Properties

Label 3800.2.a.z.1.2
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.253565184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 11x^{4} + 20x^{3} + 22x^{2} - 32x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.43031\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43031 q^{3} -3.60737 q^{7} +2.90640 q^{9} -2.37997 q^{11} +3.96613 q^{13} -4.28257 q^{17} +1.00000 q^{19} +8.76701 q^{21} +1.07377 q^{23} +0.227486 q^{27} +9.47021 q^{29} +6.38211 q^{31} +5.78405 q^{33} -2.04540 q^{37} -9.63892 q^{39} -4.38211 q^{41} -7.86284 q^{43} -3.83485 q^{47} +6.01310 q^{49} +10.4080 q^{51} +11.7789 q^{53} -2.43031 q^{57} +4.59593 q^{59} +6.62819 q^{61} -10.4844 q^{63} -7.02837 q^{67} -2.60959 q^{69} +4.99450 q^{71} +2.93216 q^{73} +8.58541 q^{77} +0.860616 q^{79} -9.27205 q^{81} -11.9179 q^{83} -23.0155 q^{87} +13.6460 q^{89} -14.3073 q^{91} -15.5105 q^{93} -18.5757 q^{97} -6.91712 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{7} + 8 q^{9} - 2 q^{11} - 14 q^{13} - 10 q^{17} + 6 q^{19} + 18 q^{21} - 2 q^{23} - 2 q^{27} - 2 q^{29} + 8 q^{31} - 8 q^{33} - 4 q^{37} - 18 q^{39} + 4 q^{41} - 4 q^{43} - 4 q^{47}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.43031 −1.40314 −0.701569 0.712601i \(-0.747517\pi\)
−0.701569 + 0.712601i \(0.747517\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.60737 −1.36346 −0.681728 0.731605i \(-0.738771\pi\)
−0.681728 + 0.731605i \(0.738771\pi\)
\(8\) 0 0
\(9\) 2.90640 0.968799
\(10\) 0 0
\(11\) −2.37997 −0.717587 −0.358793 0.933417i \(-0.616812\pi\)
−0.358793 + 0.933417i \(0.616812\pi\)
\(12\) 0 0
\(13\) 3.96613 1.10001 0.550003 0.835162i \(-0.314626\pi\)
0.550003 + 0.835162i \(0.314626\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.28257 −1.03868 −0.519338 0.854569i \(-0.673822\pi\)
−0.519338 + 0.854569i \(0.673822\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 8.76701 1.91312
\(22\) 0 0
\(23\) 1.07377 0.223897 0.111948 0.993714i \(-0.464291\pi\)
0.111948 + 0.993714i \(0.464291\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.227486 0.0437796
\(28\) 0 0
\(29\) 9.47021 1.75857 0.879287 0.476293i \(-0.158020\pi\)
0.879287 + 0.476293i \(0.158020\pi\)
\(30\) 0 0
\(31\) 6.38211 1.14626 0.573130 0.819464i \(-0.305729\pi\)
0.573130 + 0.819464i \(0.305729\pi\)
\(32\) 0 0
\(33\) 5.78405 1.00687
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.04540 −0.336262 −0.168131 0.985765i \(-0.553773\pi\)
−0.168131 + 0.985765i \(0.553773\pi\)
\(38\) 0 0
\(39\) −9.63892 −1.54346
\(40\) 0 0
\(41\) −4.38211 −0.684370 −0.342185 0.939633i \(-0.611167\pi\)
−0.342185 + 0.939633i \(0.611167\pi\)
\(42\) 0 0
\(43\) −7.86284 −1.19907 −0.599536 0.800348i \(-0.704648\pi\)
−0.599536 + 0.800348i \(0.704648\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.83485 −0.559371 −0.279685 0.960092i \(-0.590230\pi\)
−0.279685 + 0.960092i \(0.590230\pi\)
\(48\) 0 0
\(49\) 6.01310 0.859014
\(50\) 0 0
\(51\) 10.4080 1.45741
\(52\) 0 0
\(53\) 11.7789 1.61796 0.808980 0.587836i \(-0.200020\pi\)
0.808980 + 0.587836i \(0.200020\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.43031 −0.321902
\(58\) 0 0
\(59\) 4.59593 0.598340 0.299170 0.954200i \(-0.403290\pi\)
0.299170 + 0.954200i \(0.403290\pi\)
\(60\) 0 0
\(61\) 6.62819 0.848653 0.424327 0.905509i \(-0.360511\pi\)
0.424327 + 0.905509i \(0.360511\pi\)
\(62\) 0 0
\(63\) −10.4844 −1.32092
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.02837 −0.858652 −0.429326 0.903150i \(-0.641249\pi\)
−0.429326 + 0.903150i \(0.641249\pi\)
\(68\) 0 0
\(69\) −2.60959 −0.314158
\(70\) 0 0
\(71\) 4.99450 0.592738 0.296369 0.955074i \(-0.404224\pi\)
0.296369 + 0.955074i \(0.404224\pi\)
\(72\) 0 0
\(73\) 2.93216 0.343183 0.171592 0.985168i \(-0.445109\pi\)
0.171592 + 0.985168i \(0.445109\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.58541 0.978398
\(78\) 0 0
\(79\) 0.860616 0.0968268 0.0484134 0.998827i \(-0.484584\pi\)
0.0484134 + 0.998827i \(0.484584\pi\)
\(80\) 0 0
\(81\) −9.27205 −1.03023
\(82\) 0 0
