14.2827 1.56773 0.783863 0.620933i \(-0.213246\pi\)
0.783863 + 0.620933i \(0.213246\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.42401 −0.367092
\(88\) 0 0
\(89\) 13.0093 1.37899 0.689493 0.724292i \(-0.257833\pi\)
0.689493 + 0.724292i \(0.257833\pi\)
\(90\) 0 0
\(91\) −5.30265 −0.555869
\(92\) 0 0
\(93\) 3.73599 0.387404
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.68463 0.983326 0.491663 0.870786i \(-0.336389\pi\)
0.491663 + 0.870786i \(0.336389\pi\)
\(98\) 0 0
\(99\) 7.82003 0.785943
\(100\) 0 0
\(101\) 1.45331 0.144610 0.0723050 0.997383i \(-0.476964\pi\)
0.0723050 + 0.997383i \(0.476964\pi\)
\(102\) 0 0
\(103\) −2.23132 −0.219859 −0.109929 0.993939i \(-0.535062\pi\)
−0.109929 + 0.993939i \(0.535062\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.6553 −1.32011 −0.660055 0.751217i \(-0.729467\pi\)
−0.660055 + 0.751217i \(0.729467\pi\)
\(108\) 0 0
\(109\) 20.1693 1.93187 0.965935 0.258784i \(-0.0833216\pi\)
0.965935 + 0.258784i \(0.0833216\pi\)
\(110\) 0 0
\(111\) 2.46264 0.233744
\(112\) 0 0
\(113\) 10.0514 0.945552 0.472776 0.881183i \(-0.343252\pi\)
0.472776 + 0.881183i \(0.343252\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.3247 −1.23187
\(118\) 0 0
\(119\) −0.980024 −0.0898387
\(120\) 0 0
\(121\) −3.56534 −0.324122
\(122\) 0 0
\(123\) 2.74531 0.247537
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 14.0700 1.24851 0.624256 0.781220i \(-0.285402\pi\)
0.624256 + 0.781220i \(0.285402\pi\)
\(128\) 0 0
\(129\) 3.37605 0.297244
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 1.14134 0.0989664
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.85866 0.415104 0.207552 0.978224i \(-0.433450\pi\)
0.207552 + 0.978224i \(0.433450\pi\)
\(138\) 0 0
\(139\) −4.17997 −0.354540 −0.177270 0.984162i \(-0.556727\pi\)
−0.177270 + 0.984162i \(0.556727\pi\)
\(140\) 0 0
\(141\) −2.54669 −0.214470
\(142\) 0 0
\(143\) −12.6680 −1.05936
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.07001 0.170731
\(148\) 0 0
\(149\) 1.45331 0.119060 0.0595300 0.998227i \(-0.481040\pi\)
0.0595300 + 0.998227i \(0.481040\pi\)
\(150\) 0 0
\(151\) 7.27334 0.591896 0.295948 0.955204i \(-0.404364\pi\)
0.295948 + 0.955204i \(0.404364\pi\)
\(152\) 0 0
\(153\) −2.46264 −0.199093
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.0093 −1.35749 −0.678746 0.734373i \(-0.737476\pi\)
−0.678746 + 0.734373i \(0.737476\pi\)
\(158\) 0 0
\(159\) −3.14134 −0.249124
\(160\) 0 0
\(161\) −5.03863 −0.397100
\(162\) 0 0
\(163\) 10.1800 0.797357 0.398678 0.917091i \(-0.369469\pi\)
0.398678 + 0.917091i \(0.369469\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.07001 −0.469711 −0.234856 0.972030i \(-0.575462\pi\)
−0.234856 + 0.972030i \(0.575462\pi\)
\(168\) 0 0
\(169\) 8.58532 0.660409
\(170\) 0 0
\(171\) 2.86799 0.219321
\(172\) 0 0
\(173\) 5.22199 0.397021 0.198510 0.980099i \(-0.436390\pi\)
0.198510 + 0.980099i \(0.436390\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.86799 0.140407
\(178\) 0 0
\(179\) −1.55602 −0.116302 −0.0581510 0.998308i \(-0.518520\pi\)
−0.0581510 + 0.998308i \(0.518520\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) −3.43466 −0.253897
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.34128 −0.171211
\(188\) 0 0
\(189\) −2.43334 −0.176999
\(190\) 0 0
\(191\) −5.03863 −0.364583 −0.182291 0.983245i \(-0.558351\pi\)
−0.182291 + 0.983245i \(0.558351\pi\)
\(192\) 0 0
\(193\) 9.68463 0.697115 0.348558 0.937287i \(-0.386672\pi\)
