Properties

Label 3800.2.d.q.3649.1
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 194x^{8} + 618x^{6} + 733x^{4} + 286x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.1
Root \(-3.26143i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.q.3649.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.26143i q^{3} +4.07225i q^{7} -7.63693 q^{9} -0.786366 q^{11} -1.07974i q^{13} -1.90793i q^{17} +1.00000 q^{19} +13.2813 q^{21} +1.41383i q^{23} +15.1230i q^{27} +7.26439 q^{29} +2.22003 q^{31} +2.56468i q^{33} +9.14283i q^{37} -3.52151 q^{39} -6.11703 q^{41} -8.40634i q^{43} +3.56468i q^{47} -9.58319 q^{49} -6.22257 q^{51} +8.57472i q^{53} -3.26143i q^{57} +13.4043 q^{59} +12.7768 q^{61} -31.0994i q^{63} -5.10008i q^{67} +4.61112 q^{69} +1.65535 q^{71} -10.3302i q^{73} -3.20228i q^{77} +16.2256 q^{79} +26.4119 q^{81} -9.35104i q^{83} -23.6923i q^{87} -3.10419 q^{89} +4.39698 q^{91} -7.24046i q^{93} +4.55874i q^{97} +6.00542 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 6 q^{11} + 12 q^{19} + 30 q^{21} - 18 q^{29} + 10 q^{31} - 24 q^{39} + 6 q^{41} - 44 q^{49} + 66 q^{51} + 18 q^{61} + 22 q^{69} + 38 q^{71} + 32 q^{79} + 52 q^{81} - 28 q^{89} + 84 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.26143i − 1.88299i −0.337031 0.941494i \(-0.609423\pi\)
0.337031 0.941494i \(-0.390577\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.07225i 1.53916i 0.638548 + 0.769582i \(0.279536\pi\)
−0.638548 + 0.769582i \(0.720464\pi\)
\(8\) 0 0
\(9\) −7.63693 −2.54564
\(10\) 0 0
\(11\) −0.786366 −0.237098 −0.118549 0.992948i \(-0.537824\pi\)
−0.118549 + 0.992948i \(0.537824\pi\)
\(12\) 0 0
\(13\) − 1.07974i − 0.299467i −0.988726 0.149733i \(-0.952158\pi\)
0.988726 0.149733i \(-0.0478416\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.90793i − 0.462741i −0.972866 0.231370i \(-0.925679\pi\)
0.972866 0.231370i \(-0.0743209\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 13.2813 2.89823
\(22\) 0 0
\(23\) 1.41383i 0.294805i 0.989077 + 0.147402i \(0.0470912\pi\)
−0.989077 + 0.147402i \(0.952909\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.1230i 2.91042i
\(28\) 0 0
\(29\) 7.26439 1.34896 0.674482 0.738291i \(-0.264367\pi\)
0.674482 + 0.738291i \(0.264367\pi\)
\(30\) 0 0
\(31\) 2.22003 0.398728 0.199364 0.979925i \(-0.436112\pi\)
0.199364 + 0.979925i \(0.436112\pi\)
\(32\) 0 0
\(33\) 2.56468i 0.446453i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.14283i 1.50307i 0.659692 + 0.751536i \(0.270687\pi\)
−0.659692 + 0.751536i \(0.729313\pi\)
\(38\) 0 0
\(39\) −3.52151 −0.563893
\(40\) 0 0
\(41\) −6.11703 −0.955319 −0.477660 0.878545i \(-0.658515\pi\)
−0.477660 + 0.878545i \(0.658515\pi\)
\(42\) 0 0
\(43\) − 8.40634i − 1.28195i −0.767560 0.640977i \(-0.778529\pi\)
0.767560 0.640977i \(-0.221471\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.56468i 0.519962i 0.965614 + 0.259981i \(0.0837163\pi\)
−0.965614 + 0.259981i \(0.916284\pi\)
\(48\) 0 0
\(49\) −9.58319 −1.36903
\(50\) 0 0
\(51\) −6.22257 −0.871335
\(52\) 0 0
\(53\) 8.57472i 1.17783i 0.808195 + 0.588914i \(0.200445\pi\)
−0.808195 + 0.588914i \(0.799555\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 3.26143i − 0.431987i
\(58\) 0 0
\(59\) 13.4043 1.74509 0.872543 0.488537i \(-0.162469\pi\)
0.872543 + 0.488537i \(0.162469\pi\)
\(60\) 0 0
\(61\) 12.7768 1.63590 0.817950 0.575289i \(-0.195110\pi\)
0.817950 + 0.575289i \(0.195110\pi\)
\(62\) 0 0
\(63\) − 31.0994i − 3.91816i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.10008i − 0.623073i −0.950234 0.311537i \(-0.899156\pi\)
0.950234 0.311537i \(-0.100844\pi\)
\(68\) 0 0
\(69\) 4.61112 0.555114
\(70\) 0 0
\(71\) 1.65535 0.196454 0.0982268 0.995164i \(-0.468683\pi\)
0.0982268 + 0.995164i \(0.468683\pi\)
\(72\) 0 0
\(73\) − 10.3302i − 1.20906i −0.796581 0.604532i \(-0.793360\pi\)
0.796581 0.604532i \(-0.206640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.20228i − 0.364933i
\(78\) 0 0
\(79\) 16.2256 1.82553 0.912764 0.408488i \(-0.133944\pi\)
0.912764 + 0.408488i \(0.133944\pi\)
\(80\) 0 0
\(81\) 26.4119 2.93465
\(82\) 0 0
