Properties

Label 3800.2.d.q.3649.3
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 194x^{8} + 618x^{6} + 733x^{4} + 286x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.3
Root \(-1.93590i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.q.3649.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93590i q^{3} -1.24708i q^{7} -0.747704 q^{9} -0.513860 q^{11} +6.15670i q^{13} +4.51986i q^{17} +1.00000 q^{19} -2.41421 q^{21} -5.86084i q^{23} -4.36022i q^{27} -6.62700 q^{29} +6.41995 q^{31} +0.994780i q^{33} +1.40671i q^{37} +11.9187 q^{39} +10.6870 q^{41} -3.04878i q^{43} +1.99478i q^{47} +5.44480 q^{49} +8.74998 q^{51} -14.0848i q^{53} -1.93590i q^{57} +4.34261 q^{59} +10.7173 q^{61} +0.932444i q^{63} +9.89978i q^{67} -11.3460 q^{69} +7.42517 q^{71} +12.8079i q^{73} +0.640822i q^{77} -2.56138 q^{79} -10.6841 q^{81} -7.50864i q^{83} +12.8292i q^{87} +7.85353 q^{89} +7.67787 q^{91} -12.4284i q^{93} -6.74797i q^{97} +0.384215 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 6 q^{11} + 12 q^{19} + 30 q^{21} - 18 q^{29} + 10 q^{31} - 24 q^{39} + 6 q^{41} - 44 q^{49} + 66 q^{51} + 18 q^{61} + 22 q^{69} + 38 q^{71} + 32 q^{79} + 52 q^{81} - 28 q^{89} + 84 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.93590i − 1.11769i −0.829272 0.558846i \(-0.811244\pi\)
0.829272 0.558846i \(-0.188756\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.24708i − 0.471350i −0.971832 0.235675i \(-0.924270\pi\)
0.971832 0.235675i \(-0.0757302\pi\)
\(8\) 0 0
\(9\) −0.747704 −0.249235
\(10\) 0 0
\(11\) −0.513860 −0.154935 −0.0774673 0.996995i \(-0.524683\pi\)
−0.0774673 + 0.996995i \(0.524683\pi\)
\(12\) 0 0
\(13\) 6.15670i 1.70756i 0.520633 + 0.853780i \(0.325696\pi\)
−0.520633 + 0.853780i \(0.674304\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.51986i 1.09623i 0.836404 + 0.548113i \(0.184654\pi\)
−0.836404 + 0.548113i \(0.815346\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −2.41421 −0.526824
\(22\) 0 0
\(23\) − 5.86084i − 1.22207i −0.791603 0.611035i \(-0.790753\pi\)
0.791603 0.611035i \(-0.209247\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4.36022i − 0.839124i
\(28\) 0 0
\(29\) −6.62700 −1.23060 −0.615302 0.788292i \(-0.710966\pi\)
−0.615302 + 0.788292i \(0.710966\pi\)
\(30\) 0 0
\(31\) 6.41995 1.15306 0.576528 0.817077i \(-0.304407\pi\)
0.576528 + 0.817077i \(0.304407\pi\)
\(32\) 0 0
\(33\) 0.994780i 0.173169i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.40671i 0.231263i 0.993292 + 0.115631i \(0.0368891\pi\)
−0.993292 + 0.115631i \(0.963111\pi\)
\(38\) 0 0
\(39\) 11.9187 1.90853
\(40\) 0 0
\(41\) 10.6870 1.66903 0.834514 0.550987i \(-0.185749\pi\)
0.834514 + 0.550987i \(0.185749\pi\)
\(42\) 0 0
\(43\) − 3.04878i − 0.464934i −0.972604 0.232467i \(-0.925320\pi\)
0.972604 0.232467i \(-0.0746798\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.99478i 0.290969i 0.989361 + 0.145484i \(0.0464740\pi\)
−0.989361 + 0.145484i \(0.953526\pi\)
\(48\) 0 0
\(49\) 5.44480 0.777829
\(50\) 0 0
\(51\) 8.74998 1.22524