0.348558 + 0.937287i \(0.386672\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 19.8867 1.40973 0.704864 0.709343i \(-0.251008\pi\)
0.704864 + 0.709343i \(0.251008\pi\)
\(200\) 0 0
\(201\) −4.96137 −0.349948
\(202\) 0 0
\(203\) −10.7560 −0.754920
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.6613 −0.880019
\(208\) 0 0
\(209\) 2.72666 0.188607
\(210\) 0 0
\(211\) 4.31198 0.296849 0.148424 0.988924i \(-0.452580\pi\)
0.148424 + 0.988924i \(0.452580\pi\)
\(212\) 0 0
\(213\) 1.98134 0.135759
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 11.7360 0.796691
\(218\) 0 0
\(219\) 2.49873 0.168848
\(220\) 0 0
\(221\) 3.98935 0.268353
\(222\) 0 0
\(223\) 18.5327 1.24104 0.620519 0.784191i \(-0.286922\pi\)
0.620519 + 0.784191i \(0.286922\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.82597 −0.320311 −0.160155 0.987092i \(-0.551200\pi\)
−0.160155 + 0.987092i \(0.551200\pi\)
\(228\) 0 0
\(229\) 23.7360 1.56852 0.784259 0.620434i \(-0.213043\pi\)
0.784259 + 0.620434i \(0.213043\pi\)
\(230\) 0 0
\(231\) −1.13069 −0.0743939
\(232\) 0 0
\(233\) 14.5653 0.954207 0.477104 0.878847i \(-0.341687\pi\)
0.477104 + 0.878847i \(0.341687\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −6.28267 −0.408103
\(238\) 0 0
\(239\) 2.43334 0.157399 0.0786997 0.996898i \(-0.474923\pi\)
0.0786997 + 0.996898i \(0.474923\pi\)
\(240\) 0 0
\(241\) 18.1986 1.17228 0.586138 0.810211i \(-0.300648\pi\)
0.586138 + 0.810211i \(0.300648\pi\)
\(242\) 0 0
\(243\) −9.24065 −0.592788
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.64600 −0.295618
\(248\) 0 0
\(249\) −5.18930 −0.328858
\(250\) 0 0
\(251\) −15.1120 −0.953863 −0.476931 0.878940i \(-0.658251\pi\)
−0.476931 + 0.878940i \(0.658251\pi\)
\(252\) 0 0
\(253\) −12.0373 −0.756779
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.2313 −0.762969 −0.381484 0.924375i \(-0.624587\pi\)
−0.381484 + 0.924375i \(0.624587\pi\)
\(258\) 0 0
\(259\) 7.73599 0.480691
\(260\) 0 0
\(261\) −27.0280 −1.67299
\(262\) 0 0
\(263\) −22.5840 −1.39259 −0.696295 0.717756i \(-0.745169\pi\)
−0.696295 + 0.717756i \(0.745169\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.72666 −0.289267
\(268\) 0 0
\(269\) −13.1120 −0.799455 −0.399727 0.916634i \(-0.630895\pi\)
−0.399727 + 0.916634i \(0.630895\pi\)
\(270\) 0 0
\(271\) −20.8960 −1.26934 −0.634670 0.772783i \(-0.718864\pi\)
−0.634670 + 0.772783i \(0.718864\pi\)
\(272\) 0 0
\(273\) 1.92660 0.116603
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 20.1800 1.21250 0.606248 0.795275i \(-0.292674\pi\)
0.606248 + 0.795275i \(0.292674\pi\)
\(278\) 0 0
\(279\) 29.4906 1.76556
\(280\) 0 0
\(281\) −22.4626 −1.34001 −0.670004 0.742357i \(-0.733708\pi\)
−0.670004 + 0.742357i \(0.733708\pi\)
\(282\) 0 0
\(283\) 0.829359 0.0493003 0.0246501 0.999696i \(-0.492153\pi\)
0.0246501 + 0.999696i \(0.492153\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.62395 0.509056
\(288\) 0 0
\(289\) −16.2627 −0.956629
\(290\) 0 0
\(291\) −3.51870 −0.206270
\(292\) 0 0
\(293\) 31.2886 1.82790 0.913950 0.405827i \(-0.133016\pi\)
0.913950 + 0.405827i \(0.133016\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.81325 −0.337319
\(298\) 0 0
\(299\) 20.5106 1.18616
\(300\) 0 0
\(301\) 10.6053 0.611279
\(302\) 0 0
\(303\) −0.528030 −0.0303345
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.11929 0.178027 0.0890136 0.996030i \(-0.471629\pi\)
0.0890136 + 0.996030i \(0.471629\pi\)
\(308\) 0 0
\(309\) 0.810702 0.0461192
\(310\) 0 0
\(311\) −21.4240 −1.21484 −0.607422 0.794379i \(-0.707796\pi\)
−0.607422 + 0.794379i \(0.707796\pi\)
