Properties

Label 3800.2.d.q.3649.1
Level 38003800
Weight 22
Character 3800.3649
Analytic conductor 30.34330.343
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3800,2,Mod(3649,3800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3800.3649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3800=235219 3800 = 2^{3} \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3800.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-12,0,6,0,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.343152768130.3431527681
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+24x10+194x8+618x6+733x4+286x2+9 x^{12} + 24x^{10} + 194x^{8} + 618x^{6} + 733x^{4} + 286x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 3649.1
Root 3.26143i-3.26143i of defining polynomial
Character χ\chi == 3800.3649
Dual form 3800.2.d.q.3649.12

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q3.26143iq3+4.07225iq77.63693q90.786366q111.07974iq131.90793iq17+1.00000q19+13.2813q21+1.41383iq23+15.1230iq27+7.26439q29+2.22003q31+2.56468iq33+9.14283iq373.52151q396.11703q418.40634iq43+3.56468iq479.58319q496.22257q51+8.57472iq533.26143iq57+13.4043q59+12.7768q6131.0994iq635.10008iq67+4.61112q69+1.65535q7110.3302iq733.20228iq77+16.2256q79+26.4119q819.35104iq8323.6923iq873.10419q89+4.39698q917.24046iq93+4.55874iq97+6.00542q99+O(q100)q-3.26143i q^{3} +4.07225i q^{7} -7.63693 q^{9} -0.786366 q^{11} -1.07974i q^{13} -1.90793i q^{17} +1.00000 q^{19} +13.2813 q^{21} +1.41383i q^{23} +15.1230i q^{27} +7.26439 q^{29} +2.22003 q^{31} +2.56468i q^{33} +9.14283i q^{37} -3.52151 q^{39} -6.11703 q^{41} -8.40634i q^{43} +3.56468i q^{47} -9.58319 q^{49} -6.22257 q^{51} +8.57472i q^{53} -3.26143i q^{57} +13.4043 q^{59} +12.7768 q^{61} -31.0994i q^{63} -5.10008i q^{67} +4.61112 q^{69} +1.65535 q^{71} -10.3302i q^{73} -3.20228i q^{77} +16.2256 q^{79} +26.4119 q^{81} -9.35104i q^{83} -23.6923i q^{87} -3.10419 q^{89} +4.39698 q^{91} -7.24046i q^{93} +4.55874i q^{97} +6.00542 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q9+6q11+12q19+30q2118q29+10q3124q39+6q4144q49+66q51+18q61+22q69+38q71+32q79+52q8128q89+84q91++12q99+O(q100) 12 q - 12 q^{9} + 6 q^{11} + 12 q^{19} + 30 q^{21} - 18 q^{29} + 10 q^{31} - 24 q^{39} + 6 q^{41} - 44 q^{49} + 66 q^{51} + 18 q^{61} + 22 q^{69} + 38 q^{71} + 32 q^{79} + 52 q^{81} - 28 q^{89} + 84 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3800Z)×\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times.

nn 401401 951951 19011901 19771977
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 3.26143i − 1.88299i −0.337031 0.941494i 0.609423π-0.609423\pi
0.337031 0.941494i 0.390577π-0.390577\pi
44 0 0
55 0 0
66 0 0
77 4.07225i 1.53916i 0.638548 + 0.769582i 0.279536π0.279536\pi
−0.638548 + 0.769582i 0.720464π0.720464\pi
88 0 0
99 −7.63693 −2.54564
1010 0 0
1111 −0.786366 −0.237098 −0.118549 0.992948i 0.537824π-0.537824\pi
−0.118549 + 0.992948i 0.537824π0.537824\pi
1212 0 0
1313 − 1.07974i − 0.299467i −0.988726 0.149733i 0.952158π-0.952158\pi
0.988726 0.149733i 0.0478416π-0.0478416\pi
1414 0 0
1515 0 0
1616 0 0
1717 − 1.90793i − 0.462741i −0.972866 0.231370i 0.925679π-0.925679\pi
0.972866 0.231370i 0.0743209π-0.0743209\pi
1818 0 0
1919 1.00000 0.229416
2020 0 0
2121 13.2813 2.89823
2222 0 0
2323 1.41383i 0.294805i 0.989077 + 0.147402i 0.0470912π0.0470912\pi
−0.989077 + 0.147402i 0.952909π0.952909\pi
2424 0 0
2525 0 0
2626 0 0
2727 15.1230i 2.91042i
2828 0 0
2929 7.26439 1.34896 0.674482 0.738291i 0.264367π-0.264367\pi
0.674482 + 0.738291i 0.264367π0.264367\pi
3030 0 0
3131 2.22003 0.398728 0.199364 0.979925i 0.436112π-0.436112\pi
0.199364 + 0.979925i 0.436112π0.436112\pi
3232 0 0
3333 2.56468i 0.446453i
3434 0 0
3535 0 0
3636 0 0
3737 9.14283i 1.50307i 0.659692 + 0.751536i 0.270687π0.270687\pi
−0.659692 + 0.751536i 0.729313π0.729313\pi
3838 0 0
3939 −3.52151 −0.563893
4040 0 0
4141 −6.11703 −0.955319 −0.477660 0.878545i 0.658515π-0.658515\pi
−0.477660 + 0.878545i 0.658515π0.658515\pi
4242 0 0
4343 − 8.40634i − 1.28195i −0.767560 0.640977i 0.778529π-0.778529\pi
0.767560 0.640977i 0.221471π-0.221471\pi
4444 0 0
4545 0 0
4646 0 0
4747 3.56468i 0.519962i 0.965614 + 0.259981i 0.0837163π0.0837163\pi
−0.965614 + 0.259981i 0.916284π0.916284\pi
4848 0 0