\(52\) 0 0
\(53\) − 14.0848i − 1.93469i −0.253459 0.967346i \(-0.581568\pi\)
0.253459 0.967346i \(-0.418432\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.93590i − 0.256416i
\(58\) 0 0
\(59\) 4.34261 0.565360 0.282680 0.959214i \(-0.408777\pi\)
0.282680 + 0.959214i \(0.408777\pi\)
\(60\) 0 0
\(61\) 10.7173 1.37221 0.686106 0.727502i \(-0.259319\pi\)
0.686106 + 0.727502i \(0.259319\pi\)
\(62\) 0 0
\(63\) 0.932444i 0.117477i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.89978i 1.20945i 0.796434 + 0.604725i \(0.206717\pi\)
−0.796434 + 0.604725i \(0.793283\pi\)
\(68\) 0 0
\(69\) −11.3460 −1.36590
\(70\) 0 0
\(71\) 7.42517 0.881205 0.440603 0.897702i \(-0.354765\pi\)
0.440603 + 0.897702i \(0.354765\pi\)
\(72\) 0 0
\(73\) 12.8079i 1.49905i 0.661976 + 0.749525i \(0.269718\pi\)
−0.661976 + 0.749525i \(0.730282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.640822i 0.0730285i
\(78\) 0 0
\(79\) −2.56138 −0.288178 −0.144089 0.989565i \(-0.546025\pi\)
−0.144089 + 0.989565i \(0.546025\pi\)
\(80\) 0 0
\(81\) −10.6841 −1.18712
\(82\) 0 0
\(83\) − 7.50864i − 0.824180i −0.911143 0.412090i \(-0.864799\pi\)
0.911143 0.412090i \(-0.135201\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12.8292i 1.37543i
\(88\) 0 0
\(89\) 7.85353 0.832473 0.416236 0.909256i \(-0.363349\pi\)
0.416236 + 0.909256i \(0.363349\pi\)
\(90\) 0 0
\(91\) 7.67787 0.804859
\(92\) 0 0
\(93\) − 12.4284i − 1.28876i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 6.74797i − 0.685152i −0.939490 0.342576i \(-0.888701\pi\)
0.939490 0.342576i \(-0.111299\pi\)
\(98\) 0 0
\(99\) 0.384215 0.0386151
\(100\) 0 0
\(101\) 17.6503 1.75627 0.878134 0.478415i \(-0.158788\pi\)
0.878134 + 0.478415i \(0.158788\pi\)
\(102\) 0 0
\(103\) − 5.84147i − 0.575577i −0.957694 0.287789i \(-0.907080\pi\)
0.957694 0.287789i \(-0.0929201\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.14743i 0.400947i 0.979699 + 0.200474i \(0.0642481\pi\)
−0.979699 + 0.200474i \(0.935752\pi\)
\(108\) 0 0
\(109\) −5.69767 −0.545738 −0.272869 0.962051i \(-0.587973\pi\)
−0.272869 + 0.962051i \(0.587973\pi\)
\(110\) 0 0
\(111\) 2.72326 0.258480
\(112\) 0 0
\(113\) − 5.36073i − 0.504295i −0.967689 0.252148i \(-0.918863\pi\)
0.967689 0.252148i \(-0.0811368\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.60339i − 0.425584i
\(118\) 0 0
\(119\) 5.63660 0.516707
\(120\) 0 0
\(121\) −10.7359 −0.975995
\(122\) 0 0
\(123\) − 20.6889i − 1.86546i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 18.3991i − 1.63266i −0.577589 0.816328i \(-0.696006\pi\)
0.577589 0.816328i \(-0.303994\pi\)
\(128\) 0 0
\(129\) −5.90212 −0.519653
\(130\) 0 0
\(131\) −14.4958 −1.26650 −0.633252 0.773946i \(-0.718280\pi\)
−0.633252 + 0.773946i \(0.718280\pi\)
\(132\) 0 0
\(133\) − 1.24708i − 0.108135i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.40281i − 0.290722i −0.989379 0.145361i \(-0.953566\pi\)
0.989379 0.145361i \(-0.0464343\pi\)
\(138\) 0 0
\(139\) 4.01062 0.340176 0.170088 0.985429i \(-0.445595\pi\)