\(83\) − 9.35104i − 1.02641i −0.858266 0.513205i \(-0.828458\pi\)
0.858266 0.513205i \(-0.171542\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 23.6923i − 2.54008i
\(88\) 0 0
\(89\) −3.10419 −0.329044 −0.164522 0.986373i \(-0.552608\pi\)
−0.164522 + 0.986373i \(0.552608\pi\)
\(90\) 0 0
\(91\) 4.39698 0.460929
\(92\) 0 0
\(93\) − 7.24046i − 0.750801i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.55874i 0.462870i 0.972850 + 0.231435i \(0.0743421\pi\)
−0.972850 + 0.231435i \(0.925658\pi\)
\(98\) 0 0
\(99\) 6.00542 0.603567
\(100\) 0 0
\(101\) 0.743401 0.0739712 0.0369856 0.999316i \(-0.488224\pi\)
0.0369856 + 0.999316i \(0.488224\pi\)
\(102\) 0 0
\(103\) 10.3710i 1.02188i 0.859616 + 0.510941i \(0.170703\pi\)
−0.859616 + 0.510941i \(0.829297\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 17.1400i − 1.65698i −0.560002 0.828491i \(-0.689200\pi\)
0.560002 0.828491i \(-0.310800\pi\)
\(108\) 0 0
\(109\) 17.1878 1.64629 0.823144 0.567832i \(-0.192218\pi\)
0.823144 + 0.567832i \(0.192218\pi\)
\(110\) 0 0
\(111\) 29.8187 2.83027
\(112\) 0 0
\(113\) 1.05696i 0.0994300i 0.998763 + 0.0497150i \(0.0158313\pi\)
−0.998763 + 0.0497150i \(0.984169\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.24592i 0.762336i
\(118\) 0 0
\(119\) 7.76956 0.712234
\(120\) 0 0
\(121\) −10.3816 −0.943784
\(122\) 0 0
\(123\) 19.9503i 1.79885i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 5.22444i − 0.463594i −0.972764 0.231797i \(-0.925539\pi\)
0.972764 0.231797i \(-0.0744606\pi\)
\(128\) 0 0
\(129\) −27.4167 −2.41390
\(130\) 0 0
\(131\) 3.00267 0.262344 0.131172 0.991360i \(-0.458126\pi\)
0.131172 + 0.991360i \(0.458126\pi\)
\(132\) 0 0
\(133\) 4.07225i 0.353109i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 23.0922i − 1.97290i −0.164072 0.986448i \(-0.552463\pi\)
0.164072 0.986448i \(-0.447537\pi\)
\(138\) 0 0
\(139\) 11.9630 1.01469 0.507343 0.861744i \(-0.330628\pi\)
0.507343 + 0.861744i \(0.330628\pi\)
\(140\) 0 0
\(141\) 11.6259 0.979082
\(142\) 0 0
\(143\) 0.849074i 0.0710031i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 31.2549i 2.57786i
\(148\) 0 0
\(149\) −23.5411 −1.92856 −0.964282 0.264879i \(-0.914668\pi\)
−0.964282 + 0.264879i \(0.914668\pi\)
\(150\) 0 0
\(151\) 10.6136 0.863721 0.431860 0.901940i \(-0.357857\pi\)
0.431860 + 0.901940i \(0.357857\pi\)
\(152\) 0 0
\(153\) 14.5707i 1.17797i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.9997i 1.11730i 0.829405 + 0.558648i \(0.188680\pi\)
−0.829405 + 0.558648i \(0.811320\pi\)
\(158\) 0 0
\(159\) 27.9659 2.21784
\(160\) 0 0
\(161\) −5.75748 −0.453753
\(162\) 0 0
\(163\) 10.6662i 0.835442i 0.908575 + 0.417721i \(0.137171\pi\)
−0.908575 + 0.417721i \(0.862829\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.97856i − 0.307870i −0.988081 0.153935i \(-0.950805\pi\)
0.988081 0.153935i \(-0.0491947\pi\)
\(168\) 0 0
\(169\) 11.8342 0.910320
\(170\) 0 0
\(171\) −7.63693 −0.584010
\(172\) 0 0
\(173\) − 22.1310i − 1.68259i −0.540577 0.841295i \(-0.681794\pi\)
0.540577 0.841295i \(-0.318206\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 43.7171i − 3.28598i
\(178\) 0 0
\(179\) −4.80086 −0.358833 −0.179417 0.983773i \(-0.557421\pi\)
−0.179417 + 0.983773i \(0.557421\pi\)
\(180\) 0 0
\(181\) −16.4333 −1.22148 −0.610740 0.791831i \(-0.709128\pi\)
−0.610740 + 0.791831i \(0.709128\pi\)
\(182\) 0 0
\(183\) − 41.6706i − 3.08038i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.50033i 0.109715i
\(188\) 0 0
\(189\) −61.5846 −4.47962
\(190\) 0 0
\(191\) 5.45151 0.394457 0.197229 0.980358i \(-0.436806\pi\)
0.197229 + 0.980358i \(0.436806\pi\)
\(192\) 0 0
\(193\) 16.3968i 1.18026i 0.807306 + 0.590132i \(0.200924\pi\)
−0.807306 + 0.590132i \(0.799076\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.2546i 1.37183i 0.727681 + 0.685916i \(0.240598\pi\)
−0.727681 + 0.685916i \(0.759402\pi\)
\(198\) 0 0
\(199\) −7.95572 −0.563966 −0.281983 0.959419i \(-0.590992\pi\)
−0.281983 + 0.959419i \(0.590992\pi\)
\(200\) 0 0
\(201\) −16.6335 −1.17324
\(202\) 0 0
\(203\) 29.5824i 2.07628i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 10.7973i − 0.750468i