\(83\) −11.9179 −1.30816 −0.654081 0.756424i \(-0.726945\pi\)
−0.654081 + 0.756424i \(0.726945\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −23.0155 −2.46752
\(88\) 0 0
\(89\) 13.6460 1.44647 0.723237 0.690600i \(-0.242654\pi\)
0.723237 + 0.690600i \(0.242654\pi\)
\(90\) 0 0
\(91\) −14.3073 −1.49981
\(92\) 0 0
\(93\) −15.5105 −1.60836
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.5757 −1.88608 −0.943040 0.332681i \(-0.892047\pi\)
−0.943040 + 0.332681i \(0.892047\pi\)
\(98\) 0 0
\(99\) −6.91712 −0.695197
\(100\) 0 0
\(101\) −9.82645 −0.977769 −0.488884 0.872349i \(-0.662596\pi\)
−0.488884 + 0.872349i \(0.662596\pi\)
\(102\) 0 0
\(103\) 8.85269 0.872282 0.436141 0.899878i \(-0.356345\pi\)
0.436141 + 0.899878i \(0.356345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.58269 −0.636372 −0.318186 0.948028i \(-0.603074\pi\)
−0.318186 + 0.948028i \(0.603074\pi\)
\(108\) 0 0
\(109\) 3.40919 0.326541 0.163271 0.986581i \(-0.447796\pi\)
0.163271 + 0.986581i \(0.447796\pi\)
\(110\) 0 0
\(111\) 4.97096 0.471823
\(112\) 0 0
\(113\) 6.58065 0.619055 0.309528 0.950890i \(-0.399829\pi\)
0.309528 + 0.950890i \(0.399829\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 11.5271 1.06569
\(118\) 0 0
\(119\) 15.4488 1.41619
\(120\) 0 0
\(121\) −5.33576 −0.485069
\(122\) 0 0
\(123\) 10.6499 0.960267
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 12.2826 1.08991 0.544953 0.838466i \(-0.316547\pi\)
0.544953 + 0.838466i \(0.316547\pi\)
\(128\) 0 0
\(129\) 19.1091 1.68246
\(130\) 0 0
\(131\) −10.0308 −0.876395 −0.438198 0.898879i \(-0.644383\pi\)
−0.438198 + 0.898879i \(0.644383\pi\)
\(132\) 0 0
\(133\) −3.60737 −0.312798
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.1273 1.46329 0.731644 0.681687i \(-0.238753\pi\)
0.731644 + 0.681687i \(0.238753\pi\)
\(138\) 0 0
\(139\) −5.50494 −0.466923 −0.233461 0.972366i \(-0.575005\pi\)
−0.233461 + 0.972366i \(0.575005\pi\)
\(140\) 0 0
\(141\) 9.31987 0.784875
\(142\) 0 0
\(143\) −9.43926 −0.789350
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −14.6137 −1.20532
\(148\) 0 0
\(149\) −21.4593 −1.75801 −0.879007 0.476808i \(-0.841794\pi\)
−0.879007 + 0.476808i \(0.841794\pi\)
\(150\) 0 0
\(151\) −14.1805 −1.15399 −0.576996 0.816747i \(-0.695775\pi\)
−0.576996 + 0.816747i \(0.695775\pi\)
\(152\) 0 0
\(153\) −12.4469 −1.00627
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.69891 −0.215397 −0.107698 0.994184i \(-0.534348\pi\)
−0.107698 + 0.994184i \(0.534348\pi\)
\(158\) 0 0
\(159\) −28.6264 −2.27022
\(160\) 0 0
\(161\) −3.87349 −0.305273
\(162\) 0 0
\(163\) 11.1955 0.876898 0.438449 0.898756i \(-0.355528\pi\)
0.438449 + 0.898756i \(0.355528\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.71331 0.751639 0.375819 0.926693i \(-0.377361\pi\)
0.375819 + 0.926693i \(0.377361\pi\)
\(168\) 0 0
\(169\) 2.73019 0.210015
\(170\) 0 0
\(171\) 2.90640 0.222258
\(172\) 0 0
\(173\) 14.2783 1.08556 0.542781 0.839874i \(-0.317371\pi\)
0.542781 + 0.839874i \(0.317371\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.1695 −0.839554
\(178\) 0 0
\(179\) −17.1327 −1.28056 −0.640278 0.768143i \(-0.721181\pi\)
−0.640278 + 0.768143i \(0.721181\pi\)
\(180\) 0 0
\(181\) −23.6883 −1.76074 −0.880370 0.474288i \(-0.842705\pi\)
−0.880370 + 0.474288i \(0.842705\pi\)
\(182\) 0 0
\(183\) −16.1085 −1.19078
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.1924 0.745341
\(188\) 0 0
\(189\) −0.820624 −0.0596916
\(190\) 0 0
\(191\) 25.2506 1.82707 0.913535 0.406761i \(-0.133342\pi\)
0.913535 + 0.406761i \(0.133342\pi\)
\(192\) 0 0
\(193\) −16.6814 −1.20076 −0.600378 0.799716i \(-0.704983\pi\)
−0.600378 + 0.799716i \(0.704983\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.1471 −1.22168 −0.610839 0.791755i \(-0.709168\pi\)
−0.610839 + 0.791755i \(0.709168\pi\)
\(198\) 0 0
\(199\) 22.1273 1.56856 0.784280 0.620407i \(-0.213033\pi\)
0.784280 + 0.620407i \(0.213033\pi\)
\(200\) 0 0
\(201\) 17.0811 1.20481
\(202\) 0 0
\(203\) −34.1625 −2.39774
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.12080 0.216911