4949 −9.58319 −1.36903
5050 0 0
5151 −6.22257 −0.871335
5252 0 0
5353 8.57472i 1.17783i 0.808195 + 0.588914i 0.200445π0.200445\pi
−0.808195 + 0.588914i 0.799555π0.799555\pi
5454 0 0
5555 0 0
5656 0 0
5757 − 3.26143i − 0.431987i
5858 0 0
5959 13.4043 1.74509 0.872543 0.488537i 0.162469π-0.162469\pi
0.872543 + 0.488537i 0.162469π0.162469\pi
6060 0 0
6161 12.7768 1.63590 0.817950 0.575289i 0.195110π-0.195110\pi
0.817950 + 0.575289i 0.195110π0.195110\pi
6262 0 0
6363 − 31.0994i − 3.91816i
6464 0 0
6565 0 0
6666 0 0
6767 − 5.10008i − 0.623073i −0.950234 0.311537i 0.899156π-0.899156\pi
0.950234 0.311537i 0.100844π-0.100844\pi
6868 0 0
6969 4.61112 0.555114
7070 0 0
7171 1.65535 0.196454 0.0982268 0.995164i 0.468683π-0.468683\pi
0.0982268 + 0.995164i 0.468683π0.468683\pi
7272 0 0
7373 − 10.3302i − 1.20906i −0.796581 0.604532i 0.793360π-0.793360\pi
0.796581 0.604532i 0.206640π-0.206640\pi
7474 0 0
7575 0 0
7676 0 0
7777 − 3.20228i − 0.364933i
7878 0 0
7979 16.2256 1.82553 0.912764 0.408488i 0.133944π-0.133944\pi
0.912764 + 0.408488i 0.133944π0.133944\pi
8080 0 0
8181 26.4119 2.93465
8282 0 0
8383 − 9.35104i − 1.02641i −0.858266 0.513205i 0.828458π-0.828458\pi
0.858266 0.513205i 0.171542π-0.171542\pi
8484 0 0
8585 0 0
8686 0 0
8787 − 23.6923i − 2.54008i
8888 0 0
8989 −3.10419 −0.329044 −0.164522 0.986373i 0.552608π-0.552608\pi
−0.164522 + 0.986373i 0.552608π0.552608\pi
9090 0 0
9191 4.39698 0.460929
9292 0 0
9393 − 7.24046i − 0.750801i
9494 0 0
9595 0 0
9696 0 0
9797 4.55874i 0.462870i 0.972850 + 0.231435i 0.0743421π0.0743421\pi
−0.972850 + 0.231435i 0.925658π0.925658\pi
9898 0 0
9999 6.00542 0.603567
100100 0 0
101101 0.743401 0.0739712 0.0369856 0.999316i 0.488224π-0.488224\pi
0.0369856 + 0.999316i 0.488224π0.488224\pi
102102 0 0
103103 10.3710i 1.02188i 0.859616 + 0.510941i 0.170703π0.170703\pi
−0.859616 + 0.510941i 0.829297π0.829297\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 17.1400i − 1.65698i −0.560002 0.828491i 0.689200π-0.689200\pi
0.560002 0.828491i 0.310800π-0.310800\pi
108108 0 0
109109 17.1878 1.64629 0.823144 0.567832i 0.192218π-0.192218\pi
0.823144 + 0.567832i 0.192218π0.192218\pi
110110 0 0
111111 29.8187 2.83027
112112 0 0
113113 1.05696i 0.0994300i 0.998763 + 0.0497150i 0.0158313π0.0158313\pi
−0.998763 + 0.0497150i 0.984169π0.984169\pi
114114 0 0
115115 0 0
116116 0 0
117117 8.24592i 0.762336i
118118 0 0
119119 7.76956 0.712234
120120 0 0
121121 −10.3816 −0.943784
122122 0 0
123123 19.9503i 1.79885i
124124 0 0
125125 0 0
126126 0 0
127127 − 5.22444i − 0.463594i −0.972764 0.231797i 0.925539π-0.925539\pi
0.972764 0.231797i 0.0744606π-0.0744606\pi
128128 0 0
129129 −27.4167 −2.41390
130130 0 0
131131 3.00267 0.262344 0.131172 0.991360i 0.458126π-0.458126\pi
0.131172 + 0.991360i 0.458126π0.458126\pi
132132 0 0
133133 4.07225i 0.353109i
134134 0 0
135135 0 0
136136 0 0
137137 − 23.0922i − 1.97290i −0.164072 0.986448i 0.552463π-0.552463\pi
0.164072 0.986448i 0.447537π-0.447537\pi
138138 0 0
139139 11.9630 1.01469 0.507343 0.861744i 0.330628π-0.330628\pi
0.507343 + 0.861744i 0.330628π0.330628\pi
140140 0 0
141141 11.6259 0.979082
142142 0 0
143143 0.849074i 0.0710031i
144144 0 0
145145 0 0
146146 0 0
147147 31.2549i 2.57786i
148148 0 0
149149 −23.5411 −1.92856 −0.964282 0.264879i 0.914668π-0.914668\pi
−0.964282 + 0.264879i 0.914668π0.914668\pi
150150 0 0
151151 10.6136 0.863721 0.431860 0.901940i 0.357857π-0.357857\pi
0.431860 + 0.901940i 0.357857π0.357857\pi
152152 0 0
153153 14.5707i 1.17797i
154154 0 0
155155 0 0
156156 0 0
157157 13.9997i 1.11730i 0.829405 + 0.558648i 0.188680π0.188680\pi
−0.829405 + 0.558648i 0.811320π0.811320\pi
158158 0 0
159159 27.9659 2.21784
160160 0 0
161161 −5.75748 −0.453753
162162 0 0
163163 10.6662i 0.835442i 0.908575 + 0.417721i 0.137171π0.137171\pi
−0.908575 + 0.417721i 0.862829π0.862829\pi
164164 0 0
165165 0 0
166166 0 0
167167 − 3.97856i − 0.307870i −0.988081 0.153935i 0.950805π-0.950805\pi
0.988081 0.153935i 0.0491947π-0.0491947\pi
168168 0 0
169169 11.8342 0.910320
170170 0 0
171171 −7.63693 −0.584010
172172 0 0
173173 − 22.1310i − 1.68259i −0.540577 0.841295i 0.681794π-0.681794\pi
0.540577 0.841295i 0.318206π-0.318206\pi
174174 0 0
175175 0 0
176176 0 0
177177 − 43.7171i − 3.28598i
178178 0 0