\(312\) 0 0
\(313\) 12.1320 0.685742 0.342871 0.939383i \(-0.388601\pi\)
0.342871 + 0.939383i \(0.388601\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.7487 −0.940701 −0.470350 0.882480i \(-0.655872\pi\)
−0.470350 + 0.882480i \(0.655872\pi\)
\(318\) 0 0
\(319\) −25.6960 −1.43870
\(320\) 0 0
\(321\) 4.96137 0.276916
\(322\) 0 0
\(323\) −0.858664 −0.0477773
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −7.32808 −0.405244
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −5.97070 −0.328179 −0.164090 0.986445i \(-0.552469\pi\)
−0.164090 + 0.986445i \(0.552469\pi\)
\(332\) 0 0
\(333\) 19.4393 1.06527
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 20.3340 1.10766 0.553832 0.832628i \(-0.313165\pi\)
0.553832 + 0.832628i \(0.313165\pi\)
\(338\) 0 0
\(339\) −3.65194 −0.198346
\(340\) 0 0
\(341\) 28.0373 1.51831
\(342\) 0 0
\(343\) 14.4919 0.782492
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.8294 −1.11818 −0.559089 0.829107i \(-0.688849\pi\)
−0.559089 + 0.829107i \(0.688849\pi\)
\(348\) 0 0
\(349\) −20.0187 −1.07157 −0.535787 0.844353i \(-0.679985\pi\)
−0.535787 + 0.844353i \(0.679985\pi\)
\(350\) 0 0
\(351\) 9.90531 0.528706
\(352\) 0 0
\(353\) 27.1413 1.44459 0.722294 0.691586i \(-0.243088\pi\)
0.722294 + 0.691586i \(0.243088\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.356070 0.0188452
\(358\) 0 0
\(359\) −4.59465 −0.242496 −0.121248 0.992622i \(-0.538690\pi\)
−0.121248 + 0.992622i \(0.538690\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 1.29539 0.0679904
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 34.1214 1.78112 0.890560 0.454865i \(-0.150313\pi\)
0.890560 + 0.454865i \(0.150313\pi\)
\(368\) 0 0
\(369\) 21.6706 1.12813
\(370\) 0 0
\(371\) −9.86799 −0.512321
\(372\) 0 0
\(373\) 7.81664 0.404730 0.202365 0.979310i \(-0.435137\pi\)
0.202365 + 0.979310i \(0.435137\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 43.7839 2.25499
\(378\) 0 0
\(379\) −23.0573 −1.18437 −0.592187 0.805801i \(-0.701735\pi\)
−0.592187 + 0.805801i \(0.701735\pi\)
\(380\) 0 0
\(381\) −5.11203 −0.261897
\(382\) 0 0
\(383\) −16.8807 −0.862564 −0.431282 0.902217i \(-0.641939\pi\)
−0.431282 + 0.902217i \(0.641939\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 26.6494 1.35466
\(388\) 0 0
\(389\) −18.3013 −0.927914 −0.463957 0.885858i \(-0.653571\pi\)
−0.463957 + 0.885858i \(0.653571\pi\)
\(390\) 0 0
\(391\) 3.79073 0.191705
\(392\) 0 0
\(393\) 1.45331 0.0733099
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12.1800 −0.611295 −0.305648 0.952145i \(-0.598873\pi\)
−0.305648 + 0.952145i \(0.598873\pi\)
\(398\) 0 0
\(399\) −0.414680 −0.0207599
\(400\) 0 0
\(401\) 16.5840 0.828166 0.414083 0.910239i \(-0.364102\pi\)
0.414083 + 0.910239i \(0.364102\pi\)
\(402\) 0 0
\(403\) −47.7733 −2.37976
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.4813 0.916084
\(408\) 0 0
\(409\) 18.5653 0.917997 0.458999 0.888437i \(-0.348208\pi\)
0.458999 + 0.888437i \(0.348208\pi\)
\(410\) 0 0
\(411\) −1.76529 −0.0870753
\(412\) 0 0
\(413\) 5.86799 0.288745
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.51870 0.0743711
\(418\) 0 0
\(419\) 2.84802 0.139135 0.0695674 0.997577i \(-0.477838\pi\)
0.0695674 + 0.997577i \(0.477838\pi\)
\(420\) 0 0
\(421\) 24.5360 1.19581 0.597907 0.801566i \(-0.295999\pi\)
0.597907 + 0.801566i \(0.295999\pi\)
\(422\) 0 0
\(423\) −20.1027 −0.977427
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.7894 −0.522136
\(428\) 0 0
\(429\) 4.60266 0.222218