0.170088 + 0.985429i \(0.445595\pi\)
\(140\) 0 0
\(141\) 3.86169 0.325213
\(142\) 0 0
\(143\) − 3.16368i − 0.264560i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 10.5406i − 0.869373i
\(148\) 0 0
\(149\) −9.42255 −0.771926 −0.385963 0.922514i \(-0.626131\pi\)
−0.385963 + 0.922514i \(0.626131\pi\)
\(150\) 0 0
\(151\) 1.60111 0.130297 0.0651483 0.997876i \(-0.479248\pi\)
0.0651483 + 0.997876i \(0.479248\pi\)
\(152\) 0 0
\(153\) − 3.37952i − 0.273218i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 18.7241i − 1.49434i −0.664631 0.747172i \(-0.731411\pi\)
0.664631 0.747172i \(-0.268589\pi\)
\(158\) 0 0
\(159\) −27.2667 −2.16239
\(160\) 0 0
\(161\) −7.30892 −0.576024
\(162\) 0 0
\(163\) 15.6370i 1.22479i 0.790553 + 0.612394i \(0.209793\pi\)
−0.790553 + 0.612394i \(0.790207\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 17.5865i − 1.36088i −0.732801 0.680442i \(-0.761788\pi\)
0.732801 0.680442i \(-0.238212\pi\)
\(168\) 0 0
\(169\) −24.9049 −1.91576
\(170\) 0 0
\(171\) −0.747704 −0.0571784
\(172\) 0 0
\(173\) 18.7799i 1.42781i 0.700245 + 0.713903i \(0.253074\pi\)
−0.700245 + 0.713903i \(0.746926\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 8.40686i − 0.631898i
\(178\) 0 0
\(179\) 4.22047 0.315453 0.157726 0.987483i \(-0.449584\pi\)
0.157726 + 0.987483i \(0.449584\pi\)
\(180\) 0 0
\(181\) 11.8180 0.878424 0.439212 0.898383i \(-0.355258\pi\)
0.439212 + 0.898383i \(0.355258\pi\)
\(182\) 0 0
\(183\) − 20.7476i − 1.53371i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.32257i − 0.169843i
\(188\) 0 0
\(189\) −5.43752 −0.395521
\(190\) 0 0
\(191\) 26.7184 1.93327 0.966636 0.256153i \(-0.0824551\pi\)
0.966636 + 0.256153i \(0.0824551\pi\)
\(192\) 0 0
\(193\) 9.25224i 0.665990i 0.942929 + 0.332995i \(0.108059\pi\)
−0.942929 + 0.332995i \(0.891941\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3.32896i − 0.237179i −0.992943 0.118589i \(-0.962163\pi\)
0.992943 0.118589i \(-0.0378372\pi\)
\(198\) 0 0
\(199\) 0.0700969 0.00496903 0.00248452 0.999997i \(-0.499209\pi\)
0.00248452 + 0.999997i \(0.499209\pi\)
\(200\) 0 0
\(201\) 19.1650 1.35179
\(202\) 0 0
\(203\) 8.26437i 0.580045i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.38218i 0.304583i
\(208\) 0 0
\(209\) −0.513860 −0.0355444
\(210\) 0 0
\(211\) 15.5952 1.07362 0.536810 0.843703i \(-0.319629\pi\)
0.536810 + 0.843703i \(0.319629\pi\)
\(212\) 0 0
\(213\) − 14.3744i − 0.984916i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.00616i − 0.543494i
\(218\) 0 0
\(219\) 24.7948 1.67547
\(220\) 0 0
\(221\) −27.8274 −1.87187
\(222\) 0 0
\(223\) 22.4019i 1.50014i 0.661358 + 0.750071i \(0.269980\pi\)
−0.661358 + 0.750071i \(0.730020\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.3464i 1.61593i 0.589234 + 0.807963i \(0.299430\pi\)
−0.589234 + 0.807963i \(0.700570\pi\)
\(228\) 0 0
\(229\) 5.27650 0.348681 0.174340 0.984685i \(-0.444221\pi\)
0.174340 + 0.984685i \(0.444221\pi\)
\(230\) 0 0
\(231\) 1.24057 0.0816233
\(232\) 0 0