179179 −4.80086 −0.358833 −0.179417 0.983773i 0.557421π-0.557421\pi
−0.179417 + 0.983773i 0.557421π0.557421\pi
180180 0 0
181181 −16.4333 −1.22148 −0.610740 0.791831i 0.709128π-0.709128\pi
−0.610740 + 0.791831i 0.709128π0.709128\pi
182182 0 0
183183 − 41.6706i − 3.08038i
184184 0 0
185185 0 0
186186 0 0
187187 1.50033i 0.109715i
188188 0 0
189189 −61.5846 −4.47962
190190 0 0
191191 5.45151 0.394457 0.197229 0.980358i 0.436806π-0.436806\pi
0.197229 + 0.980358i 0.436806π0.436806\pi
192192 0 0
193193 16.3968i 1.18026i 0.807306 + 0.590132i 0.200924π0.200924\pi
−0.807306 + 0.590132i 0.799076π0.799076\pi
194194 0 0
195195 0 0
196196 0 0
197197 19.2546i 1.37183i 0.727681 + 0.685916i 0.240598π0.240598\pi
−0.727681 + 0.685916i 0.759402π0.759402\pi
198198 0 0
199199 −7.95572 −0.563966 −0.281983 0.959419i 0.590992π-0.590992\pi
−0.281983 + 0.959419i 0.590992π0.590992\pi
200200 0 0
201201 −16.6335 −1.17324
202202 0 0
203203 29.5824i 2.07628i
204204 0 0
205205 0 0
206206 0 0
207207 − 10.7973i − 0.750468i
208208 0 0
209209 −0.786366 −0.0543941
210210 0 0
211211 18.2270 1.25480 0.627400 0.778697i 0.284119π-0.284119\pi
0.627400 + 0.778697i 0.284119π0.284119\pi
212212 0 0
213213 − 5.39880i − 0.369920i
214214 0 0
215215 0 0
216216 0 0
217217 9.04049i 0.613709i
218218 0 0
219219 −33.6914 −2.27665
220220 0 0
221221 −2.06007 −0.138576
222222 0 0
223223 0.430994i 0.0288615i 0.999896 + 0.0144307i 0.00459361π0.00459361\pi
−0.999896 + 0.0144307i 0.995406π0.995406\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 7.63334i − 0.506643i −0.967382 0.253321i 0.918477π-0.918477\pi
0.967382 0.253321i 0.0815230π-0.0815230\pi
228228 0 0
229229 −20.3914 −1.34750 −0.673750 0.738959i 0.735318π-0.735318\pi
−0.673750 + 0.738959i 0.735318π0.735318\pi
230230 0 0
231231 −10.4440 −0.687165
232232 0 0
233233 20.6308i 1.35157i 0.737099 + 0.675785i 0.236195π0.236195\pi
−0.737099 + 0.675785i 0.763805π0.763805\pi
234234 0 0
235235 0 0
236236 0 0
237237 − 52.9188i − 3.43744i
238238 0 0
239239 4.61247 0.298356 0.149178 0.988810i 0.452337π-0.452337\pi
0.149178 + 0.988810i 0.452337π0.452337\pi
240240 0 0
241241 3.92363 0.252744 0.126372 0.991983i 0.459667π-0.459667\pi
0.126372 + 0.991983i 0.459667π0.459667\pi
242242 0 0
243243 − 40.7714i − 2.61549i
244244 0 0
245245 0 0
246246 0 0
247247 − 1.07974i − 0.0687024i
248248 0 0
249249 −30.4978 −1.93272
250250 0 0
251251 23.9491 1.51165 0.755827 0.654771i 0.227235π-0.227235\pi
0.755827 + 0.654771i 0.227235π0.227235\pi
252252 0 0
253253 − 1.11179i − 0.0698978i
254254 0 0
255255 0 0
256256 0 0
257257 9.05331i 0.564730i 0.959307 + 0.282365i 0.0911189π0.0911189\pi
−0.959307 + 0.282365i 0.908881π0.908881\pi
258258 0 0
259259 −37.2319 −2.31348
260260 0 0
261261 −55.4776 −3.43398
262262 0 0
263263 − 15.4483i − 0.952583i −0.879287 0.476291i 0.841981π-0.841981\pi
0.879287 0.476291i 0.158019π-0.158019\pi
264264 0 0
265265 0 0
266266 0 0
267267 10.1241i 0.619586i
268268 0 0
269269 4.44718 0.271150 0.135575 0.990767i 0.456712π-0.456712\pi
0.135575 + 0.990767i 0.456712π0.456712\pi
270270 0 0
271271 23.8511 1.44885 0.724425 0.689354i 0.242105π-0.242105\pi
0.724425 + 0.689354i 0.242105π0.242105\pi
272272 0 0
273273 − 14.3404i − 0.867923i
274274 0 0
275275 0 0
276276 0 0
277277 6.86751i 0.412629i 0.978486 + 0.206314i 0.0661470π0.0661470\pi
−0.978486 + 0.206314i 0.933853π0.933853\pi
278278 0 0
279279 −16.9542 −1.01502
280280 0 0
281281 26.7419 1.59529 0.797645 0.603128i 0.206079π-0.206079\pi
0.797645 + 0.603128i 0.206079π0.206079\pi
282282 0 0
283283 17.4698i 1.03847i 0.854632 + 0.519235i 0.173783π0.173783\pi
−0.854632 + 0.519235i 0.826217π0.826217\pi
284284 0 0
285285 0 0
286286 0 0
287287 − 24.9101i − 1.47039i
288288 0 0
289289 13.3598 0.785871
290290 0 0
291291 14.8680 0.871579
292292 0 0
293293 14.8968i 0.870282i 0.900362 + 0.435141i 0.143302π0.143302\pi
−0.900362 + 0.435141i 0.856698π0.856698\pi
294294 0 0
295295 0 0
296296 0 0
297297 − 11.8922i − 0.690057i
298298 0 0
299299 1.52658 0.0882843
300300 0 0
301301 34.2327 1.97314
302302 0 0
303303 − 2.42455i − 0.139287i
304304 0 0
305305 0 0
306306 0 0
307307 11.2895i 0.644326i 0.946684 + 0.322163i 0.104410π0.104410\pi
−0.946684 + 0.322163i 0.895590π0.895590\pi
308308 0 0
309309 33.8242 1.92419
310310 0 0