\(430\) 0 0
\(431\) −7.53736 −0.363062 −0.181531 0.983385i \(-0.558105\pi\)
−0.181531 + 0.983385i \(0.558105\pi\)
\(432\) 0 0
\(433\) 0.392633 0.0188687 0.00943437 0.999955i \(-0.496997\pi\)
0.00943437 + 0.999955i \(0.496997\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.41468 −0.211183
\(438\) 0 0
\(439\) 5.29200 0.252573 0.126287 0.991994i \(-0.459694\pi\)
0.126287 + 0.991994i \(0.459694\pi\)
\(440\) 0 0
\(441\) 16.3400 0.778093
\(442\) 0 0
\(443\) 22.0187 1.04614 0.523069 0.852290i \(-0.324787\pi\)
0.523069 + 0.852290i \(0.324787\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.528030 −0.0249749
\(448\) 0 0
\(449\) −4.90663 −0.231558 −0.115779 0.993275i \(-0.536936\pi\)
−0.115779 + 0.993275i \(0.536936\pi\)
\(450\) 0 0
\(451\) 20.6027 0.970141
\(452\) 0 0
\(453\) −2.64261 −0.124161
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.9800 −1.26207 −0.631036 0.775753i \(-0.717370\pi\)
−0.631036 + 0.775753i \(0.717370\pi\)
\(458\) 0 0
\(459\) 1.83068 0.0854487
\(460\) 0 0
\(461\) −27.1307 −1.26360 −0.631801 0.775131i \(-0.717684\pi\)
−0.631801 + 0.775131i \(0.717684\pi\)
\(462\) 0 0
\(463\) 16.9253 0.786585 0.393292 0.919413i \(-0.371336\pi\)
0.393292 + 0.919413i \(0.371336\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 42.6213 1.97228 0.986140 0.165917i \(-0.0530585\pi\)
0.986140 + 0.165917i \(0.0530585\pi\)
\(468\) 0 0
\(469\) −15.5853 −0.719663
\(470\) 0 0
\(471\) 6.17997 0.284758
\(472\) 0 0
\(473\) 25.3361 1.16495
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −24.7967 −1.13536
\(478\) 0 0
\(479\) −25.3107 −1.15647 −0.578237 0.815869i \(-0.696259\pi\)
−0.578237 + 0.815869i \(0.696259\pi\)
\(480\) 0 0
\(481\) −31.4906 −1.43585
\(482\) 0 0
\(483\) 1.83068 0.0832987
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −25.4020 −1.15107 −0.575536 0.817776i \(-0.695207\pi\)
−0.575536 + 0.817776i \(0.695207\pi\)
\(488\) 0 0
\(489\) −3.69867 −0.167260
\(490\) 0 0
\(491\) 20.6240 0.930746 0.465373 0.885115i \(-0.345920\pi\)
0.465373 + 0.885115i \(0.345920\pi\)
\(492\) 0 0
\(493\) 8.09206 0.364448
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.22406 0.279187
\(498\) 0 0
\(499\) 17.3693 0.777555 0.388778 0.921332i \(-0.372897\pi\)
0.388778 + 0.921332i \(0.372897\pi\)
\(500\) 0 0
\(501\) 2.20541 0.0985303
\(502\) 0 0
\(503\) 14.9987 0.668758 0.334379 0.942439i \(-0.391473\pi\)
0.334379 + 0.942439i \(0.391473\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −3.11929 −0.138533
\(508\) 0 0
\(509\) −19.9160 −0.882759 −0.441380 0.897320i \(-0.645511\pi\)
−0.441380 + 0.897320i \(0.645511\pi\)
\(510\) 0 0
\(511\) 7.84934 0.347234
\(512\) 0 0
\(513\) −2.13201 −0.0941304
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −19.1120 −0.840546
\(518\) 0 0
\(519\) −1.89730 −0.0832821
\(520\) 0 0
\(521\) −14.8294 −0.649686 −0.324843 0.945768i \(-0.605311\pi\)
−0.324843 + 0.945768i \(0.605311\pi\)
\(522\) 0 0
\(523\) −11.9966 −0.524575 −0.262288 0.964990i \(-0.584477\pi\)
−0.262288 + 0.964990i \(0.584477\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.82936 −0.384613
\(528\) 0 0
\(529\) −3.51060 −0.152635
\(530\) 0 0
\(531\) 14.7453 0.639892
\(532\) 0 0
\(533\) −35.1053 −1.52058
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.565344 0.0243964
\(538\) 0 0
\(539\) 15.5347 0.669128
\(540\) 0 0
\(541\) −2.01866 −0.0867889 −0.0433944 0.999058i \(-0.513817\pi\)
−0.0433944 + 0.999058i \(0.513817\pi\)
\(542\) 0 0
\(543\) −7.99322 −0.343022
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.6940 0.799296 0.399648 0.916669i \(-0.369132\pi\)