\(233\) 4.30335i 0.281922i 0.990015 + 0.140961i \(0.0450192\pi\)
−0.990015 + 0.140961i \(0.954981\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.95857i 0.322094i
\(238\) 0 0
\(239\) 1.44454 0.0934395 0.0467197 0.998908i \(-0.485123\pi\)
0.0467197 + 0.998908i \(0.485123\pi\)
\(240\) 0 0
\(241\) 5.20083 0.335015 0.167507 0.985871i \(-0.446428\pi\)
0.167507 + 0.985871i \(0.446428\pi\)
\(242\) 0 0
\(243\) 7.60259i 0.487707i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.15670i 0.391741i
\(248\) 0 0
\(249\) −14.5360 −0.921180
\(250\) 0 0
\(251\) 1.57046 0.0991267 0.0495634 0.998771i \(-0.484217\pi\)
0.0495634 + 0.998771i \(0.484217\pi\)
\(252\) 0 0
\(253\) 3.01165i 0.189341i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 24.2831i − 1.51474i −0.652988 0.757368i \(-0.726485\pi\)
0.652988 0.757368i \(-0.273515\pi\)
\(258\) 0 0
\(259\) 1.75428 0.109006
\(260\) 0 0
\(261\) 4.95504 0.306709
\(262\) 0 0
\(263\) − 7.50729i − 0.462919i −0.972844 0.231460i \(-0.925650\pi\)
0.972844 0.231460i \(-0.0743501\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 15.2036i − 0.930448i
\(268\) 0 0
\(269\) −9.37783 −0.571776 −0.285888 0.958263i \(-0.592289\pi\)
−0.285888 + 0.958263i \(0.592289\pi\)
\(270\) 0 0
\(271\) 16.8103 1.02115 0.510577 0.859832i \(-0.329432\pi\)
0.510577 + 0.859832i \(0.329432\pi\)
\(272\) 0 0
\(273\) − 14.8636i − 0.899585i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1.55337i − 0.0933328i −0.998911 0.0466664i \(-0.985140\pi\)
0.998911 0.0466664i \(-0.0148598\pi\)
\(278\) 0 0
\(279\) −4.80022 −0.287382
\(280\) 0 0
\(281\) −5.68294 −0.339016 −0.169508 0.985529i \(-0.554218\pi\)
−0.169508 + 0.985529i \(0.554218\pi\)
\(282\) 0 0
\(283\) − 28.2237i − 1.67773i −0.544342 0.838864i \(-0.683220\pi\)
0.544342 0.838864i \(-0.316780\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 13.3275i − 0.786697i
\(288\) 0 0
\(289\) −3.42909 −0.201711
\(290\) 0 0
\(291\) −13.0634 −0.765789
\(292\) 0 0
\(293\) 5.92000i 0.345850i 0.984935 + 0.172925i \(0.0553218\pi\)
−0.984935 + 0.172925i \(0.944678\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.24054i 0.130009i
\(298\) 0 0
\(299\) 36.0835 2.08676
\(300\) 0 0
\(301\) −3.80206 −0.219147
\(302\) 0 0
\(303\) − 34.1691i − 1.96297i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.37023i 0.306495i 0.988188 + 0.153248i \(0.0489732\pi\)
−0.988188 + 0.153248i \(0.951027\pi\)
\(308\) 0 0
\(309\) −11.3085 −0.643318
\(310\) 0 0
\(311\) −3.90761 −0.221580 −0.110790 0.993844i \(-0.535338\pi\)
−0.110790 + 0.993844i \(0.535338\pi\)
\(312\) 0 0
\(313\) 30.1038i 1.70156i 0.525518 + 0.850782i \(0.323871\pi\)
−0.525518 + 0.850782i \(0.676129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 16.7722i − 0.942019i −0.882128 0.471010i \(-0.843890\pi\)
0.882128 0.471010i \(-0.156110\pi\)
\(318\) 0 0
\(319\) 3.40535 0.190663
\(320\) 0 0
\(321\) 8.02900 0.448135
\(322\) 0 0
\(323\) 4.51986i 0.251491i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 11.0301i 0.609967i
\(328\) 0 0
\(329\) 2.48764 0.137148
\(330\) 0 0