311311 −5.65634 −0.320741 −0.160371 0.987057i 0.551269π-0.551269\pi
−0.160371 + 0.987057i 0.551269π0.551269\pi
312312 0 0
313313 29.9564i 1.69324i 0.532201 + 0.846618i 0.321365π0.321365\pi
−0.532201 + 0.846618i 0.678635π0.678635\pi
314314 0 0
315315 0 0
316316 0 0
317317 11.7992i 0.662706i 0.943507 + 0.331353i 0.107505π0.107505\pi
−0.943507 + 0.331353i 0.892495π0.892495\pi
318318 0 0
319319 −5.71247 −0.319837
320320 0 0
321321 −55.9008 −3.12008
322322 0 0
323323 − 1.90793i − 0.106160i
324324 0 0
325325 0 0
326326 0 0
327327 − 56.0567i − 3.09994i
328328 0 0
329329 −14.5163 −0.800307
330330 0 0
331331 −21.7197 −1.19382 −0.596912 0.802307i 0.703606π-0.703606\pi
−0.596912 + 0.802307i 0.703606π0.703606\pi
332332 0 0
333333 − 69.8231i − 3.82628i
334334 0 0
335335 0 0
336336 0 0
337337 − 32.7221i − 1.78249i −0.453523 0.891245i 0.649833π-0.649833\pi
0.453523 0.891245i 0.350167π-0.350167\pi
338338 0 0
339339 3.44718 0.187225
340340 0 0
341341 −1.74575 −0.0945378
342342 0 0
343343 − 10.5194i − 0.567994i
344344 0 0
345345 0 0
346346 0 0
347347 − 28.5890i − 1.53474i −0.641206 0.767369i 0.721565π-0.721565\pi
0.641206 0.767369i 0.278435π-0.278435\pi
348348 0 0
349349 −22.4911 −1.20392 −0.601961 0.798525i 0.705614π-0.705614\pi
−0.601961 + 0.798525i 0.705614π0.705614\pi
350350 0 0
351351 16.3290 0.871576
352352 0 0
353353 21.2381i 1.13039i 0.824957 + 0.565196i 0.191199π0.191199\pi
−0.824957 + 0.565196i 0.808801π0.808801\pi
354354 0 0
355355 0 0
356356 0 0
357357 − 25.3399i − 1.34113i
358358 0 0
359359 5.30705 0.280095 0.140048 0.990145i 0.455274π-0.455274\pi
0.140048 + 0.990145i 0.455274π0.455274\pi
360360 0 0
361361 1.00000 0.0526316
362362 0 0
363363 33.8590i 1.77713i
364364 0 0
365365 0 0
366366 0 0
367367 1.12291i 0.0586156i 0.999570 + 0.0293078i 0.00933030π0.00933030\pi
−0.999570 + 0.0293078i 0.990670π0.990670\pi
368368 0 0
369369 46.7153 2.43190
370370 0 0
371371 −34.9184 −1.81287
372372 0 0
373373 − 3.99673i − 0.206943i −0.994632 0.103471i 0.967005π-0.967005\pi
0.994632 0.103471i 0.0329950π-0.0329950\pi
374374 0 0
375375 0 0
376376 0 0
377377 − 7.84368i − 0.403970i
378378 0 0
379379 −3.36846 −0.173026 −0.0865132 0.996251i 0.527572π-0.527572\pi
−0.0865132 + 0.996251i 0.527572π0.527572\pi
380380 0 0
381381 −17.0392 −0.872942
382382 0 0
383383 − 17.8476i − 0.911969i −0.889988 0.455985i 0.849287π-0.849287\pi
0.889988 0.455985i 0.150713π-0.150713\pi
384384 0 0
385385 0 0
386386 0 0
387387 64.1986i 3.26340i
388388 0 0
389389 19.1690 0.971907 0.485953 0.873985i 0.338472π-0.338472\pi
0.485953 + 0.873985i 0.338472π0.338472\pi
390390 0 0
391391 2.69750 0.136418
392392 0 0
393393 − 9.79298i − 0.493991i
394394 0 0
395395 0 0
396396 0 0
397397 9.04085i 0.453747i 0.973924 + 0.226874i 0.0728504π0.0728504\pi
−0.973924 + 0.226874i 0.927150π0.927150\pi
398398 0 0
399399 13.2813 0.664899
400400 0 0
401401 −15.0634 −0.752230 −0.376115 0.926573i 0.622740π-0.622740\pi
−0.376115 + 0.926573i 0.622740π0.622740\pi
402402 0 0
403403 − 2.39706i − 0.119406i
404404 0 0
405405 0 0
406406 0 0
407407 − 7.18961i − 0.356376i
408408 0 0
409409 7.22091 0.357051 0.178525 0.983935i 0.442867π-0.442867\pi
0.178525 + 0.983935i 0.442867π0.442867\pi
410410 0 0
411411 −75.3135 −3.71494
412412 0 0
413413 54.5855i 2.68597i
414414 0 0
415415 0 0
416416 0 0
417417 − 39.0164i − 1.91064i
418418 0 0
419419 21.0968 1.03065 0.515323 0.856996i 0.327672π-0.327672\pi
0.515323 + 0.856996i 0.327672π0.327672\pi
420420 0 0
421421 5.50321 0.268210 0.134105 0.990967i 0.457184π-0.457184\pi
0.134105 + 0.990967i 0.457184π0.457184\pi
422422 0 0
423423 − 27.2232i − 1.32364i
424424 0 0
425425 0 0
426426 0 0
427427 52.0303i 2.51792i
428428 0 0
429429 2.76920 0.133698
430430 0 0
431431 −10.9748 −0.528640 −0.264320 0.964435i 0.585147π-0.585147\pi
−0.264320 + 0.964435i 0.585147π0.585147\pi
432432 0 0
433433 − 14.2313i − 0.683915i −0.939715 0.341957i 0.888910π-0.888910\pi
0.939715 0.341957i 0.111090π-0.111090\pi
434434 0 0
435435 0 0
436436 0 0
437437 1.41383i 0.0676329i
438438 0 0
439439 −12.0446 −0.574859 −0.287429 0.957802i 0.592801π-0.592801\pi
−0.287429 + 0.957802i 0.592801π0.592801\pi
440440 0 0
441441 73.1861 3.48505
442442 0 0
443443 − 11.1718i − 0.530789i −0.964140 0.265394i 0.914498π-0.914498\pi
0.964140 0.265394i 0.0855022π-0.0855022\pi