0.399648 + 0.916669i \(0.369132\pi\)
\(548\) 0 0
\(549\) −27.1120 −1.15711
\(550\) 0 0
\(551\) −9.42401 −0.401476
\(552\) 0 0
\(553\) −19.7360 −0.839259
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.0866 −0.469754 −0.234877 0.972025i \(-0.575469\pi\)
−0.234877 + 0.972025i \(0.575469\pi\)
\(558\) 0 0
\(559\) −43.1706 −1.82592
\(560\) 0 0
\(561\) 0.850654 0.0359146
\(562\) 0 0
\(563\) −2.69396 −0.113537 −0.0567685 0.998387i \(-0.518080\pi\)
−0.0567685 + 0.998387i \(0.518080\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −8.93593 −0.375274
\(568\) 0 0
\(569\) 29.4134 1.23307 0.616536 0.787327i \(-0.288535\pi\)
0.616536 + 0.787327i \(0.288535\pi\)
\(570\) 0 0
\(571\) −33.0466 −1.38296 −0.691479 0.722396i \(-0.743041\pi\)
−0.691479 + 0.722396i \(0.743041\pi\)
\(572\) 0 0
\(573\) 1.83068 0.0764777
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0.396022 0.0164866 0.00824331 0.999966i \(-0.497376\pi\)
0.00824331 + 0.999966i \(0.497376\pi\)
\(578\) 0 0
\(579\) −3.51870 −0.146232
\(580\) 0 0
\(581\) −16.3013 −0.676293
\(582\) 0 0
\(583\) −23.5747 −0.976363
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.0773 0.581031 0.290515 0.956870i \(-0.406173\pi\)
0.290515 + 0.956870i \(0.406173\pi\)
\(588\) 0 0
\(589\) 10.2827 0.423690
\(590\) 0 0
\(591\) −0.726656 −0.0298907
\(592\) 0 0
\(593\) −5.43466 −0.223175 −0.111587 0.993755i \(-0.535593\pi\)
−0.111587 + 0.993755i \(0.535593\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −7.22538 −0.295715
\(598\) 0 0
\(599\) 11.6333 0.475323 0.237662 0.971348i \(-0.423619\pi\)
0.237662 + 0.971348i \(0.423619\pi\)
\(600\) 0 0
\(601\) 8.12136 0.331277 0.165639 0.986187i \(-0.447031\pi\)
0.165639 + 0.986187i \(0.447031\pi\)
\(602\) 0 0
\(603\) −39.1634 −1.59486
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −10.5327 −0.427507 −0.213754 0.976888i \(-0.568569\pi\)
−0.213754 + 0.976888i \(0.568569\pi\)
\(608\) 0 0
\(609\) 3.90794 0.158358
\(610\) 0 0
\(611\) 32.5653 1.31745
\(612\) 0 0
\(613\) −47.3293 −1.91161 −0.955807 0.293996i \(-0.905015\pi\)
−0.955807 + 0.293996i \(0.905015\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.3693 1.34340 0.671698 0.740825i \(-0.265565\pi\)
0.671698 + 0.740825i \(0.265565\pi\)
\(618\) 0 0
\(619\) −33.8760 −1.36159 −0.680796 0.732473i \(-0.738366\pi\)
−0.680796 + 0.732473i \(0.738366\pi\)
\(620\) 0 0
\(621\) 9.41213 0.377696
\(622\) 0 0
\(623\) −14.8480 −0.594873
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.990671 −0.0395636
\(628\) 0 0
\(629\) −5.82003 −0.232060
\(630\) 0 0
\(631\) 27.8573 1.10898 0.554492 0.832189i \(-0.312913\pi\)
0.554492 + 0.832189i \(0.312913\pi\)
\(632\) 0 0
\(633\) −1.56666 −0.0622693
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −26.4699 −1.04878
\(638\) 0 0
\(639\) 15.6401 0.618711
\(640\) 0 0
\(641\) −4.74531 −0.187429 −0.0937143 0.995599i \(-0.529874\pi\)
−0.0937143 + 0.995599i \(0.529874\pi\)
\(642\) 0 0
\(643\) 6.28267 0.247764 0.123882 0.992297i \(-0.460466\pi\)
0.123882 + 0.992297i \(0.460466\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.1507 −0.634948 −0.317474 0.948267i \(-0.602835\pi\)
−0.317474 + 0.948267i \(0.602835\pi\)
\(648\) 0 0
\(649\) 14.0187 0.550280
\(650\) 0 0
\(651\) −4.26401 −0.167120
\(652\) 0 0
\(653\) −29.8760 −1.16914 −0.584569 0.811344i \(-0.698736\pi\)
−0.584569 + 0.811344i \(0.698736\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 19.7241 0.769511
\(658\) 0 0
\(659\) −17.4427 −0.679470 −0.339735 0.940521i \(-0.610337\pi\)