\(331\) −24.4039 −1.34136 −0.670680 0.741747i \(-0.733998\pi\)
−0.670680 + 0.741747i \(0.733998\pi\)
\(332\) 0 0
\(333\) − 1.05181i − 0.0576387i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 11.0027i − 0.599355i −0.954041 0.299678i \(-0.903121\pi\)
0.954041 0.299678i \(-0.0968791\pi\)
\(338\) 0 0
\(339\) −10.3778 −0.563646
\(340\) 0 0
\(341\) −3.29895 −0.178648
\(342\) 0 0
\(343\) − 15.5196i − 0.837980i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.2447i 0.711014i 0.934674 + 0.355507i \(0.115692\pi\)
−0.934674 + 0.355507i \(0.884308\pi\)
\(348\) 0 0
\(349\) −1.03534 −0.0554206 −0.0277103 0.999616i \(-0.508822\pi\)
−0.0277103 + 0.999616i \(0.508822\pi\)
\(350\) 0 0
\(351\) 26.8445 1.43286
\(352\) 0 0
\(353\) 5.37333i 0.285994i 0.989723 + 0.142997i \(0.0456739\pi\)
−0.989723 + 0.142997i \(0.954326\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 10.9119i − 0.577519i
\(358\) 0 0
\(359\) −23.6189 −1.24656 −0.623280 0.781999i \(-0.714200\pi\)
−0.623280 + 0.781999i \(0.714200\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 20.7837i 1.09086i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.75683i 0.404903i 0.979292 + 0.202452i \(0.0648909\pi\)
−0.979292 + 0.202452i \(0.935109\pi\)
\(368\) 0 0
\(369\) −7.99071 −0.415980
\(370\) 0 0
\(371\) −17.5648 −0.911918
\(372\) 0 0
\(373\) − 32.2543i − 1.67006i −0.550201 0.835032i \(-0.685449\pi\)
0.550201 0.835032i \(-0.314551\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 40.8004i − 2.10133i
\(378\) 0 0
\(379\) −28.7810 −1.47838 −0.739191 0.673496i \(-0.764792\pi\)
−0.739191 + 0.673496i \(0.764792\pi\)
\(380\) 0 0
\(381\) −35.6188 −1.82481
\(382\) 0 0
\(383\) 11.0718i 0.565743i 0.959158 + 0.282871i \(0.0912869\pi\)
−0.959158 + 0.282871i \(0.908713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.27958i 0.115878i
\(388\) 0 0
\(389\) 4.65488 0.236012 0.118006 0.993013i \(-0.462350\pi\)
0.118006 + 0.993013i \(0.462350\pi\)
\(390\) 0 0
\(391\) 26.4902 1.33967
\(392\) 0 0
\(393\) 28.0624i 1.41556i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0.573392i 0.0287777i 0.999896 + 0.0143889i \(0.00458027\pi\)
−0.999896 + 0.0143889i \(0.995420\pi\)
\(398\) 0 0
\(399\) −2.41421 −0.120862
\(400\) 0 0
\(401\) 35.9965 1.79758 0.898791 0.438378i \(-0.144447\pi\)
0.898791 + 0.438378i \(0.144447\pi\)
\(402\) 0 0
\(403\) 39.5257i 1.96891i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 0.722854i − 0.0358305i
\(408\) 0 0
\(409\) −18.3961 −0.909626 −0.454813 0.890587i \(-0.650294\pi\)
−0.454813 + 0.890587i \(0.650294\pi\)
\(410\) 0 0
\(411\) −6.58750 −0.324937
\(412\) 0 0
\(413\) − 5.41557i − 0.266483i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 7.76415i − 0.380212i
\(418\) 0 0
\(419\) −14.0610 −0.686923 −0.343461 0.939167i \(-0.611599\pi\)
−0.343461 + 0.939167i \(0.611599\pi\)
\(420\) 0 0
\(421\) −36.7041 −1.78885 −0.894425 0.447218i \(-0.852415\pi\)
−0.894425 + 0.447218i \(0.852415\pi\)
\(422\) 0 0
\(423\) − 1.49151i − 0.0725195i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 13.3653i − 0.646793i