\(208\) 0 0
\(209\) −0.786366 −0.0543941
\(210\) 0 0
\(211\) 18.2270 1.25480 0.627400 0.778697i \(-0.284119\pi\)
0.627400 + 0.778697i \(0.284119\pi\)
\(212\) 0 0
\(213\) − 5.39880i − 0.369920i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.04049i 0.613709i
\(218\) 0 0
\(219\) −33.6914 −2.27665
\(220\) 0 0
\(221\) −2.06007 −0.138576
\(222\) 0 0
\(223\) 0.430994i 0.0288615i 0.999896 + 0.0144307i \(0.00459361\pi\)
−0.999896 + 0.0144307i \(0.995406\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 7.63334i − 0.506643i −0.967382 0.253321i \(-0.918477\pi\)
0.967382 0.253321i \(-0.0815230\pi\)
\(228\) 0 0
\(229\) −20.3914 −1.34750 −0.673750 0.738959i \(-0.735318\pi\)
−0.673750 + 0.738959i \(0.735318\pi\)
\(230\) 0 0
\(231\) −10.4440 −0.687165
\(232\) 0 0
\(233\) 20.6308i 1.35157i 0.737099 + 0.675785i \(0.236195\pi\)
−0.737099 + 0.675785i \(0.763805\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 52.9188i − 3.43744i
\(238\) 0 0
\(239\) 4.61247 0.298356 0.149178 0.988810i \(-0.452337\pi\)
0.149178 + 0.988810i \(0.452337\pi\)
\(240\) 0 0
\(241\) 3.92363 0.252744 0.126372 0.991983i \(-0.459667\pi\)
0.126372 + 0.991983i \(0.459667\pi\)
\(242\) 0 0
\(243\) − 40.7714i − 2.61549i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.07974i − 0.0687024i
\(248\) 0 0
\(249\) −30.4978 −1.93272
\(250\) 0 0
\(251\) 23.9491 1.51165 0.755827 0.654771i \(-0.227235\pi\)
0.755827 + 0.654771i \(0.227235\pi\)
\(252\) 0 0
\(253\) − 1.11179i − 0.0698978i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.05331i 0.564730i 0.959307 + 0.282365i \(0.0911189\pi\)
−0.959307 + 0.282365i \(0.908881\pi\)
\(258\) 0 0
\(259\) −37.2319 −2.31348
\(260\) 0 0
\(261\) −55.4776 −3.43398
\(262\) 0 0
\(263\) − 15.4483i − 0.952583i −0.879287 0.476291i \(-0.841981\pi\)
0.879287 0.476291i \(-0.158019\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 10.1241i 0.619586i
\(268\) 0 0
\(269\) 4.44718 0.271150 0.135575 0.990767i \(-0.456712\pi\)
0.135575 + 0.990767i \(0.456712\pi\)
\(270\) 0 0
\(271\) 23.8511 1.44885 0.724425 0.689354i \(-0.242105\pi\)
0.724425 + 0.689354i \(0.242105\pi\)
\(272\) 0 0
\(273\) − 14.3404i − 0.867923i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.86751i 0.412629i 0.978486 + 0.206314i \(0.0661470\pi\)
−0.978486 + 0.206314i \(0.933853\pi\)
\(278\) 0 0
\(279\) −16.9542 −1.01502
\(280\) 0 0
\(281\) 26.7419 1.59529 0.797645 0.603128i \(-0.206079\pi\)
0.797645 + 0.603128i \(0.206079\pi\)
\(282\) 0 0
\(283\) 17.4698i 1.03847i 0.854632 + 0.519235i \(0.173783\pi\)
−0.854632 + 0.519235i \(0.826217\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 24.9101i − 1.47039i
\(288\) 0 0
\(289\) 13.3598 0.785871
\(290\) 0 0
\(291\) 14.8680 0.871579
\(292\) 0 0
\(293\) 14.8968i 0.870282i 0.900362 + 0.435141i \(0.143302\pi\)
−0.900362 + 0.435141i \(0.856698\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 11.8922i − 0.690057i
\(298\) 0 0
\(299\) 1.52658 0.0882843
\(300\) 0 0
\(301\) 34.2327 1.97314
\(302\) 0 0
\(303\) − 2.42455i − 0.139287i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 11.2895i 0.644326i 0.946684 + 0.322163i \(0.104410\pi\)
−0.946684 + 0.322163i \(0.895590\pi\)
\(308\) 0 0
\(309\) 33.8242 1.92419
\(310\) 0 0
\(311\) −5.65634 −0.320741 −0.160371 0.987057i \(-0.551269\pi\)
−0.160371 + 0.987057i \(0.551269\pi\)
\(312\) 0 0
\(313\) 29.9564i 1.69324i 0.532201 + 0.846618i \(0.321365\pi\)
−0.532201 + 0.846618i \(0.678635\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.7992i 0.662706i 0.943507 + 0.331353i \(0.107505\pi\)
−0.943507 + 0.331353i \(0.892495\pi\)
\(318\) 0 0
\(319\) −5.71247 −0.319837
\(320\) 0 0
\(321\) −55.9008 −3.12008
\(322\) 0 0
\(323\) − 1.90793i − 0.106160i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 56.0567i − 3.09994i
\(328\) 0 0
\(329\) −14.5163 −0.800307
\(330\) 0 0
\(331\) −21.7197 −1.19382 −0.596912 0.802307i \(-0.703606\pi\)
−0.596912 + 0.802307i \(0.703606\pi\)
\(332\) 0 0
\(333\) − 69.8231i − 3.82628i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 32.7221i − 1.78249i −0.453523 0.891245i \(-0.649833\pi\)