444444 0 0
445445 0 0
446446 0 0
447447 76.7777i 3.63146i
448448 0 0
449449 9.07650 0.428347 0.214173 0.976796i 0.431294π-0.431294\pi
0.214173 + 0.976796i 0.431294π0.431294\pi
450450 0 0
451451 4.81023 0.226505
452452 0 0
453453 − 34.6154i − 1.62638i
454454 0 0
455455 0 0
456456 0 0
457457 − 16.6795i − 0.780235i −0.920765 0.390118i 0.872434π-0.872434\pi
0.920765 0.390118i 0.127566π-0.127566\pi
458458 0 0
459459 28.8536 1.34677
460460 0 0
461461 −31.2657 −1.45619 −0.728095 0.685476i 0.759594π-0.759594\pi
−0.728095 + 0.685476i 0.759594π0.759594\pi
462462 0 0
463463 10.1802i 0.473116i 0.971617 + 0.236558i 0.0760193π0.0760193\pi
−0.971617 + 0.236558i 0.923981π0.923981\pi
464464 0 0
465465 0 0
466466 0 0
467467 33.0731i 1.53044i 0.643769 + 0.765220i 0.277370π0.277370\pi
−0.643769 + 0.765220i 0.722630π0.722630\pi
468468 0 0
469469 20.7688 0.959012
470470 0 0
471471 45.6590 2.10385
472472 0 0
473473 6.61046i 0.303949i
474474 0 0
475475 0 0
476476 0 0
477477 − 65.4845i − 2.99833i
478478 0 0
479479 −7.80955 −0.356827 −0.178414 0.983956i 0.557097π-0.557097\pi
−0.178414 + 0.983956i 0.557097π0.557097\pi
480480 0 0
481481 9.87191 0.450120
482482 0 0
483483 18.7776i 0.854412i
484484 0 0
485485 0 0
486486 0 0
487487 − 4.37584i − 0.198288i −0.995073 0.0991442i 0.968389π-0.968389\pi
0.995073 0.0991442i 0.0316105π-0.0316105\pi
488488 0 0
489489 34.7871 1.57313
490490 0 0
491491 42.0821 1.89914 0.949568 0.313560i 0.101522π-0.101522\pi
0.949568 + 0.313560i 0.101522π0.101522\pi
492492 0 0
493493 − 13.8599i − 0.624220i
494494 0 0
495495 0 0
496496 0 0
497497 6.74098i 0.302374i
498498 0 0
499499 8.59546 0.384786 0.192393 0.981318i 0.438375π-0.438375\pi
0.192393 + 0.981318i 0.438375π0.438375\pi
500500 0 0
501501 −12.9758 −0.579716
502502 0 0
503503 − 6.30722i − 0.281225i −0.990065 0.140612i 0.955093π-0.955093\pi
0.990065 0.140612i 0.0449071π-0.0449071\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 38.5963i − 1.71412i
508508 0 0
509509 31.0352 1.37561 0.687805 0.725896i 0.258574π-0.258574\pi
0.687805 + 0.725896i 0.258574π0.258574\pi
510510 0 0
511511 42.0673 1.86095
512512 0 0
513513 15.1230i 0.667697i
514514 0 0
515515 0 0
516516 0 0
517517 − 2.80314i − 0.123282i
518518 0 0
519519 −72.1787 −3.16830
520520 0 0
521521 32.8924 1.44104 0.720522 0.693432i 0.243902π-0.243902\pi
0.720522 + 0.693432i 0.243902π0.243902\pi
522522 0 0
523523 37.6201i 1.64501i 0.568757 + 0.822506i 0.307425π0.307425\pi
−0.568757 + 0.822506i 0.692575π0.692575\pi
524524 0 0
525525 0 0
526526 0 0
527527 − 4.23565i − 0.184508i
528528 0 0
529529 21.0011 0.913090
530530 0 0
531531 −102.367 −4.44236
532532 0 0
533533 6.60482i 0.286087i
534534 0 0
535535 0 0
536536 0 0
537537 15.6577i 0.675679i
538538 0 0
539539 7.53590 0.324594
540540 0 0
541541 −33.6736 −1.44774 −0.723871 0.689936i 0.757639π-0.757639\pi
−0.723871 + 0.689936i 0.757639π0.757639\pi
542542 0 0
543543 53.5962i 2.30003i
544544 0 0
545545 0 0
546546 0 0
547547 14.0295i 0.599859i 0.953961 + 0.299930i 0.0969632π0.0969632\pi
−0.953961 + 0.299930i 0.903037π0.903037\pi
548548 0 0
549549 −97.5754 −4.16442
550550 0 0
551551 7.26439 0.309474
552552 0 0
553553 66.0748i 2.80979i
554554 0 0
555555 0 0
556556 0 0
557557 − 16.5434i − 0.700968i −0.936569 0.350484i 0.886017π-0.886017\pi
0.936569 0.350484i 0.113983π-0.113983\pi
558558 0 0
559559 −9.07669 −0.383903
560560 0 0
561561 4.89322 0.206592
562562 0 0
563563 − 36.3727i − 1.53293i −0.642288 0.766463i 0.722015π-0.722015\pi
0.642288 0.766463i 0.277985π-0.277985\pi
564564 0 0
565565 0 0
566566 0 0
567567 107.556i 4.51691i
568568 0 0
569569 −21.8270 −0.915035 −0.457517 0.889201i 0.651261π-0.651261\pi
−0.457517 + 0.889201i 0.651261π0.651261\pi
570570 0 0
571571 41.2781 1.72743 0.863717 0.503977i 0.168130π-0.168130\pi
0.863717 + 0.503977i 0.168130π0.168130\pi
572572 0 0
573573 − 17.7797i − 0.742758i
574574 0 0
575575 0 0
576576 0 0
577577 23.6240i 0.983479i 0.870742 + 0.491739i 0.163639π0.163639\pi
−0.870742 + 0.491739i 0.836361π0.836361\pi
578578 0 0
579579 53.4769 2.22242
580580 0 0
581581 38.0798 1.57981
582582 0 0
583583 − 6.74287i − 0.279261i
584584 0 0
585585 0 0
586586 0 0
587587 2.48730i 0.102662i 0.998682 + 0.0513309i 0.0163463π0.0163463\pi
−0.998682 + 0.0513309i 0.983654π0.983654\pi
588588 0 0