−0.339735 + 0.940521i \(0.610337\pi\)
\(660\) 0 0
\(661\) −2.87732 −0.111915 −0.0559574 0.998433i \(-0.517821\pi\)
−0.0559574 + 0.998433i \(0.517821\pi\)
\(662\) 0 0
\(663\) −1.44944 −0.0562918
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 41.6040 1.61091
\(668\) 0 0
\(669\) −6.73344 −0.260330
\(670\) 0 0
\(671\) −25.7759 −0.995069
\(672\) 0 0
\(673\) −10.9393 −0.421680 −0.210840 0.977521i \(-0.567620\pi\)
−0.210840 + 0.977521i \(0.567620\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.0900 −0.733688 −0.366844 0.930283i \(-0.619562\pi\)
−0.366844 + 0.930283i \(0.619562\pi\)
\(678\) 0 0
\(679\) −11.0534 −0.424191
\(680\) 0 0
\(681\) 1.75341 0.0671909
\(682\) 0 0
\(683\) −25.7687 −0.986011 −0.493006 0.870026i \(-0.664102\pi\)
−0.493006 + 0.870026i \(0.664102\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −8.62395 −0.329024
\(688\) 0 0
\(689\) 40.1693 1.53033
\(690\) 0 0
\(691\) −27.2334 −1.03601 −0.518004 0.855378i \(-0.673325\pi\)
−0.518004 + 0.855378i \(0.673325\pi\)
\(692\) 0 0
\(693\) −8.92528 −0.339043
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −6.48808 −0.245753
\(698\) 0 0
\(699\) −5.29200 −0.200162
\(700\) 0 0
\(701\) 49.6960 1.87699 0.938497 0.345288i \(-0.112219\pi\)
0.938497 + 0.345288i \(0.112219\pi\)
\(702\) 0 0
\(703\) 6.77801 0.255637
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.65872 −0.0623825
\(708\) 0 0
\(709\) 5.64006 0.211817 0.105908 0.994376i \(-0.466225\pi\)
0.105908 + 0.994376i \(0.466225\pi\)
\(710\) 0 0
\(711\) −49.5933 −1.85990
\(712\) 0 0
\(713\) −45.3947 −1.70005
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.884100 −0.0330173
\(718\) 0 0
\(719\) −33.4240 −1.24651 −0.623253 0.782021i \(-0.714189\pi\)
−0.623253 + 0.782021i \(0.714189\pi\)
\(720\) 0 0
\(721\) 2.54669 0.0948436
\(722\) 0 0
\(723\) −6.61208 −0.245906
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 14.3306 0.531494 0.265747 0.964043i \(-0.414381\pi\)
0.265747 + 0.964043i \(0.414381\pi\)
\(728\) 0 0
\(729\) −20.1307 −0.745581
\(730\) 0 0
\(731\) −7.97871 −0.295103
\(732\) 0 0
\(733\) 40.8853 1.51013 0.755067 0.655648i \(-0.227604\pi\)
0.755067 + 0.655648i \(0.227604\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −37.2334 −1.37151
\(738\) 0 0
\(739\) −28.8294 −1.06051 −0.530253 0.847840i \(-0.677903\pi\)
−0.530253 + 0.847840i \(0.677903\pi\)
\(740\) 0 0
\(741\) 1.68802 0.0620111
\(742\) 0 0
\(743\) 8.05135 0.295375 0.147688 0.989034i \(-0.452817\pi\)
0.147688 + 0.989034i \(0.452817\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −40.9626 −1.49874
\(748\) 0 0
\(749\) 15.5853 0.569475
\(750\) 0 0
\(751\) 47.3107 1.72639 0.863195 0.504870i \(-0.168460\pi\)
0.863195 + 0.504870i \(0.168460\pi\)
\(752\) 0 0
\(753\) 5.49063 0.200090
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.20541 −0.225539 −0.112770 0.993621i \(-0.535972\pi\)
−0.112770 + 0.993621i \(0.535972\pi\)
\(758\) 0 0
\(759\) 4.37350 0.158748
\(760\) 0 0
\(761\) 43.8280 1.58877 0.794383 0.607418i \(-0.207795\pi\)
0.794383 + 0.607418i \(0.207795\pi\)
\(762\) 0 0
\(763\) −23.0200 −0.833379
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.8867 −0.862497
\(768\) 0 0
\(769\) −3.22538 −0.116310 −0.0581551 0.998308i \(-0.518522\pi\)
−0.0581551 + 0.998308i \(0.518522\pi\)
\(770\) 0 0
\(771\) 4.44398 0.160046
\(772\) 0 0
\(773\) −6.16470 −0.221729 −0.110864 0.993836i \(-0.535362\pi\)
−0.110864 + 0.993836i \(0.535362\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.81070 −0.100833