0.453523 0.891245i \(-0.350167\pi\)
\(338\) 0 0
\(339\) 3.44718 0.187225
\(340\) 0 0
\(341\) −1.74575 −0.0945378
\(342\) 0 0
\(343\) − 10.5194i − 0.567994i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 28.5890i − 1.53474i −0.641206 0.767369i \(-0.721565\pi\)
0.641206 0.767369i \(-0.278435\pi\)
\(348\) 0 0
\(349\) −22.4911 −1.20392 −0.601961 0.798525i \(-0.705614\pi\)
−0.601961 + 0.798525i \(0.705614\pi\)
\(350\) 0 0
\(351\) 16.3290 0.871576
\(352\) 0 0
\(353\) 21.2381i 1.13039i 0.824957 + 0.565196i \(0.191199\pi\)
−0.824957 + 0.565196i \(0.808801\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 25.3399i − 1.34113i
\(358\) 0 0
\(359\) 5.30705 0.280095 0.140048 0.990145i \(-0.455274\pi\)
0.140048 + 0.990145i \(0.455274\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 33.8590i 1.77713i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.12291i 0.0586156i 0.999570 + 0.0293078i \(0.00933030\pi\)
−0.999570 + 0.0293078i \(0.990670\pi\)
\(368\) 0 0
\(369\) 46.7153 2.43190
\(370\) 0 0
\(371\) −34.9184 −1.81287
\(372\) 0 0
\(373\) − 3.99673i − 0.206943i −0.994632 0.103471i \(-0.967005\pi\)
0.994632 0.103471i \(-0.0329950\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7.84368i − 0.403970i
\(378\) 0 0
\(379\) −3.36846 −0.173026 −0.0865132 0.996251i \(-0.527572\pi\)
−0.0865132 + 0.996251i \(0.527572\pi\)
\(380\) 0 0
\(381\) −17.0392 −0.872942
\(382\) 0 0
\(383\) − 17.8476i − 0.911969i −0.889988 0.455985i \(-0.849287\pi\)
0.889988 0.455985i \(-0.150713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 64.1986i 3.26340i
\(388\) 0 0
\(389\) 19.1690 0.971907 0.485953 0.873985i \(-0.338472\pi\)
0.485953 + 0.873985i \(0.338472\pi\)
\(390\) 0 0
\(391\) 2.69750 0.136418
\(392\) 0 0
\(393\) − 9.79298i − 0.493991i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.04085i 0.453747i 0.973924 + 0.226874i \(0.0728504\pi\)
−0.973924 + 0.226874i \(0.927150\pi\)
\(398\) 0 0
\(399\) 13.2813 0.664899
\(400\) 0 0
\(401\) −15.0634 −0.752230 −0.376115 0.926573i \(-0.622740\pi\)
−0.376115 + 0.926573i \(0.622740\pi\)
\(402\) 0 0
\(403\) − 2.39706i − 0.119406i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7.18961i − 0.356376i
\(408\) 0 0
\(409\) 7.22091 0.357051 0.178525 0.983935i \(-0.442867\pi\)
0.178525 + 0.983935i \(0.442867\pi\)
\(410\) 0 0
\(411\) −75.3135 −3.71494
\(412\) 0 0
\(413\) 54.5855i 2.68597i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 39.0164i − 1.91064i
\(418\) 0 0
\(419\) 21.0968 1.03065 0.515323 0.856996i \(-0.327672\pi\)
0.515323 + 0.856996i \(0.327672\pi\)
\(420\) 0 0
\(421\) 5.50321 0.268210 0.134105 0.990967i \(-0.457184\pi\)
0.134105 + 0.990967i \(0.457184\pi\)
\(422\) 0 0
\(423\) − 27.2232i − 1.32364i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 52.0303i 2.51792i
\(428\) 0 0
\(429\) 2.76920 0.133698
\(430\) 0 0
\(431\) −10.9748 −0.528640 −0.264320 0.964435i \(-0.585147\pi\)
−0.264320 + 0.964435i \(0.585147\pi\)
\(432\) 0 0
\(433\) − 14.2313i − 0.683915i −0.939715 0.341957i \(-0.888910\pi\)
0.939715 0.341957i \(-0.111090\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.41383i 0.0676329i
\(438\) 0 0
\(439\) −12.0446 −0.574859 −0.287429 0.957802i \(-0.592801\pi\)
−0.287429 + 0.957802i \(0.592801\pi\)
\(440\) 0 0
\(441\) 73.1861 3.48505
\(442\) 0 0
\(443\) − 11.1718i − 0.530789i −0.964140 0.265394i \(-0.914498\pi\)
0.964140 0.265394i \(-0.0855022\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 76.7777i 3.63146i
\(448\) 0 0
\(449\) 9.07650 0.428347 0.214173 0.976796i \(-0.431294\pi\)
0.214173 + 0.976796i \(0.431294\pi\)
\(450\) 0 0
\(451\) 4.81023 0.226505
\(452\) 0 0
\(453\) − 34.6154i − 1.62638i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 16.6795i − 0.780235i −0.920765 0.390118i \(-0.872434\pi\)
0.920765 0.390118i \(-0.127566\pi\)
\(458\) 0 0
\(459\) 28.8536 1.34677
\(460\) 0 0
\(461\) −31.2657 −1.45619 −0.728095 0.685476i \(-0.759594\pi\)
−0.728095 + 0.685476i \(0.759594\pi\)
\(462\) 0 0
\(463\) 10.1802i 0.473116i 0.971617 + 0.236558i \(0.0760193\pi\)
−0.971617 + 0.236558i \(0.923981\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.0731i 1.53044i 0.643769 + 0.765220i \(0.277370\pi\)