\(208\) 0 0
\(209\) −2.37997 −0.164626
\(210\) 0 0
\(211\) −24.6690 −1.69828 −0.849141 0.528166i \(-0.822880\pi\)
−0.849141 + 0.528166i \(0.822880\pi\)
\(212\) 0 0
\(213\) −12.1382 −0.831694
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −23.0226 −1.56288
\(218\) 0 0
\(219\) −7.12605 −0.481534
\(220\) 0 0
\(221\) −16.9852 −1.14255
\(222\) 0 0
\(223\) −21.4787 −1.43832 −0.719162 0.694843i \(-0.755474\pi\)
−0.719162 + 0.694843i \(0.755474\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.5568 1.36440 0.682201 0.731164i \(-0.261023\pi\)
0.682201 + 0.731164i \(0.261023\pi\)
\(228\) 0 0
\(229\) −17.6465 −1.16611 −0.583057 0.812431i \(-0.698144\pi\)
−0.583057 + 0.812431i \(0.698144\pi\)
\(230\) 0 0
\(231\) −20.8652 −1.37283
\(232\) 0 0
\(233\) −15.5021 −1.01558 −0.507788 0.861482i \(-0.669537\pi\)
−0.507788 + 0.861482i \(0.669537\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.09156 −0.135862
\(238\) 0 0
\(239\) −28.2186 −1.82531 −0.912656 0.408730i \(-0.865972\pi\)
−0.912656 + 0.408730i \(0.865972\pi\)
\(240\) 0 0
\(241\) 23.8653 1.53730 0.768649 0.639671i \(-0.220929\pi\)
0.768649 + 0.639671i \(0.220929\pi\)
\(242\) 0 0
\(243\) 21.8515 1.40177
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.96613 0.252359
\(248\) 0 0
\(249\) 28.9642 1.83553
\(250\) 0 0
\(251\) 8.15793 0.514924 0.257462 0.966288i \(-0.417114\pi\)
0.257462 + 0.966288i \(0.417114\pi\)
\(252\) 0 0
\(253\) −2.55554 −0.160665
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.07899 −0.379197 −0.189598 0.981862i \(-0.560719\pi\)
−0.189598 + 0.981862i \(0.560719\pi\)
\(258\) 0 0
\(259\) 7.37852 0.458479
\(260\) 0 0
\(261\) 27.5242 1.70370
\(262\) 0 0
\(263\) −8.47535 −0.522612 −0.261306 0.965256i \(-0.584153\pi\)
−0.261306 + 0.965256i \(0.584153\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −33.1640 −2.02960
\(268\) 0 0
\(269\) −16.6667 −1.01619 −0.508093 0.861302i \(-0.669649\pi\)
−0.508093 + 0.861302i \(0.669649\pi\)
\(270\) 0 0
\(271\) −11.8151 −0.717718 −0.358859 0.933392i \(-0.616834\pi\)
−0.358859 + 0.933392i \(0.616834\pi\)
\(272\) 0 0
\(273\) 34.7711 2.10444
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.10858 0.126692 0.0633462 0.997992i \(-0.479823\pi\)
0.0633462 + 0.997992i \(0.479823\pi\)
\(278\) 0 0
\(279\) 18.5489 1.11050
\(280\) 0 0
\(281\) −3.76859 −0.224815 −0.112408 0.993662i \(-0.535856\pi\)
−0.112408 + 0.993662i \(0.535856\pi\)
\(282\) 0 0
\(283\) −0.0720389 −0.00428227 −0.00214114 0.999998i \(-0.500682\pi\)
−0.00214114 + 0.999998i \(0.500682\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.8079 0.933109
\(288\) 0 0
\(289\) 1.34044 0.0788494
\(290\) 0 0
\(291\) 45.1447 2.64643
\(292\) 0 0
\(293\) 9.98245 0.583181 0.291590 0.956543i \(-0.405816\pi\)
0.291590 + 0.956543i \(0.405816\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.541408 −0.0314157
\(298\) 0 0
\(299\) 4.25872 0.246288
\(300\) 0 0
\(301\) 28.3642 1.63488
\(302\) 0 0
\(303\) 23.8813 1.37195
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −21.0679 −1.20241 −0.601204 0.799096i \(-0.705312\pi\)
−0.601204 + 0.799096i \(0.705312\pi\)
\(308\) 0 0
\(309\) −21.5148 −1.22393
\(310\) 0 0
\(311\) −29.9966 −1.70095 −0.850475 0.526015i \(-0.823686\pi\)
−0.850475 + 0.526015i \(0.823686\pi\)
\(312\) 0 0
\(313\) −5.48121 −0.309817 −0.154908 0.987929i \(-0.549508\pi\)
−0.154908 + 0.987929i \(0.549508\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.687909 −0.0386368 −0.0193184 0.999813i \(-0.506150\pi\)
−0.0193184 + 0.999813i \(0.506150\pi\)
\(318\) 0 0
\(319\) −22.5388 −1.26193
\(320\) 0 0
\(321\) 15.9980 0.892919
\(322\) 0 0
\(323\) −4.28257 −0.238289
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.28538 −0.458183
\(328\) 0 0
\(329\) 13.8337 0.762678
\(330\) 0 0
\(331\) 23.1679 1.27342 0.636712 0.771102i \(-0.280294\pi\)
0.636712 + 0.771102i \(0.280294\pi\)
\(332\) 0 0
\(333\) −5.94475 −0.325771
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −28.8512 −1.57162 −0.785812 0.618465i \(-0.787755\pi\)
−0.785812 + 0.618465i \(0.787755\pi\)