\(778\) 0 0
\(779\) 7.55602 0.270722
\(780\) 0 0
\(781\) 14.8693 0.532066
\(782\) 0 0
\(783\) 20.0921 0.718031
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.1527 −1.25306 −0.626530 0.779397i \(-0.715525\pi\)
−0.626530 + 0.779397i \(0.715525\pi\)
\(788\) 0 0
\(789\) 8.20541 0.292120
\(790\) 0 0
\(791\) −11.4720 −0.407896
\(792\) 0 0
\(793\) 43.9201 1.55965
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.3420 1.07477 0.537385 0.843337i \(-0.319412\pi\)
0.537385 + 0.843337i \(0.319412\pi\)
\(798\) 0 0
\(799\) 6.01866 0.212925
\(800\) 0 0
\(801\) −37.3107 −1.31831
\(802\) 0 0
\(803\) 18.7521 0.661747
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.76397 0.167700
\(808\) 0 0
\(809\) −4.96137 −0.174432 −0.0872162 0.996189i \(-0.527797\pi\)
−0.0872162 + 0.996189i \(0.527797\pi\)
\(810\) 0 0
\(811\) 29.8094 1.04675 0.523375 0.852103i \(-0.324673\pi\)
0.523375 + 0.852103i \(0.324673\pi\)
\(812\) 0 0
\(813\) 7.59210 0.266267
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 9.29200 0.325086
\(818\) 0 0
\(819\) 15.2080 0.531409
\(820\) 0 0
\(821\) −11.1520 −0.389207 −0.194603 0.980882i \(-0.562342\pi\)
−0.194603 + 0.980882i \(0.562342\pi\)
\(822\) 0 0
\(823\) 17.1413 0.597509 0.298755 0.954330i \(-0.403429\pi\)
0.298755 + 0.954330i \(0.403429\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.8633 −0.864581 −0.432291 0.901734i \(-0.642295\pi\)
−0.432291 + 0.901734i \(0.642295\pi\)
\(828\) 0 0
\(829\) −18.7746 −0.652069 −0.326035 0.945358i \(-0.605713\pi\)
−0.326035 + 0.945358i \(0.605713\pi\)
\(830\) 0 0
\(831\) −7.33195 −0.254343
\(832\) 0 0
\(833\) −4.89211 −0.169502
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −21.9227 −0.757761
\(838\) 0 0
\(839\) 29.0280 1.00216 0.501079 0.865402i \(-0.332937\pi\)
0.501079 + 0.865402i \(0.332937\pi\)
\(840\) 0 0
\(841\) 59.8119 2.06248
\(842\) 0 0
\(843\) 8.16131 0.281091
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.06926 0.139821
\(848\) 0 0
\(849\) −0.301330 −0.0103416
\(850\) 0 0
\(851\) −29.9227 −1.02574
\(852\) 0 0
\(853\) −40.7894 −1.39660 −0.698301 0.715804i \(-0.746060\pi\)
−0.698301 + 0.715804i \(0.746060\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.6354 1.11480 0.557401 0.830243i \(-0.311799\pi\)
0.557401 + 0.830243i \(0.311799\pi\)
\(858\) 0 0
\(859\) 33.4906 1.14269 0.571343 0.820712i \(-0.306423\pi\)
0.571343 + 0.820712i \(0.306423\pi\)
\(860\) 0 0
\(861\) −3.13333 −0.106783
\(862\) 0 0
\(863\) −5.13795 −0.174898 −0.0874489 0.996169i \(-0.527871\pi\)
−0.0874489 + 0.996169i \(0.527871\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.90870 0.200670
\(868\) 0 0
\(869\) −47.1493 −1.59943
\(870\) 0 0
\(871\) 63.4427 2.14967
\(872\) 0 0
\(873\) −27.7755 −0.940057
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0220 0.541026 0.270513 0.962716i \(-0.412807\pi\)
0.270513 + 0.962716i \(0.412807\pi\)
\(878\) 0 0
\(879\) −11.3680 −0.383434
\(880\) 0 0
\(881\) 11.5306 0.388475 0.194238 0.980955i \(-0.437777\pi\)
0.194238 + 0.980955i \(0.437777\pi\)
\(882\) 0 0
\(883\) 39.5161 1.32982 0.664911 0.746923i \(-0.268470\pi\)
0.664911 + 0.746923i \(0.268470\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.8153 0.698910 0.349455 0.936953i \(-0.386367\pi\)
0.349455 + 0.936953i \(0.386367\pi\)
\(888\) 0 0
\(889\) −16.0586 −0.538588
\(890\) 0 0
\(891\) −21.3480 −0.715184
\(892\) 0 0
\(893\) −7.00933 −0.234558
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −7.45208 −0.248818
\(898\) 0 0
\(899\) −96.9040 −3.23193
\(900\) 0 0