\(428\) 0 0
\(429\) −6.12456 −0.295697
\(430\) 0 0
\(431\) 21.2682 1.02445 0.512226 0.858851i \(-0.328821\pi\)
0.512226 + 0.858851i \(0.328821\pi\)
\(432\) 0 0
\(433\) − 11.8229i − 0.568172i −0.958799 0.284086i \(-0.908310\pi\)
0.958799 0.284086i \(-0.0916900\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.86084i − 0.280362i
\(438\) 0 0
\(439\) 8.03728 0.383599 0.191799 0.981434i \(-0.438568\pi\)
0.191799 + 0.981434i \(0.438568\pi\)
\(440\) 0 0
\(441\) −4.07110 −0.193862
\(442\) 0 0
\(443\) − 10.3632i − 0.492368i −0.969223 0.246184i \(-0.920823\pi\)
0.969223 0.246184i \(-0.0791768\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.2411i 0.862775i
\(448\) 0 0
\(449\) 33.4637 1.57925 0.789625 0.613590i \(-0.210275\pi\)
0.789625 + 0.613590i \(0.210275\pi\)
\(450\) 0 0
\(451\) −5.49161 −0.258590
\(452\) 0 0
\(453\) − 3.09959i − 0.145631i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.6968i 1.29560i 0.761809 + 0.647801i \(0.224311\pi\)
−0.761809 + 0.647801i \(0.775689\pi\)
\(458\) 0 0
\(459\) 19.7075 0.919870
\(460\) 0 0
\(461\) 4.70500 0.219134 0.109567 0.993979i \(-0.465054\pi\)
0.109567 + 0.993979i \(0.465054\pi\)
\(462\) 0 0
\(463\) − 5.44945i − 0.253257i −0.991950 0.126629i \(-0.959584\pi\)
0.991950 0.126629i \(-0.0404157\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 10.9687i − 0.507571i −0.967260 0.253786i \(-0.918324\pi\)
0.967260 0.253786i \(-0.0816758\pi\)
\(468\) 0 0
\(469\) 12.3458 0.570075
\(470\) 0 0
\(471\) −36.2479 −1.67022
\(472\) 0 0
\(473\) 1.56664i 0.0720343i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.5312i 0.482193i
\(478\) 0 0
\(479\) 14.4663 0.660980 0.330490 0.943809i \(-0.392786\pi\)
0.330490 + 0.943809i \(0.392786\pi\)
\(480\) 0 0
\(481\) −8.66072 −0.394895
\(482\) 0 0
\(483\) 14.1493i 0.643817i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 26.1973i − 1.18711i −0.804793 0.593556i \(-0.797724\pi\)
0.804793 0.593556i \(-0.202276\pi\)
\(488\) 0 0
\(489\) 30.2717 1.36894
\(490\) 0 0
\(491\) 12.3251 0.556224 0.278112 0.960549i \(-0.410291\pi\)
0.278112 + 0.960549i \(0.410291\pi\)
\(492\) 0 0
\(493\) − 29.9531i − 1.34902i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 9.25975i − 0.415356i
\(498\) 0 0
\(499\) −27.4827 −1.23029 −0.615146 0.788413i \(-0.710903\pi\)
−0.615146 + 0.788413i \(0.710903\pi\)
\(500\) 0 0
\(501\) −34.0457 −1.52105
\(502\) 0 0
\(503\) 21.0989i 0.940756i 0.882465 + 0.470378i \(0.155882\pi\)
−0.882465 + 0.470378i \(0.844118\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 48.2134i 2.14123i
\(508\) 0 0
\(509\) 14.3975 0.638156 0.319078 0.947728i \(-0.396627\pi\)
0.319078 + 0.947728i \(0.396627\pi\)
\(510\) 0 0
\(511\) 15.9724 0.706577
\(512\) 0 0
\(513\) − 4.36022i − 0.192508i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.02504i − 0.0450811i
\(518\) 0 0
\(519\) 36.3559 1.59585
\(520\) 0 0
\(521\) 9.60225 0.420682 0.210341 0.977628i \(-0.432543\pi\)
0.210341 + 0.977628i \(0.432543\pi\)
\(522\) 0 0