\(338\) 0 0
\(339\) −15.9930 −0.868620
\(340\) 0 0
\(341\) −15.1892 −0.822541
\(342\) 0 0
\(343\) 3.56013 0.192229
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.51365 −0.295988 −0.147994 0.988988i \(-0.547282\pi\)
−0.147994 + 0.988988i \(0.547282\pi\)
\(348\) 0 0
\(349\) −6.62869 −0.354826 −0.177413 0.984137i \(-0.556773\pi\)
−0.177413 + 0.984137i \(0.556773\pi\)
\(350\) 0 0
\(351\) 0.902238 0.0481579
\(352\) 0 0
\(353\) 10.0657 0.535745 0.267872 0.963454i \(-0.413679\pi\)
0.267872 + 0.963454i \(0.413679\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −37.5454 −1.98711
\(358\) 0 0
\(359\) −23.9747 −1.26534 −0.632668 0.774423i \(-0.718040\pi\)
−0.632668 + 0.774423i \(0.718040\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 12.9675 0.680620
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.10030 −0.109635 −0.0548174 0.998496i \(-0.517458\pi\)
−0.0548174 + 0.998496i \(0.517458\pi\)
\(368\) 0 0
\(369\) −12.7361 −0.663017
\(370\) 0 0
\(371\) −42.4909 −2.20602
\(372\) 0 0
\(373\) −19.2927 −0.998939 −0.499470 0.866331i \(-0.666472\pi\)
−0.499470 + 0.866331i \(0.666472\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.5601 1.93444
\(378\) 0 0
\(379\) 4.29783 0.220765 0.110382 0.993889i \(-0.464792\pi\)
0.110382 + 0.993889i \(0.464792\pi\)
\(380\) 0 0
\(381\) −29.8506 −1.52929
\(382\) 0 0
\(383\) 15.6099 0.797628 0.398814 0.917032i \(-0.369422\pi\)
0.398814 + 0.917032i \(0.369422\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −22.8525 −1.16166
\(388\) 0 0
\(389\) 15.4509 0.783390 0.391695 0.920095i \(-0.371889\pi\)
0.391695 + 0.920095i \(0.371889\pi\)
\(390\) 0 0
\(391\) −4.59850 −0.232556
\(392\) 0 0
\(393\) 24.3779 1.22970
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.852887 −0.0428051 −0.0214026 0.999771i \(-0.506813\pi\)
−0.0214026 + 0.999771i \(0.506813\pi\)
\(398\) 0 0
\(399\) 8.76701 0.438900
\(400\) 0 0
\(401\) 38.8284 1.93900 0.969500 0.245091i \(-0.0788180\pi\)
0.969500 + 0.245091i \(0.0788180\pi\)
\(402\) 0 0
\(403\) 25.3123 1.26089
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.86799 0.241297
\(408\) 0 0
\(409\) 6.16871 0.305023 0.152512 0.988302i \(-0.451264\pi\)
0.152512 + 0.988302i \(0.451264\pi\)
\(410\) 0 0
\(411\) −41.6247 −2.05320
\(412\) 0 0
\(413\) −16.5792 −0.815810
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13.3787 0.655157
\(418\) 0 0
\(419\) −14.0712 −0.687422 −0.343711 0.939075i \(-0.611684\pi\)
−0.343711 + 0.939075i \(0.611684\pi\)
\(420\) 0 0
\(421\) 4.85298 0.236520 0.118260 0.992983i \(-0.462268\pi\)
0.118260 + 0.992983i \(0.462268\pi\)
\(422\) 0 0
\(423\) −11.1456 −0.541918
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −23.9103 −1.15710
\(428\) 0 0
\(429\) 22.9403 1.10757
\(430\) 0 0
\(431\) −15.6171 −0.752251 −0.376126 0.926569i \(-0.622744\pi\)
−0.376126 + 0.926569i \(0.622744\pi\)
\(432\) 0 0
\(433\) −25.3497 −1.21823 −0.609114 0.793082i \(-0.708475\pi\)
−0.609114 + 0.793082i \(0.708475\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.07377 0.0513654
\(438\) 0 0
\(439\) 23.4184 1.11770 0.558849 0.829269i \(-0.311243\pi\)
0.558849 + 0.829269i \(0.311243\pi\)
\(440\) 0 0
\(441\) 17.4764 0.832211
\(442\) 0 0
\(443\) 25.1133 1.19317 0.596584 0.802551i \(-0.296524\pi\)
0.596584 + 0.802551i \(0.296524\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 52.1527 2.46674
\(448\) 0 0
\(449\) 6.37270 0.300746 0.150373 0.988629i \(-0.451953\pi\)
0.150373 + 0.988629i \(0.451953\pi\)
\(450\) 0 0
\(451\) 10.4293 0.491095
\(452\) 0 0
\(453\) 34.4630 1.61921
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 40.6893 1.90336 0.951682 0.307085i \(-0.0993536\pi\)
0.951682 + 0.307085i \(0.0993536\pi\)
\(458\) 0 0
\(459\) −0.974224 −0.0454729
\(460\) 0 0
\(461\) −11.5304 −0.537024 −0.268512 0.963276i \(-0.586532\pi\)
−0.268512 + 0.963276i \(0.586532\pi\)
\(462\) 0 0
\(463\) 32.0882 1.49127 0.745633 0.666357i \(-0.232147\pi\)
0.745633 + 0.666357i \(0.232147\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6254 −0.954429 −0.477214 0.878787i \(-0.658353\pi\)