−0.643769 + 0.765220i \(0.722630\pi\)
\(468\) 0 0
\(469\) 20.7688 0.959012
\(470\) 0 0
\(471\) 45.6590 2.10385
\(472\) 0 0
\(473\) 6.61046i 0.303949i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 65.4845i − 2.99833i
\(478\) 0 0
\(479\) −7.80955 −0.356827 −0.178414 0.983956i \(-0.557097\pi\)
−0.178414 + 0.983956i \(0.557097\pi\)
\(480\) 0 0
\(481\) 9.87191 0.450120
\(482\) 0 0
\(483\) 18.7776i 0.854412i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 4.37584i − 0.198288i −0.995073 0.0991442i \(-0.968389\pi\)
0.995073 0.0991442i \(-0.0316105\pi\)
\(488\) 0 0
\(489\) 34.7871 1.57313
\(490\) 0 0
\(491\) 42.0821 1.89914 0.949568 0.313560i \(-0.101522\pi\)
0.949568 + 0.313560i \(0.101522\pi\)
\(492\) 0 0
\(493\) − 13.8599i − 0.624220i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.74098i 0.302374i
\(498\) 0 0
\(499\) 8.59546 0.384786 0.192393 0.981318i \(-0.438375\pi\)
0.192393 + 0.981318i \(0.438375\pi\)
\(500\) 0 0
\(501\) −12.9758 −0.579716
\(502\) 0 0
\(503\) − 6.30722i − 0.281225i −0.990065 0.140612i \(-0.955093\pi\)
0.990065 0.140612i \(-0.0449071\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 38.5963i − 1.71412i
\(508\) 0 0
\(509\) 31.0352 1.37561 0.687805 0.725896i \(-0.258574\pi\)
0.687805 + 0.725896i \(0.258574\pi\)
\(510\) 0 0
\(511\) 42.0673 1.86095
\(512\) 0 0
\(513\) 15.1230i 0.667697i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 2.80314i − 0.123282i
\(518\) 0 0
\(519\) −72.1787 −3.16830
\(520\) 0 0
\(521\) 32.8924 1.44104 0.720522 0.693432i \(-0.243902\pi\)
0.720522 + 0.693432i \(0.243902\pi\)
\(522\) 0 0
\(523\) 37.6201i 1.64501i 0.568757 + 0.822506i \(0.307425\pi\)
−0.568757 + 0.822506i \(0.692575\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.23565i − 0.184508i
\(528\) 0 0
\(529\) 21.0011 0.913090
\(530\) 0 0
\(531\) −102.367 −4.44236
\(532\) 0 0
\(533\) 6.60482i 0.286087i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.6577i 0.675679i
\(538\) 0 0
\(539\) 7.53590 0.324594
\(540\) 0 0
\(541\) −33.6736 −1.44774 −0.723871 0.689936i \(-0.757639\pi\)
−0.723871 + 0.689936i \(0.757639\pi\)
\(542\) 0 0
\(543\) 53.5962i 2.30003i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 14.0295i 0.599859i 0.953961 + 0.299930i \(0.0969632\pi\)
−0.953961 + 0.299930i \(0.903037\pi\)
\(548\) 0 0
\(549\) −97.5754 −4.16442
\(550\) 0 0
\(551\) 7.26439 0.309474
\(552\) 0 0
\(553\) 66.0748i 2.80979i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 16.5434i − 0.700968i −0.936569 0.350484i \(-0.886017\pi\)
0.936569 0.350484i \(-0.113983\pi\)
\(558\) 0 0
\(559\) −9.07669 −0.383903
\(560\) 0 0
\(561\) 4.89322 0.206592
\(562\) 0 0
\(563\) − 36.3727i − 1.53293i −0.642288 0.766463i \(-0.722015\pi\)
0.642288 0.766463i \(-0.277985\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 107.556i 4.51691i
\(568\) 0 0
\(569\) −21.8270 −0.915035 −0.457517 0.889201i \(-0.651261\pi\)
−0.457517 + 0.889201i \(0.651261\pi\)
\(570\) 0 0
\(571\) 41.2781 1.72743 0.863717 0.503977i \(-0.168130\pi\)
0.863717 + 0.503977i \(0.168130\pi\)
\(572\) 0 0
\(573\) − 17.7797i − 0.742758i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23.6240i 0.983479i 0.870742 + 0.491739i \(0.163639\pi\)
−0.870742 + 0.491739i \(0.836361\pi\)
\(578\) 0 0
\(579\) 53.4769 2.22242
\(580\) 0 0
\(581\) 38.0798 1.57981
\(582\) 0 0
\(583\) − 6.74287i − 0.279261i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.48730i 0.102662i 0.998682 + 0.0513309i \(0.0163463\pi\)
−0.998682 + 0.0513309i \(0.983654\pi\)
\(588\) 0 0
\(589\) 2.22003 0.0914746
\(590\) 0 0
\(591\) 62.7975 2.58314
\(592\) 0 0
\(593\) 11.6543i 0.478587i 0.970947 + 0.239293i \(0.0769157\pi\)
−0.970947 + 0.239293i \(0.923084\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 25.9470i 1.06194i
\(598\) 0 0
\(599\) 0.149185 0.00609555 0.00304777 0.999995i \(-0.499030\pi\)
0.00304777 + 0.999995i \(0.499030\pi\)
\(600\) 0 0
\(601\) 29.2954 1.19498 0.597492 0.801875i \(-0.296164\pi\)
0.597492 + 0.801875i \(0.296164\pi\)
\(602\) 0 0