\(523\) 1.07927i 0.0471933i 0.999722 + 0.0235966i \(0.00751174\pi\)
−0.999722 + 0.0235966i \(0.992488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.0172i 1.26401i
\(528\) 0 0
\(529\) −11.3495 −0.493457
\(530\) 0 0
\(531\) −3.24699 −0.140907
\(532\) 0 0
\(533\) 65.7966i 2.84997i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8.17040i − 0.352579i
\(538\) 0 0
\(539\) −2.79786 −0.120513
\(540\) 0 0
\(541\) −3.55082 −0.152662 −0.0763309 0.997083i \(-0.524321\pi\)
−0.0763309 + 0.997083i \(0.524321\pi\)
\(542\) 0 0
\(543\) − 22.8784i − 0.981807i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.5233i 1.90368i 0.306596 + 0.951840i \(0.400810\pi\)
−0.306596 + 0.951840i \(0.599190\pi\)
\(548\) 0 0
\(549\) −8.01339 −0.342003
\(550\) 0 0
\(551\) −6.62700 −0.282320
\(552\) 0 0
\(553\) 3.19424i 0.135833i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 11.2157i − 0.475227i −0.971360 0.237613i \(-0.923635\pi\)
0.971360 0.237613i \(-0.0763651\pi\)
\(558\) 0 0
\(559\) 18.7704 0.793903
\(560\) 0 0
\(561\) −4.49626 −0.189832
\(562\) 0 0
\(563\) − 36.1900i − 1.52523i −0.646854 0.762614i \(-0.723916\pi\)
0.646854 0.762614i \(-0.276084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 13.3238i 0.559548i
\(568\) 0 0
\(569\) 9.60022 0.402462 0.201231 0.979544i \(-0.435506\pi\)
0.201231 + 0.979544i \(0.435506\pi\)
\(570\) 0 0
\(571\) 29.4150 1.23098 0.615490 0.788145i \(-0.288958\pi\)
0.615490 + 0.788145i \(0.288958\pi\)
\(572\) 0 0
\(573\) − 51.7240i − 2.16080i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20.9070i 0.870371i 0.900341 + 0.435186i \(0.143317\pi\)
−0.900341 + 0.435186i \(0.856683\pi\)
\(578\) 0 0
\(579\) 17.9114 0.744372
\(580\) 0 0
\(581\) −9.36384 −0.388478
\(582\) 0 0
\(583\) 7.23760i 0.299751i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 41.2156i 1.70115i 0.525853 + 0.850576i \(0.323746\pi\)
−0.525853 + 0.850576i \(0.676254\pi\)
\(588\) 0 0
\(589\) 6.41995 0.264529
\(590\) 0 0
\(591\) −6.44453 −0.265093
\(592\) 0 0
\(593\) 32.0201i 1.31491i 0.753495 + 0.657454i \(0.228367\pi\)
−0.753495 + 0.657454i \(0.771633\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 0.135700i − 0.00555385i
\(598\) 0 0
\(599\) −46.7364 −1.90960 −0.954798 0.297256i \(-0.903929\pi\)
−0.954798 + 0.297256i \(0.903929\pi\)
\(600\) 0 0
\(601\) −22.9230 −0.935050 −0.467525 0.883980i \(-0.654854\pi\)
−0.467525 + 0.883980i \(0.654854\pi\)
\(602\) 0 0
\(603\) − 7.40211i − 0.301437i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 38.7571i 1.57310i 0.617525 + 0.786552i \(0.288136\pi\)
−0.617525 + 0.786552i \(0.711864\pi\)
\(608\) 0 0
\(609\) 15.9990 0.648312
\(610\) 0 0
\(611\) −12.2813 −0.496847
\(612\) 0 0
\(613\) 13.4487i 0.543187i 0.962412 + 0.271593i \(0.0875505\pi\)
−0.962412 + 0.271593i \(0.912449\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 10.9727i − 0.441744i −0.975303 0.220872i \(-0.929110\pi\)
0.975303 0.220872i \(-0.0708903\pi\)
\(618\) 0 0
\(619\) −46.1568 −1.85520 −0.927600 0.373575i \(-0.878132\pi\)