−0.477214 + 0.878787i \(0.658353\pi\)
\(468\) 0 0
\(469\) 25.3539 1.17073
\(470\) 0 0
\(471\) 6.55919 0.302231
\(472\) 0 0
\(473\) 18.7133 0.860438
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 34.2342 1.56748
\(478\) 0 0
\(479\) 10.8936 0.497740 0.248870 0.968537i \(-0.419941\pi\)
0.248870 + 0.968537i \(0.419941\pi\)
\(480\) 0 0
\(481\) −8.11234 −0.369891
\(482\) 0 0
\(483\) 9.41376 0.428341
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.05668 0.229140 0.114570 0.993415i \(-0.463451\pi\)
0.114570 + 0.993415i \(0.463451\pi\)
\(488\) 0 0
\(489\) −27.2085 −1.23041
\(490\) 0 0
\(491\) −25.5833 −1.15456 −0.577279 0.816547i \(-0.695886\pi\)
−0.577279 + 0.816547i \(0.695886\pi\)
\(492\) 0 0
\(493\) −40.5569 −1.82659
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0170 −0.808172
\(498\) 0 0
\(499\) −34.0476 −1.52418 −0.762090 0.647471i \(-0.775827\pi\)
−0.762090 + 0.647471i \(0.775827\pi\)
\(500\) 0 0
\(501\) −23.6063 −1.05465
\(502\) 0 0
\(503\) 5.70145 0.254215 0.127108 0.991889i \(-0.459431\pi\)
0.127108 + 0.991889i \(0.459431\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.63521 −0.294680
\(508\) 0 0
\(509\) −27.9604 −1.23932 −0.619661 0.784870i \(-0.712730\pi\)
−0.619661 + 0.784870i \(0.712730\pi\)
\(510\) 0 0
\(511\) −10.5774 −0.467916
\(512\) 0 0
\(513\) 0.227486 0.0100437
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 9.12682 0.401397
\(518\) 0 0
\(519\) −34.7008 −1.52319
\(520\) 0 0
\(521\) −0.419591 −0.0183826 −0.00919131 0.999958i \(-0.502926\pi\)
−0.00919131 + 0.999958i \(0.502926\pi\)
\(522\) 0 0
\(523\) 2.23302 0.0976433 0.0488217 0.998808i \(-0.484453\pi\)
0.0488217 + 0.998808i \(0.484453\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −27.3319 −1.19059
\(528\) 0 0
\(529\) −21.8470 −0.949870
\(530\) 0 0
\(531\) 13.3576 0.579671
\(532\) 0 0
\(533\) −17.3800 −0.752812
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 41.6377 1.79680
\(538\) 0 0
\(539\) −14.3110 −0.616417
\(540\) 0 0
\(541\) 39.9938 1.71947 0.859734 0.510741i \(-0.170629\pi\)
0.859734 + 0.510741i \(0.170629\pi\)
\(542\) 0 0
\(543\) 57.5699 2.47056
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15.5651 −0.665516 −0.332758 0.943012i \(-0.607979\pi\)
−0.332758 + 0.943012i \(0.607979\pi\)
\(548\) 0 0
\(549\) 19.2642 0.822174
\(550\) 0 0
\(551\) 9.47021 0.403444
\(552\) 0 0
\(553\) −3.10456 −0.132019
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.68789 −0.113890 −0.0569448 0.998377i \(-0.518136\pi\)
−0.0569448 + 0.998377i \(0.518136\pi\)
\(558\) 0 0
\(559\) −31.1851 −1.31899
\(560\) 0 0
\(561\) −24.7706 −1.04582
\(562\) 0 0
\(563\) −12.7089 −0.535618 −0.267809 0.963472i \(-0.586300\pi\)
−0.267809 + 0.963472i \(0.586300\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 33.4477 1.40467
\(568\) 0 0
\(569\) 28.9522 1.21374 0.606870 0.794801i \(-0.292425\pi\)
0.606870 + 0.794801i \(0.292425\pi\)
\(570\) 0 0
\(571\) 8.89885 0.372405 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(572\) 0 0
\(573\) −61.3667 −2.56363
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.3754 −1.05639 −0.528196 0.849123i \(-0.677131\pi\)
−0.528196 + 0.849123i \(0.677131\pi\)
\(578\) 0 0
\(579\) 40.5411 1.68483
\(580\) 0 0
\(581\) 42.9924 1.78362
\(582\) 0 0
\(583\) −28.0334 −1.16103
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.7611 1.59984 0.799920 0.600107i \(-0.204875\pi\)
0.799920 + 0.600107i \(0.204875\pi\)
\(588\) 0 0
\(589\) 6.38211 0.262970
\(590\) 0 0
\(591\) 41.6727 1.71418
\(592\) 0 0
\(593\) −35.5132 −1.45835 −0.729176 0.684327i \(-0.760096\pi\)
−0.729176 + 0.684327i \(0.760096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −53.7761 −2.20091
\(598\) 0 0
\(599\) −22.7248 −0.928512 −0.464256 0.885701i \(-0.653678\pi\)
−0.464256 + 0.885701i \(0.653678\pi\)
\(600\) 0 0
\(601\) −25.3951 −1.03589 −0.517944 0.855415i \(-0.673302\pi\)
−0.517944 + 0.855415i \(0.673302\pi\)
\(602\) 0 0
\(603\) −20.4272 −0.831861
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.2509 0.740779 0.370390 0.928876i \(-0.379224\pi\)