589589 2.22003 0.0914746
590590 0 0
591591 62.7975 2.58314
592592 0 0
593593 11.6543i 0.478587i 0.970947 + 0.239293i 0.0769157π0.0769157\pi
−0.970947 + 0.239293i 0.923084π0.923084\pi
594594 0 0
595595 0 0
596596 0 0
597597 25.9470i 1.06194i
598598 0 0
599599 0.149185 0.00609555 0.00304777 0.999995i 0.499030π-0.499030\pi
0.00304777 + 0.999995i 0.499030π0.499030\pi
600600 0 0
601601 29.2954 1.19498 0.597492 0.801875i 0.296164π-0.296164\pi
0.597492 + 0.801875i 0.296164π0.296164\pi
602602 0 0
603603 38.9489i 1.58612i
604604 0 0
605605 0 0
606606 0 0
607607 − 2.55466i − 0.103691i −0.998655 0.0518453i 0.983490π-0.983490\pi
0.998655 0.0518453i 0.0165103π-0.0165103\pi
608608 0 0
609609 96.4809 3.90960
610610 0 0
611611 3.84894 0.155711
612612 0 0
613613 42.6703i 1.72344i 0.507387 + 0.861718i 0.330611π0.330611\pi
−0.507387 + 0.861718i 0.669389π0.669389\pi
614614 0 0
615615 0 0
616616 0 0
617617 − 19.8058i − 0.797353i −0.917092 0.398676i 0.869470π-0.869470\pi
0.917092 0.398676i 0.130530π-0.130530\pi
618618 0 0
619619 23.6180 0.949287 0.474643 0.880178i 0.342577π-0.342577\pi
0.474643 + 0.880178i 0.342577π0.342577\pi
620620 0 0
621621 −21.3814 −0.858007
622622 0 0
623623 − 12.6410i − 0.506453i
624624 0 0
625625 0 0
626626 0 0
627627 2.56468i 0.102423i
628628 0 0
629629 17.4439 0.695533
630630 0 0
631631 33.3007 1.32568 0.662841 0.748760i 0.269351π-0.269351\pi
0.662841 + 0.748760i 0.269351π0.269351\pi
632632 0 0
633633 − 59.4462i − 2.36277i
634634 0 0
635635 0 0
636636 0 0
637637 10.3474i 0.409979i
638638 0 0
639639 −12.6418 −0.500100
640640 0 0
641641 −37.5897 −1.48470 −0.742352 0.670010i 0.766290π-0.766290\pi
−0.742352 + 0.670010i 0.766290π0.766290\pi
642642 0 0
643643 2.61556i 0.103148i 0.998669 + 0.0515739i 0.0164238π0.0164238\pi
−0.998669 + 0.0515739i 0.983576π0.983576\pi
644644 0 0
645645 0 0
646646 0 0
647647 10.3725i 0.407784i 0.978993 + 0.203892i 0.0653591π0.0653591\pi
−0.978993 + 0.203892i 0.934641π0.934641\pi
648648 0 0
649649 −10.5407 −0.413757
650650 0 0
651651 29.4849 1.15561
652652 0 0
653653 − 0.949620i − 0.0371615i −0.999827 0.0185808i 0.994085π-0.994085\pi
0.999827 0.0185808i 0.00591478π-0.00591478\pi
654654 0 0
655655 0 0
656656 0 0
657657 78.8913i 3.07784i
658658 0 0
659659 −32.1009 −1.25047 −0.625237 0.780435i 0.714998π-0.714998\pi
−0.625237 + 0.780435i 0.714998π0.714998\pi
660660 0 0
661661 −32.8796 −1.27887 −0.639434 0.768846i 0.720831π-0.720831\pi
−0.639434 + 0.768846i 0.720831π0.720831\pi
662662 0 0
663663 6.71879i 0.260936i
664664 0 0
665665 0 0
666666 0 0
667667 10.2707i 0.397681i
668668 0 0
669669 1.40566 0.0543458
670670 0 0
671671 −10.0472 −0.387869
672672 0 0
673673 − 25.9466i − 1.00017i −0.865977 0.500084i 0.833302π-0.833302\pi
0.865977 0.500084i 0.166698π-0.166698\pi
674674 0 0
675675 0 0
676676 0 0
677677 47.0807i 1.80946i 0.425987 + 0.904729i 0.359927π0.359927\pi
−0.425987 + 0.904729i 0.640073π0.640073\pi
678678 0 0
679679 −18.5643 −0.712433
680680 0 0
681681 −24.8956 −0.954002
682682 0 0
683683 − 29.9429i − 1.14573i −0.819648 0.572867i 0.805831π-0.805831\pi
0.819648 0.572867i 0.194169π-0.194169\pi
684684 0 0
685685 0 0
686686 0 0
687687 66.5050i 2.53733i
688688 0 0
689689 9.25850 0.352721
690690 0 0
691691 −30.4205 −1.15725 −0.578625 0.815594i 0.696411π-0.696411\pi
−0.578625 + 0.815594i 0.696411π0.696411\pi
692692 0 0
693693 24.4556i 0.928990i
694694 0 0
695695 0 0
696696 0 0
697697 11.6709i 0.442065i
698698 0 0
699699 67.2859 2.54499
700700 0 0
701701 25.0769 0.947141 0.473570 0.880756i 0.342965π-0.342965\pi
0.473570 + 0.880756i 0.342965π0.342965\pi
702702 0 0
703703 9.14283i 0.344828i
704704 0 0
705705 0 0
706706 0 0
707707 3.02731i 0.113854i
708708 0 0
709709 −13.5057 −0.507219 −0.253610 0.967307i 0.581618π-0.581618\pi
−0.253610 + 0.967307i 0.581618π0.581618\pi
710710 0 0
711711 −123.914 −4.64714
712712 0 0
713713 3.13875i 0.117547i
714714 0 0
715715 0 0
716716 0 0
717717 − 15.0433i − 0.561801i
718718 0 0
719719 2.27969 0.0850179 0.0425090 0.999096i 0.486465π-0.486465\pi
0.0425090 + 0.999096i 0.486465π0.486465\pi
720720 0 0
721721 −42.2331 −1.57284
722722 0 0
723723 − 12.7967i − 0.475913i
724724 0 0
725725 0 0
726726 0 0
727727 0.925937i 0.0343411i 0.999853 + 0.0171705i 0.00546582π0.00546582\pi
−0.999853 + 0.0171705i 0.994534π0.994534\pi