\(603\) 38.9489i 1.58612i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 2.55466i − 0.103691i −0.998655 0.0518453i \(-0.983490\pi\)
0.998655 0.0518453i \(-0.0165103\pi\)
\(608\) 0 0
\(609\) 96.4809 3.90960
\(610\) 0 0
\(611\) 3.84894 0.155711
\(612\) 0 0
\(613\) 42.6703i 1.72344i 0.507387 + 0.861718i \(0.330611\pi\)
−0.507387 + 0.861718i \(0.669389\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.8058i − 0.797353i −0.917092 0.398676i \(-0.869470\pi\)
0.917092 0.398676i \(-0.130530\pi\)
\(618\) 0 0
\(619\) 23.6180 0.949287 0.474643 0.880178i \(-0.342577\pi\)
0.474643 + 0.880178i \(0.342577\pi\)
\(620\) 0 0
\(621\) −21.3814 −0.858007
\(622\) 0 0
\(623\) − 12.6410i − 0.506453i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 2.56468i 0.102423i
\(628\) 0 0
\(629\) 17.4439 0.695533
\(630\) 0 0
\(631\) 33.3007 1.32568 0.662841 0.748760i \(-0.269351\pi\)
0.662841 + 0.748760i \(0.269351\pi\)
\(632\) 0 0
\(633\) − 59.4462i − 2.36277i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.3474i 0.409979i
\(638\) 0 0
\(639\) −12.6418 −0.500100
\(640\) 0 0
\(641\) −37.5897 −1.48470 −0.742352 0.670010i \(-0.766290\pi\)
−0.742352 + 0.670010i \(0.766290\pi\)
\(642\) 0 0
\(643\) 2.61556i 0.103148i 0.998669 + 0.0515739i \(0.0164238\pi\)
−0.998669 + 0.0515739i \(0.983576\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.3725i 0.407784i 0.978993 + 0.203892i \(0.0653591\pi\)
−0.978993 + 0.203892i \(0.934641\pi\)
\(648\) 0 0
\(649\) −10.5407 −0.413757
\(650\) 0 0
\(651\) 29.4849 1.15561
\(652\) 0 0
\(653\) − 0.949620i − 0.0371615i −0.999827 0.0185808i \(-0.994085\pi\)
0.999827 0.0185808i \(-0.00591478\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 78.8913i 3.07784i
\(658\) 0 0
\(659\) −32.1009 −1.25047 −0.625237 0.780435i \(-0.714998\pi\)
−0.625237 + 0.780435i \(0.714998\pi\)
\(660\) 0 0
\(661\) −32.8796 −1.27887 −0.639434 0.768846i \(-0.720831\pi\)
−0.639434 + 0.768846i \(0.720831\pi\)
\(662\) 0 0
\(663\) 6.71879i 0.260936i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.2707i 0.397681i
\(668\) 0 0
\(669\) 1.40566 0.0543458
\(670\) 0 0
\(671\) −10.0472 −0.387869
\(672\) 0 0
\(673\) − 25.9466i − 1.00017i −0.865977 0.500084i \(-0.833302\pi\)
0.865977 0.500084i \(-0.166698\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 47.0807i 1.80946i 0.425987 + 0.904729i \(0.359927\pi\)
−0.425987 + 0.904729i \(0.640073\pi\)
\(678\) 0 0
\(679\) −18.5643 −0.712433
\(680\) 0 0
\(681\) −24.8956 −0.954002
\(682\) 0 0
\(683\) − 29.9429i − 1.14573i −0.819648 0.572867i \(-0.805831\pi\)
0.819648 0.572867i \(-0.194169\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 66.5050i 2.53733i
\(688\) 0 0
\(689\) 9.25850 0.352721
\(690\) 0 0
\(691\) −30.4205 −1.15725 −0.578625 0.815594i \(-0.696411\pi\)
−0.578625 + 0.815594i \(0.696411\pi\)
\(692\) 0 0
\(693\) 24.4556i 0.928990i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.6709i 0.442065i
\(698\) 0 0
\(699\) 67.2859 2.54499
\(700\) 0 0
\(701\) 25.0769 0.947141 0.473570 0.880756i \(-0.342965\pi\)
0.473570 + 0.880756i \(0.342965\pi\)
\(702\) 0 0
\(703\) 9.14283i 0.344828i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.02731i 0.113854i
\(708\) 0 0
\(709\) −13.5057 −0.507219 −0.253610 0.967307i \(-0.581618\pi\)
−0.253610 + 0.967307i \(0.581618\pi\)
\(710\) 0 0
\(711\) −123.914 −4.64714
\(712\) 0 0
\(713\) 3.13875i 0.117547i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 15.0433i − 0.561801i
\(718\) 0 0
\(719\) 2.27969 0.0850179 0.0425090 0.999096i \(-0.486465\pi\)
0.0425090 + 0.999096i \(0.486465\pi\)
\(720\) 0 0
\(721\) −42.2331 −1.57284
\(722\) 0 0
\(723\) − 12.7967i − 0.475913i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0.925937i 0.0343411i 0.999853 + 0.0171705i \(0.00546582\pi\)
−0.999853 + 0.0171705i \(0.994534\pi\)
\(728\) 0 0
\(729\) −53.7374 −1.99028
\(730\) 0 0
\(731\) −16.0387 −0.593212
\(732\) 0 0
\(733\) − 20.9455i − 0.773639i −0.922155 0.386820i \(-0.873574\pi\)
0.922155 0.386820i \(-0.126426\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.01053i 0.147730i
\(738\) 0 0
\(739\) −36.9385 −1.35880 −0.679402 0.733766i \(-0.737761\pi\)