0.370390 + 0.928876i \(0.379224\pi\)
\(608\) 0 0
\(609\) 83.0254 3.36436
\(610\) 0 0
\(611\) −15.2095 −0.615312
\(612\) 0 0
\(613\) 3.43574 0.138768 0.0693842 0.997590i \(-0.477897\pi\)
0.0693842 + 0.997590i \(0.477897\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.7976 −0.474952 −0.237476 0.971393i \(-0.576320\pi\)
−0.237476 + 0.971393i \(0.576320\pi\)
\(618\) 0 0
\(619\) 27.6561 1.11159 0.555797 0.831318i \(-0.312413\pi\)
0.555797 + 0.831318i \(0.312413\pi\)
\(620\) 0 0
\(621\) 0.244267 0.00980211
\(622\) 0 0
\(623\) −49.2261 −1.97220
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.78405 0.230993
\(628\) 0 0
\(629\) 8.75959 0.349268
\(630\) 0 0
\(631\) 7.23176 0.287892 0.143946 0.989586i \(-0.454021\pi\)
0.143946 + 0.989586i \(0.454021\pi\)
\(632\) 0 0
\(633\) 59.9532 2.38293
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 23.8487 0.944921
\(638\) 0 0
\(639\) 14.5160 0.574244
\(640\) 0 0
\(641\) 20.1802 0.797070 0.398535 0.917153i \(-0.369519\pi\)
0.398535 + 0.917153i \(0.369519\pi\)
\(642\) 0 0
\(643\) −4.68579 −0.184790 −0.0923948 0.995722i \(-0.529452\pi\)
−0.0923948 + 0.995722i \(0.529452\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.17831 0.0856383 0.0428191 0.999083i \(-0.486366\pi\)
0.0428191 + 0.999083i \(0.486366\pi\)
\(648\) 0 0
\(649\) −10.9382 −0.429361
\(650\) 0 0
\(651\) 55.9520 2.19293
\(652\) 0 0
\(653\) −3.73150 −0.146025 −0.0730124 0.997331i \(-0.523261\pi\)
−0.0730124 + 0.997331i \(0.523261\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.52202 0.332476
\(658\) 0 0
\(659\) −18.1674 −0.707700 −0.353850 0.935302i \(-0.615128\pi\)
−0.353850 + 0.935302i \(0.615128\pi\)
\(660\) 0 0
\(661\) 8.87307 0.345123 0.172561 0.984999i \(-0.444796\pi\)
0.172561 + 0.984999i \(0.444796\pi\)
\(662\) 0 0
\(663\) 41.2794 1.60316
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.1688 0.393739
\(668\) 0 0
\(669\) 52.2000 2.01817
\(670\) 0 0
\(671\) −15.7749 −0.608982
\(672\) 0 0
\(673\) −35.7318 −1.37736 −0.688680 0.725065i \(-0.741809\pi\)
−0.688680 + 0.725065i \(0.741809\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.0748 0.809971 0.404985 0.914323i \(-0.367277\pi\)
0.404985 + 0.914323i \(0.367277\pi\)
\(678\) 0 0
\(679\) 67.0095 2.57159
\(680\) 0 0
\(681\) −49.9594 −1.91445
\(682\) 0 0
\(683\) 9.90904 0.379159 0.189579 0.981865i \(-0.439288\pi\)
0.189579 + 0.981865i \(0.439288\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 42.8865 1.63622
\(688\) 0 0
\(689\) 46.7168 1.77977
\(690\) 0 0
\(691\) −11.9960 −0.456348 −0.228174 0.973620i \(-0.573276\pi\)
−0.228174 + 0.973620i \(0.573276\pi\)
\(692\) 0 0
\(693\) 24.9526 0.947871
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.7667 0.710840
\(698\) 0 0
\(699\) 37.6748 1.42499
\(700\) 0 0
\(701\) −42.9782 −1.62326 −0.811632 0.584169i \(-0.801420\pi\)
−0.811632 + 0.584169i \(0.801420\pi\)
\(702\) 0 0
\(703\) −2.04540 −0.0771439
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.4476 1.33314
\(708\) 0 0
\(709\) −30.3524 −1.13991 −0.569954 0.821676i \(-0.693039\pi\)
−0.569954 + 0.821676i \(0.693039\pi\)
\(710\) 0 0
\(711\) 2.50129 0.0938057
\(712\) 0 0
\(713\) 6.85292 0.256644
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 68.5799 2.56116
\(718\) 0 0
\(719\) 38.0282 1.41821 0.709106 0.705102i \(-0.249099\pi\)
0.709106 + 0.705102i \(0.249099\pi\)
\(720\) 0 0
\(721\) −31.9349 −1.18932
\(722\) 0 0
\(723\) −58.0000 −2.15704
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.1429 0.635796 0.317898 0.948125i \(-0.397023\pi\)
0.317898 + 0.948125i \(0.397023\pi\)
\(728\) 0 0
\(729\) −25.2897 −0.936654
\(730\) 0 0
\(731\) 33.6732 1.24545
\(732\) 0 0
\(733\) 14.0860 0.520277 0.260139 0.965571i \(-0.416232\pi\)
0.260139 + 0.965571i \(0.416232\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.7273 0.616157
\(738\) 0 0
\(739\) −4.08166 −0.150146 −0.0750731 0.997178i \(-0.523919\pi\)
−0.0750731 + 0.997178i \(0.523919\pi\)
\(740\) 0 0
\(741\) −9.63892 −0.354095
\(742\) 0 0