728728 0 0
729729 −53.7374 −1.99028
730730 0 0
731731 −16.0387 −0.593212
732732 0 0
733733 − 20.9455i − 0.773639i −0.922155 0.386820i 0.873574π-0.873574\pi
0.922155 0.386820i 0.126426π-0.126426\pi
734734 0 0
735735 0 0
736736 0 0
737737 4.01053i 0.147730i
738738 0 0
739739 −36.9385 −1.35880 −0.679402 0.733766i 0.737761π-0.737761\pi
−0.679402 + 0.733766i 0.737761π0.737761\pi
740740 0 0
741741 −3.52151 −0.129366
742742 0 0
743743 48.3612i 1.77420i 0.461577 + 0.887100i 0.347284π0.347284\pi
−0.461577 + 0.887100i 0.652716π0.652716\pi
744744 0 0
745745 0 0
746746 0 0
747747 71.4132i 2.61287i
748748 0 0
749749 69.7981 2.55037
750750 0 0
751751 −19.9871 −0.729340 −0.364670 0.931137i 0.618818π-0.618818\pi
−0.364670 + 0.931137i 0.618818π0.618818\pi
752752 0 0
753753 − 78.1084i − 2.84643i
754754 0 0
755755 0 0
756756 0 0
757757 − 36.3938i − 1.32276i −0.750053 0.661378i 0.769972π-0.769972\pi
0.750053 0.661378i 0.230028π-0.230028\pi
758758 0 0
759759 −3.62603 −0.131617
760760 0 0
761761 −24.2163 −0.877839 −0.438920 0.898526i 0.644639π-0.644639\pi
−0.438920 + 0.898526i 0.644639π0.644639\pi
762762 0 0
763763 69.9928i 2.53391i
764764 0 0
765765 0 0
766766 0 0
767767 − 14.4732i − 0.522596i
768768 0 0
769769 −30.7013 −1.10712 −0.553559 0.832810i 0.686731π-0.686731\pi
−0.553559 + 0.832810i 0.686731π0.686731\pi
770770 0 0
771771 29.5267 1.06338
772772 0 0
773773 − 21.9986i − 0.791234i −0.918416 0.395617i 0.870531π-0.870531\pi
0.918416 0.395617i 0.129469π-0.129469\pi
774774 0 0
775775 0 0
776776 0 0
777777 121.429i 4.35625i
778778 0 0
779779 −6.11703 −0.219165
780780 0 0
781781 −1.30171 −0.0465788
782782 0 0
783783 109.859i 3.92606i
784784 0 0
785785 0 0
786786 0 0
787787 − 20.9830i − 0.747962i −0.927436 0.373981i 0.877993π-0.877993\pi
0.927436 0.373981i 0.122007π-0.122007\pi
788788 0 0
789789 −50.3835 −1.79370
790790 0 0
791791 −4.30418 −0.153039
792792 0 0
793793 − 13.7957i − 0.489898i
794794 0 0
795795 0 0
796796 0 0
797797 − 29.1150i − 1.03131i −0.856798 0.515653i 0.827549π-0.827549\pi
0.856798 0.515653i 0.172451π-0.172451\pi
798798 0 0
799799 6.80115 0.240607
800800 0 0
801801 23.7065 0.837628
802802 0 0
803803 8.12336i 0.286667i
804804 0 0
805805 0 0
806806 0 0
807807 − 14.5042i − 0.510571i
808808 0 0
809809 47.5139 1.67050 0.835250 0.549871i 0.185323π-0.185323\pi
0.835250 + 0.549871i 0.185323π0.185323\pi
810810 0 0
811811 11.7957 0.414204 0.207102 0.978319i 0.433597π-0.433597\pi
0.207102 + 0.978319i 0.433597π0.433597\pi
812812 0 0
813813 − 77.7886i − 2.72817i
814814 0 0
815815 0 0
816816 0 0
817817 − 8.40634i − 0.294101i
818818 0 0
819819 −33.5794 −1.17336
820820 0 0
821821 28.0549 0.979123 0.489562 0.871969i 0.337157π-0.337157\pi
0.489562 + 0.871969i 0.337157π0.337157\pi
822822 0 0
823823 − 16.7826i − 0.585006i −0.956265 0.292503i 0.905512π-0.905512\pi
0.956265 0.292503i 0.0944882π-0.0944882\pi
824824 0 0
825825 0 0
826826 0 0
827827 12.1984i 0.424180i 0.977250 + 0.212090i 0.0680271π0.0680271\pi
−0.977250 + 0.212090i 0.931973π0.931973\pi
828828 0 0
829829 −3.30978 −0.114954 −0.0574768 0.998347i 0.518306π-0.518306\pi
−0.0574768 + 0.998347i 0.518306π0.518306\pi
830830 0 0
831831 22.3979 0.776975
832832 0 0
833833 18.2840i 0.633505i
834834 0 0
835835 0 0
836836 0 0
837837 33.5735i 1.16047i
838838 0 0
839839 27.9925 0.966408 0.483204 0.875508i 0.339473π-0.339473\pi
0.483204 + 0.875508i 0.339473π0.339473\pi
840840 0 0
841841 23.7714 0.819704
842842 0 0
843843 − 87.2169i − 3.00391i
844844 0 0
845845 0 0
846846 0 0
847847 − 42.2766i − 1.45264i
848848 0 0
849849 56.9764 1.95543
850850 0 0
851851 −12.9265 −0.443113
852852 0 0
853853 11.5191i 0.394408i 0.980362 + 0.197204i 0.0631861π0.0631861\pi
−0.980362 + 0.197204i 0.936814π0.936814\pi
854854 0 0
855855 0 0
856856 0 0
857857 5.40616i 0.184671i 0.995728 + 0.0923355i 0.0294332π0.0294332\pi
−0.995728 + 0.0923355i 0.970567π0.970567\pi
858858 0 0
859859 17.4306 0.594725 0.297363 0.954765i 0.403893π-0.403893\pi
0.297363 + 0.954765i 0.403893π0.403893\pi
860860 0 0
861861 −81.2424 −2.76873
862862 0 0
863863 8.83048i 0.300593i 0.988641 + 0.150297i 0.0480229π0.0480229\pi
−0.988641 + 0.150297i 0.951977π0.951977\pi
864864 0 0
865865 0 0
866866 0 0
867867 − 43.5721i − 1.47979i
868868 0 0
869869 −12.7593 −0.432829