−0.679402 + 0.733766i \(0.737761\pi\)
\(740\) 0 0
\(741\) −3.52151 −0.129366
\(742\) 0 0
\(743\) 48.3612i 1.77420i 0.461577 + 0.887100i \(0.347284\pi\)
−0.461577 + 0.887100i \(0.652716\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 71.4132i 2.61287i
\(748\) 0 0
\(749\) 69.7981 2.55037
\(750\) 0 0
\(751\) −19.9871 −0.729340 −0.364670 0.931137i \(-0.618818\pi\)
−0.364670 + 0.931137i \(0.618818\pi\)
\(752\) 0 0
\(753\) − 78.1084i − 2.84643i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 36.3938i − 1.32276i −0.750053 0.661378i \(-0.769972\pi\)
0.750053 0.661378i \(-0.230028\pi\)
\(758\) 0 0
\(759\) −3.62603 −0.131617
\(760\) 0 0
\(761\) −24.2163 −0.877839 −0.438920 0.898526i \(-0.644639\pi\)
−0.438920 + 0.898526i \(0.644639\pi\)
\(762\) 0 0
\(763\) 69.9928i 2.53391i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 14.4732i − 0.522596i
\(768\) 0 0
\(769\) −30.7013 −1.10712 −0.553559 0.832810i \(-0.686731\pi\)
−0.553559 + 0.832810i \(0.686731\pi\)
\(770\) 0 0
\(771\) 29.5267 1.06338
\(772\) 0 0
\(773\) − 21.9986i − 0.791234i −0.918416 0.395617i \(-0.870531\pi\)
0.918416 0.395617i \(-0.129469\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 121.429i 4.35625i
\(778\) 0 0
\(779\) −6.11703 −0.219165
\(780\) 0 0
\(781\) −1.30171 −0.0465788
\(782\) 0 0
\(783\) 109.859i 3.92606i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 20.9830i − 0.747962i −0.927436 0.373981i \(-0.877993\pi\)
0.927436 0.373981i \(-0.122007\pi\)
\(788\) 0 0
\(789\) −50.3835 −1.79370
\(790\) 0 0
\(791\) −4.30418 −0.153039
\(792\) 0 0
\(793\) − 13.7957i − 0.489898i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 29.1150i − 1.03131i −0.856798 0.515653i \(-0.827549\pi\)
0.856798 0.515653i \(-0.172451\pi\)
\(798\) 0 0
\(799\) 6.80115 0.240607
\(800\) 0 0
\(801\) 23.7065 0.837628
\(802\) 0 0
\(803\) 8.12336i 0.286667i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 14.5042i − 0.510571i
\(808\) 0 0
\(809\) 47.5139 1.67050 0.835250 0.549871i \(-0.185323\pi\)
0.835250 + 0.549871i \(0.185323\pi\)
\(810\) 0 0
\(811\) 11.7957 0.414204 0.207102 0.978319i \(-0.433597\pi\)
0.207102 + 0.978319i \(0.433597\pi\)
\(812\) 0 0
\(813\) − 77.7886i − 2.72817i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.40634i − 0.294101i
\(818\) 0 0
\(819\) −33.5794 −1.17336
\(820\) 0 0
\(821\) 28.0549 0.979123 0.489562 0.871969i \(-0.337157\pi\)
0.489562 + 0.871969i \(0.337157\pi\)
\(822\) 0 0
\(823\) − 16.7826i − 0.585006i −0.956265 0.292503i \(-0.905512\pi\)
0.956265 0.292503i \(-0.0944882\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.1984i 0.424180i 0.977250 + 0.212090i \(0.0680271\pi\)
−0.977250 + 0.212090i \(0.931973\pi\)
\(828\) 0 0
\(829\) −3.30978 −0.114954 −0.0574768 0.998347i \(-0.518306\pi\)
−0.0574768 + 0.998347i \(0.518306\pi\)
\(830\) 0 0
\(831\) 22.3979 0.776975
\(832\) 0 0
\(833\) 18.2840i 0.633505i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 33.5735i 1.16047i
\(838\) 0 0
\(839\) 27.9925 0.966408 0.483204 0.875508i \(-0.339473\pi\)
0.483204 + 0.875508i \(0.339473\pi\)
\(840\) 0 0
\(841\) 23.7714 0.819704
\(842\) 0 0
\(843\) − 87.2169i − 3.00391i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 42.2766i − 1.45264i
\(848\) 0 0
\(849\) 56.9764 1.95543
\(850\) 0 0
\(851\) −12.9265 −0.443113
\(852\) 0 0
\(853\) 11.5191i 0.394408i 0.980362 + 0.197204i \(0.0631861\pi\)
−0.980362 + 0.197204i \(0.936814\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.40616i 0.184671i 0.995728 + 0.0923355i \(0.0294332\pi\)
−0.995728 + 0.0923355i \(0.970567\pi\)
\(858\) 0 0
\(859\) 17.4306 0.594725 0.297363 0.954765i \(-0.403893\pi\)
0.297363 + 0.954765i \(0.403893\pi\)
\(860\) 0 0
\(861\) −81.2424 −2.76873
\(862\) 0 0
\(863\) 8.83048i 0.300593i 0.988641 + 0.150297i \(0.0480229\pi\)
−0.988641 + 0.150297i \(0.951977\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 43.5721i − 1.47979i
\(868\) 0 0
\(869\) −12.7593 −0.432829
\(870\) 0 0
\(871\) −5.50677 −0.186590
\(872\) 0 0
\(873\) − 34.8148i − 1.17830i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 0.840573i − 0.0283841i −0.999899 0.0141921i \(-0.995482\pi\)