\(743\) 22.5661 0.827872 0.413936 0.910306i \(-0.364154\pi\)
0.413936 + 0.910306i \(0.364154\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −34.6382 −1.26735
\(748\) 0 0
\(749\) 23.7462 0.867666
\(750\) 0 0
\(751\) 39.5626 1.44366 0.721830 0.692070i \(-0.243301\pi\)
0.721830 + 0.692070i \(0.243301\pi\)
\(752\) 0 0
\(753\) −19.8263 −0.722510
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −33.4582 −1.21606 −0.608029 0.793915i \(-0.708040\pi\)
−0.608029 + 0.793915i \(0.708040\pi\)
\(758\) 0 0
\(759\) 6.21074 0.225436
\(760\) 0 0
\(761\) 4.30846 0.156181 0.0780907 0.996946i \(-0.475118\pi\)
0.0780907 + 0.996946i \(0.475118\pi\)
\(762\) 0 0
\(763\) −12.2982 −0.445225
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.2281 0.658178
\(768\) 0 0
\(769\) −29.3601 −1.05875 −0.529376 0.848387i \(-0.677574\pi\)
−0.529376 + 0.848387i \(0.677574\pi\)
\(770\) 0 0
\(771\) 14.7738 0.532066
\(772\) 0 0
\(773\) 43.7346 1.57303 0.786513 0.617574i \(-0.211884\pi\)
0.786513 + 0.617574i \(0.211884\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −17.9321 −0.643310
\(778\) 0 0
\(779\) −4.38211 −0.157005
\(780\) 0 0
\(781\) −11.8867 −0.425341
\(782\) 0 0
\(783\) 2.15434 0.0769897
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 29.4309 1.04910 0.524550 0.851380i \(-0.324234\pi\)
0.524550 + 0.851380i \(0.324234\pi\)
\(788\) 0 0
\(789\) 20.5977 0.733298
\(790\) 0 0
\(791\) −23.7388 −0.844055
\(792\) 0 0
\(793\) 26.2883 0.933524
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.2121 −0.751370 −0.375685 0.926747i \(-0.622593\pi\)
−0.375685 + 0.926747i \(0.622593\pi\)
\(798\) 0 0
\(799\) 16.4230 0.581005
\(800\) 0 0
\(801\) 39.6607 1.40134
\(802\) 0 0
\(803\) −6.97844 −0.246264
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 40.5052 1.42585
\(808\) 0 0
\(809\) −23.3698 −0.821638 −0.410819 0.911717i \(-0.634757\pi\)
−0.410819 + 0.911717i \(0.634757\pi\)
\(810\) 0 0
\(811\) −15.1194 −0.530915 −0.265458 0.964123i \(-0.585523\pi\)
−0.265458 + 0.964123i \(0.585523\pi\)
\(812\) 0 0
\(813\) 28.7144 1.00706
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.86284 −0.275086
\(818\) 0 0
\(819\) −41.5827 −1.45302
\(820\) 0 0
\(821\) 27.2818 0.952140 0.476070 0.879407i \(-0.342061\pi\)
0.476070 + 0.879407i \(0.342061\pi\)
\(822\) 0 0
\(823\) 18.4082 0.641670 0.320835 0.947135i \(-0.396036\pi\)
0.320835 + 0.947135i \(0.396036\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.3875 0.882811 0.441405 0.897308i \(-0.354480\pi\)
0.441405 + 0.897308i \(0.354480\pi\)
\(828\) 0 0
\(829\) −1.32188 −0.0459108 −0.0229554 0.999736i \(-0.507308\pi\)
−0.0229554 + 0.999736i \(0.507308\pi\)
\(830\) 0 0
\(831\) −5.12450 −0.177767
\(832\) 0 0
\(833\) −25.7515 −0.892238
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.45184 0.0501828
\(838\) 0 0
\(839\) 22.9481 0.792257 0.396129 0.918195i \(-0.370353\pi\)
0.396129 + 0.918195i \(0.370353\pi\)
\(840\) 0 0
\(841\) 60.6849 2.09258
\(842\) 0 0
\(843\) 9.15884 0.315447
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 19.2481 0.661371
\(848\) 0 0
\(849\) 0.175077 0.00600862
\(850\) 0 0
\(851\) −2.19630 −0.0752880
\(852\) 0 0
\(853\) 2.58912 0.0886498 0.0443249 0.999017i \(-0.485886\pi\)
0.0443249 + 0.999017i \(0.485886\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.62800 −0.0897709 −0.0448855 0.998992i \(-0.514292\pi\)
−0.0448855 + 0.998992i \(0.514292\pi\)
\(858\) 0 0
\(859\) 4.38188 0.149508 0.0747539 0.997202i \(-0.476183\pi\)
0.0747539 + 0.997202i \(0.476183\pi\)
\(860\) 0 0
\(861\) −38.4180 −1.30928
\(862\) 0 0
\(863\) 25.8373 0.879511 0.439755 0.898118i \(-0.355065\pi\)
0.439755 + 0.898118i \(0.355065\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3.25768 −0.110637
\(868\) 0 0
\(869\) −2.04824 −0.0694816
\(870\) 0 0
\(871\) −27.8754 −0.944523
\(872\) 0 0
\(873\) −53.9884 −1.82723
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.72116 0.226957 0.113479 0.993540i \(-0.463801\pi\)
0.113479 + 0.993540i \(0.463801\pi\)
\(878\) 0 0
\(879\) −24.2604 −0.818284
\(880\) 0 0