870870 0 0
871871 −5.50677 −0.186590
872872 0 0
873873 − 34.8148i − 1.17830i
874874 0 0
875875 0 0
876876 0 0
877877 − 0.840573i − 0.0283841i −0.999899 0.0141921i 0.995482π-0.995482\pi
0.999899 0.0141921i 0.00451763π-0.00451763\pi
878878 0 0
879879 48.5850 1.63873
880880 0 0
881881 6.78562 0.228613 0.114307 0.993446i 0.463535π-0.463535\pi
0.114307 + 0.993446i 0.463535π0.463535\pi
882882 0 0
883883 10.0799i 0.339217i 0.985512 + 0.169608i 0.0542503π0.0542503\pi
−0.985512 + 0.169608i 0.945750π0.945750\pi
884884 0 0
885885 0 0
886886 0 0
887887 − 9.41650i − 0.316175i −0.987425 0.158088i 0.949467π-0.949467\pi
0.987425 0.158088i 0.0505328π-0.0505328\pi
888888 0 0
889889 21.2752 0.713548
890890 0 0
891891 −20.7694 −0.695801
892892 0 0
893893 3.56468i 0.119287i
894894 0 0
895895 0 0
896896 0 0
897897 − 4.97883i − 0.166238i
898898 0 0
899899 16.1271 0.537870
900900 0 0
901901 16.3600 0.545029
902902 0 0
903903 − 111.647i − 3.71540i
904904 0 0
905905 0 0
906906 0 0
907907 − 23.2639i − 0.772466i −0.922401 0.386233i 0.873776π-0.873776\pi
0.922401 0.386233i 0.126224π-0.126224\pi
908908 0 0
909909 −5.67730 −0.188304
910910 0 0
911911 15.4610 0.512245 0.256123 0.966644i 0.417555π-0.417555\pi
0.256123 + 0.966644i 0.417555π0.417555\pi
912912 0 0
913913 7.35335i 0.243360i
914914 0 0
915915 0 0
916916 0 0
917917 12.2276i 0.403791i
918918 0 0
919919 −20.1775 −0.665594 −0.332797 0.942998i 0.607992π-0.607992\pi
−0.332797 + 0.942998i 0.607992π0.607992\pi
920920 0 0
921921 36.8199 1.21326
922922 0 0
923923 − 1.78735i − 0.0588314i
924924 0 0
925925 0 0
926926 0 0
927927 − 79.2023i − 2.60134i
928928 0 0
929929 −11.3148 −0.371227 −0.185613 0.982623i 0.559427π-0.559427\pi
−0.185613 + 0.982623i 0.559427π0.559427\pi
930930 0 0
931931 −9.58319 −0.314076
932932 0 0
933933 18.4477i 0.603952i
934934 0 0
935935 0 0
936936 0 0
937937 − 16.8943i − 0.551911i −0.961170 0.275956i 0.911006π-0.911006\pi
0.961170 0.275956i 0.0889943π-0.0889943\pi
938938 0 0
939939 97.7007 3.18834
940940 0 0
941941 −15.0272 −0.489871 −0.244936 0.969539i 0.578767π-0.578767\pi
−0.244936 + 0.969539i 0.578767π0.578767\pi
942942 0 0
943943 − 8.64847i − 0.281633i
944944 0 0
945945 0 0
946946 0 0
947947 − 0.208895i − 0.00678818i −0.999994 0.00339409i 0.998920π-0.998920\pi
0.999994 0.00339409i 0.00108037π-0.00108037\pi
948948 0 0
949949 −11.1540 −0.362075
950950 0 0
951951 38.4821 1.24787
952952 0 0
953953 − 18.0875i − 0.585910i −0.956126 0.292955i 0.905361π-0.905361\pi
0.956126 0.292955i 0.0946387π-0.0946387\pi
954954 0 0
955955 0 0
956956 0 0
957957 18.6308i 0.602249i
958958 0 0
959959 94.0370 3.03661
960960 0 0
961961 −26.0715 −0.841016
962962 0 0
963963 130.897i 4.21808i
964964 0 0
965965 0 0
966966 0 0
967967 − 40.5540i − 1.30413i −0.758164 0.652064i 0.773903π-0.773903\pi
0.758164 0.652064i 0.226097π-0.226097\pi
968968 0 0
969969 −6.22257 −0.199898
970970 0 0
971971 −51.7597 −1.66105 −0.830523 0.556984i 0.811959π-0.811959\pi
−0.830523 + 0.556984i 0.811959π0.811959\pi
972972 0 0
973973 48.7161i 1.56177i
974974 0 0
975975 0 0
976976 0 0
977977 − 23.6104i − 0.755364i −0.925935 0.377682i 0.876721π-0.876721\pi
0.925935 0.377682i 0.123279π-0.123279\pi
978978 0 0
979979 2.44103 0.0780158
980980 0 0
981981 −131.262 −4.19086
982982 0 0
983983 − 34.0532i − 1.08613i −0.839691 0.543065i 0.817264π-0.817264\pi
0.839691 0.543065i 0.182736π-0.182736\pi
984984 0 0
985985 0 0
986986 0 0
987987 47.3437i 1.50697i
988988 0 0
989989 11.8852 0.377926
990990 0 0
991991 42.7936 1.35938 0.679692 0.733497i 0.262113π-0.262113\pi
0.679692 + 0.733497i 0.262113π0.262113\pi
992992 0 0
993993 70.8373i 2.24796i
994994 0 0
995995 0 0
996996 0 0
997997 − 30.1937i − 0.956243i −0.878294 0.478122i 0.841318π-0.841318\pi
0.878294 0.478122i 0.158682π-0.158682\pi
998998 0 0
999999 −138.267 −4.37458
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.q.3649.1 12
5.2 odd 4 3800.2.a.ba.1.1 6
5.3 odd 4 3800.2.a.bc.1.6 yes 6
5.4 even 2 inner 3800.2.d.q.3649.12 12
20.3 even 4 7600.2.a.ch.1.1 6
20.7 even 4 7600.2.a.cl.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.1 6 5.2 odd 4
3800.2.a.bc.1.6 yes 6 5.3 odd 4
3800.2.d.q.3649.1 12 1.1 even 1 trivial
3800.2.d.q.3649.12 12 5.4 even 2 inner
7600.2.a.ch.1.1 6 20.3 even 4
7600.2.a.cl.1.6 6 20.7 even 4