0.999899 0.0141921i \(-0.00451763\pi\)
\(878\) 0 0
\(879\) 48.5850 1.63873
\(880\) 0 0
\(881\) 6.78562 0.228613 0.114307 0.993446i \(-0.463535\pi\)
0.114307 + 0.993446i \(0.463535\pi\)
\(882\) 0 0
\(883\) 10.0799i 0.339217i 0.985512 + 0.169608i \(0.0542503\pi\)
−0.985512 + 0.169608i \(0.945750\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 9.41650i − 0.316175i −0.987425 0.158088i \(-0.949467\pi\)
0.987425 0.158088i \(-0.0505328\pi\)
\(888\) 0 0
\(889\) 21.2752 0.713548
\(890\) 0 0
\(891\) −20.7694 −0.695801
\(892\) 0 0
\(893\) 3.56468i 0.119287i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4.97883i − 0.166238i
\(898\) 0 0
\(899\) 16.1271 0.537870
\(900\) 0 0
\(901\) 16.3600 0.545029
\(902\) 0 0
\(903\) − 111.647i − 3.71540i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 23.2639i − 0.772466i −0.922401 0.386233i \(-0.873776\pi\)
0.922401 0.386233i \(-0.126224\pi\)
\(908\) 0 0
\(909\) −5.67730 −0.188304
\(910\) 0 0
\(911\) 15.4610 0.512245 0.256123 0.966644i \(-0.417555\pi\)
0.256123 + 0.966644i \(0.417555\pi\)
\(912\) 0 0
\(913\) 7.35335i 0.243360i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.2276i 0.403791i
\(918\) 0 0
\(919\) −20.1775 −0.665594 −0.332797 0.942998i \(-0.607992\pi\)
−0.332797 + 0.942998i \(0.607992\pi\)
\(920\) 0 0
\(921\) 36.8199 1.21326
\(922\) 0 0
\(923\) − 1.78735i − 0.0588314i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 79.2023i − 2.60134i
\(928\) 0 0
\(929\) −11.3148 −0.371227 −0.185613 0.982623i \(-0.559427\pi\)
−0.185613 + 0.982623i \(0.559427\pi\)
\(930\) 0 0
\(931\) −9.58319 −0.314076
\(932\) 0 0
\(933\) 18.4477i 0.603952i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 16.8943i − 0.551911i −0.961170 0.275956i \(-0.911006\pi\)
0.961170 0.275956i \(-0.0889943\pi\)
\(938\) 0 0
\(939\) 97.7007 3.18834
\(940\) 0 0
\(941\) −15.0272 −0.489871 −0.244936 0.969539i \(-0.578767\pi\)
−0.244936 + 0.969539i \(0.578767\pi\)
\(942\) 0 0
\(943\) − 8.64847i − 0.281633i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 0.208895i − 0.00678818i −0.999994 0.00339409i \(-0.998920\pi\)
0.999994 0.00339409i \(-0.00108037\pi\)
\(948\) 0 0
\(949\) −11.1540 −0.362075
\(950\) 0 0
\(951\) 38.4821 1.24787
\(952\) 0 0
\(953\) − 18.0875i − 0.585910i −0.956126 0.292955i \(-0.905361\pi\)
0.956126 0.292955i \(-0.0946387\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 18.6308i 0.602249i
\(958\) 0 0
\(959\) 94.0370 3.03661
\(960\) 0 0
\(961\) −26.0715 −0.841016
\(962\) 0 0
\(963\) 130.897i 4.21808i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 40.5540i − 1.30413i −0.758164 0.652064i \(-0.773903\pi\)
0.758164 0.652064i \(-0.226097\pi\)
\(968\) 0 0
\(969\) −6.22257 −0.199898
\(970\) 0 0
\(971\) −51.7597 −1.66105 −0.830523 0.556984i \(-0.811959\pi\)
−0.830523 + 0.556984i \(0.811959\pi\)
\(972\) 0 0
\(973\) 48.7161i 1.56177i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 23.6104i − 0.755364i −0.925935 0.377682i \(-0.876721\pi\)
0.925935 0.377682i \(-0.123279\pi\)
\(978\) 0 0
\(979\) 2.44103 0.0780158
\(980\) 0 0
\(981\) −131.262 −4.19086
\(982\) 0 0
\(983\) − 34.0532i − 1.08613i −0.839691 0.543065i \(-0.817264\pi\)
0.839691 0.543065i \(-0.182736\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 47.3437i 1.50697i
\(988\) 0 0
\(989\) 11.8852 0.377926
\(990\) 0 0
\(991\) 42.7936 1.35938 0.679692 0.733497i \(-0.262113\pi\)
0.679692 + 0.733497i \(0.262113\pi\)
\(992\) 0 0
\(993\) 70.8373i 2.24796i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 30.1937i − 0.956243i −0.878294 0.478122i \(-0.841318\pi\)
0.878294 0.478122i \(-0.158682\pi\)
\(998\) 0 0
\(999\) −138.267 −4.37458
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.q.3649.1 12
5.2 odd 4 3800.2.a.ba.1.1 6
5.3 odd 4 3800.2.a.bc.1.6 yes 6
5.4 even 2 inner 3800.2.d.q.3649.12 12
20.3 even 4 7600.2.a.ch.1.1 6
20.7 even 4 7600.2.a.cl.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.1 6 5.2 odd 4
3800.2.a.bc.1.6 yes 6 5.3 odd 4
3800.2.d.q.3649.1 12 1.1 even 1 trivial
3800.2.d.q.3649.12 12 5.4 even 2 inner
7600.2.a.ch.1.1 6 20.3 even 4
7600.2.a.cl.1.6 6 20.7 even 4