\(881\) −7.25064 −0.244280 −0.122140 0.992513i \(-0.538976\pi\)
−0.122140 + 0.992513i \(0.538976\pi\)
\(882\) 0 0
\(883\) −27.9309 −0.939949 −0.469974 0.882680i \(-0.655737\pi\)
−0.469974 + 0.882680i \(0.655737\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.8032 −1.30288 −0.651442 0.758699i \(-0.725836\pi\)
−0.651442 + 0.758699i \(0.725836\pi\)
\(888\) 0 0
\(889\) −44.3079 −1.48604
\(890\) 0 0
\(891\) 22.0672 0.739278
\(892\) 0 0
\(893\) −3.83485 −0.128328
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −10.3500 −0.345576
\(898\) 0 0
\(899\) 60.4399 2.01578
\(900\) 0 0
\(901\) −50.4441 −1.68054
\(902\) 0 0
\(903\) −68.9336 −2.29397
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.8847 −1.05872 −0.529358 0.848399i \(-0.677567\pi\)
−0.529358 + 0.848399i \(0.677567\pi\)
\(908\) 0 0
\(909\) −28.5596 −0.947261
\(910\) 0 0
\(911\) −30.1437 −0.998707 −0.499353 0.866398i \(-0.666429\pi\)
−0.499353 + 0.866398i \(0.666429\pi\)
\(912\) 0 0
\(913\) 28.3643 0.938720
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.1848 1.19493
\(918\) 0 0
\(919\) −55.2958 −1.82404 −0.912020 0.410147i \(-0.865478\pi\)
−0.912020 + 0.410147i \(0.865478\pi\)
\(920\) 0 0
\(921\) 51.2015 1.68715
\(922\) 0 0
\(923\) 19.8088 0.652016
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 25.7294 0.845066
\(928\) 0 0
\(929\) 21.1376 0.693503 0.346751 0.937957i \(-0.387285\pi\)
0.346751 + 0.937957i \(0.387285\pi\)
\(930\) 0 0
\(931\) 6.01310 0.197071
\(932\) 0 0
\(933\) 72.9009 2.38667
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.59000 0.0846117 0.0423059 0.999105i \(-0.486530\pi\)
0.0423059 + 0.999105i \(0.486530\pi\)
\(938\) 0 0
\(939\) 13.3210 0.434716
\(940\) 0 0
\(941\) −35.1167 −1.14477 −0.572386 0.819984i \(-0.693982\pi\)
−0.572386 + 0.819984i \(0.693982\pi\)
\(942\) 0 0
\(943\) −4.70538 −0.153228
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.8898 0.906295 0.453148 0.891435i \(-0.350301\pi\)
0.453148 + 0.891435i \(0.350301\pi\)
\(948\) 0 0
\(949\) 11.6293 0.377504
\(950\) 0 0
\(951\) 1.67183 0.0542128
\(952\) 0 0
\(953\) 47.2402 1.53026 0.765131 0.643875i \(-0.222674\pi\)
0.765131 + 0.643875i \(0.222674\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 54.7762 1.77066
\(958\) 0 0
\(959\) −61.7846 −1.99513
\(960\) 0 0
\(961\) 9.73131 0.313913
\(962\) 0 0
\(963\) −19.1319 −0.616517
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −29.1848 −0.938519 −0.469259 0.883060i \(-0.655479\pi\)
−0.469259 + 0.883060i \(0.655479\pi\)
\(968\) 0 0
\(969\) 10.4080 0.334352
\(970\) 0 0
\(971\) 43.4864 1.39555 0.697773 0.716319i \(-0.254174\pi\)
0.697773 + 0.716319i \(0.254174\pi\)
\(972\) 0 0
\(973\) 19.8583 0.636629
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.2511 −1.22376 −0.611880 0.790951i \(-0.709587\pi\)
−0.611880 + 0.790951i \(0.709587\pi\)
\(978\) 0 0
\(979\) −32.4770 −1.03797
\(980\) 0 0
\(981\) 9.90846 0.316353
\(982\) 0 0
\(983\) 53.5820 1.70900 0.854500 0.519451i \(-0.173864\pi\)
0.854500 + 0.519451i \(0.173864\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −33.6202 −1.07014
\(988\) 0 0
\(989\) −8.44289 −0.268468
\(990\) 0 0
\(991\) 2.34300 0.0744277 0.0372139 0.999307i \(-0.488152\pi\)
0.0372139 + 0.999307i \(0.488152\pi\)
\(992\) 0 0
\(993\) −56.3051 −1.78679
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −17.6187 −0.557991 −0.278995 0.960292i \(-0.590001\pi\)
−0.278995 + 0.960292i \(0.590001\pi\)
\(998\) 0 0
\(999\) −0.465300 −0.0147214
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.z.1.2 6
4.3 odd 2 7600.2.a.cn.1.5 6
5.2 odd 4 760.2.d.e.609.10 yes 12
5.3 odd 4 760.2.d.e.609.3 12
5.4 even 2 3800.2.a.be.1.5 6
20.3 even 4 1520.2.d.k.609.10 12
20.7 even 4 1520.2.d.k.609.3 12
20.19 odd 2 7600.2.a.cg.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.d.e.609.3 12 5.3 odd 4
760.2.d.e.609.10 yes 12 5.2 odd 4
1520.2.d.k.609.3 12 20.7 even 4
1520.2.d.k.609.10 12 20.3 even 4
3800.2.a.z.1.2 6 1.1 even 1 trivial
3800.2.a.be.1.5 6 5.4 even 2
7600.2.a.cg.1.2 6 20.19 odd 2
7600.2.a.cn.1.5 6 4.3 odd 2