\(901\) 7.42401 0.247330
\(902\) 0 0
\(903\) −3.85320 −0.128227
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −32.0339 −1.06367 −0.531835 0.846848i \(-0.678497\pi\)
−0.531835 + 0.846848i \(0.678497\pi\)
\(908\) 0 0
\(909\) −4.16809 −0.138247
\(910\) 0 0
\(911\) −2.12136 −0.0702838 −0.0351419 0.999382i \(-0.511188\pi\)
−0.0351419 + 0.999382i \(0.511188\pi\)
\(912\) 0 0
\(913\) −38.9439 −1.28886
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.56534 0.150761
\(918\) 0 0
\(919\) −26.4333 −0.871955 −0.435978 0.899957i \(-0.643597\pi\)
−0.435978 + 0.899957i \(0.643597\pi\)
\(920\) 0 0
\(921\) −1.13333 −0.0373444
\(922\) 0 0
\(923\) −25.3361 −0.833948
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.39941 0.210184
\(928\) 0 0
\(929\) 17.7907 0.583695 0.291847 0.956465i \(-0.405730\pi\)
0.291847 + 0.956465i \(0.405730\pi\)
\(930\) 0 0
\(931\) 5.69735 0.186723
\(932\) 0 0
\(933\) 7.78395 0.254835
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 7.46396 0.243837 0.121918 0.992540i \(-0.461095\pi\)
0.121918 + 0.992540i \(0.461095\pi\)
\(938\) 0 0
\(939\) −4.40790 −0.143846
\(940\) 0 0
\(941\) −2.67869 −0.0873229 −0.0436615 0.999046i \(-0.513902\pi\)
−0.0436615 + 0.999046i \(0.513902\pi\)
\(942\) 0 0
\(943\) −33.3574 −1.08627
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42.5840 −1.38379 −0.691897 0.721996i \(-0.743225\pi\)
−0.691897 + 0.721996i \(0.743225\pi\)
\(948\) 0 0
\(949\) −31.9520 −1.03721
\(950\) 0 0
\(951\) 6.08528 0.197329
\(952\) 0 0
\(953\) −60.0046 −1.94374 −0.971870 0.235517i \(-0.924322\pi\)
−0.971870 + 0.235517i \(0.924322\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9.33609 0.301793
\(958\) 0 0
\(959\) −5.54537 −0.179069
\(960\) 0 0
\(961\) 74.7333 2.41075
\(962\) 0 0
\(963\) 39.1634 1.26202
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 61.1307 1.96583 0.982915 0.184059i \(-0.0589237\pi\)
0.982915 + 0.184059i \(0.0589237\pi\)
\(968\) 0 0
\(969\) 0.311977 0.0100221
\(970\) 0 0
\(971\) 54.6213 1.75288 0.876441 0.481510i \(-0.159911\pi\)
0.876441 + 0.481510i \(0.159911\pi\)
\(972\) 0 0
\(973\) 4.77075 0.152943
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.3060 0.617655 0.308827 0.951118i \(-0.400063\pi\)
0.308827 + 0.951118i \(0.400063\pi\)
\(978\) 0 0
\(979\) −35.4720 −1.13369
\(980\) 0 0
\(981\) −57.8455 −1.84686
\(982\) 0 0
\(983\) −25.1820 −0.803182 −0.401591 0.915819i \(-0.631543\pi\)
−0.401591 + 0.915819i \(0.631543\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.90663 0.0925189
\(988\) 0 0
\(989\) −41.0212 −1.30440
\(990\) 0 0
\(991\) −5.82003 −0.184879 −0.0924397 0.995718i \(-0.529467\pi\)
−0.0924397 + 0.995718i \(0.529467\pi\)
\(992\) 0 0
\(993\) 2.16932 0.0688414
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −8.97201 −0.284147 −0.142073 0.989856i \(-0.545377\pi\)
−0.142073 + 0.989856i \(0.545377\pi\)
\(998\) 0 0
\(999\) −14.4508 −0.457202
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.y.1.2 3
4.3 odd 2 7600.2.a.bo.1.2 3
5.2 odd 4 3800.2.d.k.3649.4 6
5.3 odd 4 3800.2.d.k.3649.3 6
5.4 even 2 760.2.a.h.1.2 3
15.14 odd 2 6840.2.a.bj.1.3 3
20.19 odd 2 1520.2.a.r.1.2 3
40.19 odd 2 6080.2.a.bs.1.2 3
40.29 even 2 6080.2.a.bw.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.h.1.2 3 5.4 even 2
1520.2.a.r.1.2 3 20.19 odd 2
3800.2.a.y.1.2 3 1.1 even 1 trivial
3800.2.d.k.3649.3 6 5.3 odd 4
3800.2.d.k.3649.4 6 5.2 odd 4
6080.2.a.bs.1.2 3 40.19 odd 2
6080.2.a.bw.1.2 3 40.29 even 2
6840.2.a.bj.1.3 3 15.14 odd 2
7600.2.a.bo.1.2 3 4.3 odd 2