−0.927600 + 0.373575i \(0.878132\pi\)
\(620\) 0 0
\(621\) −25.5546 −1.02547
\(622\) 0 0
\(623\) − 9.79395i − 0.392386i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.994780i 0.0397277i
\(628\) 0 0
\(629\) −6.35815 −0.253516
\(630\) 0 0
\(631\) 43.3700 1.72653 0.863266 0.504749i \(-0.168415\pi\)
0.863266 + 0.504749i \(0.168415\pi\)
\(632\) 0 0
\(633\) − 30.1908i − 1.19998i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 33.5220i 1.32819i
\(638\) 0 0
\(639\) −5.55183 −0.219627
\(640\) 0 0
\(641\) 16.6952 0.659420 0.329710 0.944082i \(-0.393049\pi\)
0.329710 + 0.944082i \(0.393049\pi\)
\(642\) 0 0
\(643\) 23.4243i 0.923765i 0.886941 + 0.461882i \(0.152826\pi\)
−0.886941 + 0.461882i \(0.847174\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.3397i − 0.681694i −0.940119 0.340847i \(-0.889286\pi\)
0.940119 0.340847i \(-0.110714\pi\)
\(648\) 0 0
\(649\) −2.23149 −0.0875938
\(650\) 0 0
\(651\) −15.4991 −0.607458
\(652\) 0 0
\(653\) − 18.3541i − 0.718251i −0.933289 0.359126i \(-0.883075\pi\)
0.933289 0.359126i \(-0.116925\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 9.57651i − 0.373615i
\(658\) 0 0
\(659\) 23.4398 0.913085 0.456543 0.889702i \(-0.349088\pi\)
0.456543 + 0.889702i \(0.349088\pi\)
\(660\) 0 0
\(661\) −20.7743 −0.808027 −0.404014 0.914753i \(-0.632385\pi\)
−0.404014 + 0.914753i \(0.632385\pi\)
\(662\) 0 0
\(663\) 53.8710i 2.09218i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 38.8398i 1.50388i
\(668\) 0 0
\(669\) 43.3678 1.67670
\(670\) 0 0
\(671\) −5.50720 −0.212603
\(672\) 0 0
\(673\) 6.74273i 0.259913i 0.991520 + 0.129957i \(0.0414838\pi\)
−0.991520 + 0.129957i \(0.958516\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25.1589i 0.966934i 0.875363 + 0.483467i \(0.160623\pi\)
−0.875363 + 0.483467i \(0.839377\pi\)
\(678\) 0 0
\(679\) −8.41523 −0.322947
\(680\) 0 0
\(681\) 47.1321 1.80611
\(682\) 0 0
\(683\) 13.7289i 0.525321i 0.964888 + 0.262661i \(0.0845999\pi\)
−0.964888 + 0.262661i \(0.915400\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 10.2148i − 0.389718i
\(688\) 0 0
\(689\) 86.7157 3.30360
\(690\) 0 0
\(691\) 26.8531 1.02154 0.510770 0.859718i \(-0.329361\pi\)
0.510770 + 0.859718i \(0.329361\pi\)
\(692\) 0 0
\(693\) − 0.479145i − 0.0182012i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 48.3037i 1.82963i
\(698\) 0 0
\(699\) 8.33085 0.315102
\(700\) 0 0
\(701\) −20.1359 −0.760524 −0.380262 0.924879i \(-0.624166\pi\)
−0.380262 + 0.924879i \(0.624166\pi\)
\(702\) 0 0
\(703\) 1.40671i 0.0530553i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 22.0112i − 0.827818i
\(708\) 0 0
\(709\) −23.4008 −0.878837 −0.439419 0.898282i \(-0.644816\pi\)
−0.439419 + 0.898282i \(0.644816\pi\)
\(710\) 0 0
\(711\) 1.91515 0.0718239
\(712\) 0 0
\(713\) − 37.6263i − 1.40912i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.79648i − 0.104437i
\(718\) 0 0
\(719\) −10.5133 −0.392082 −0.196041 0.980596i \(-0.562809\pi\)
−0.196041 + 0.980596i \(0.562809\pi\)
\(720\) 0 0
\(721\) −7.28476 −0.271299
\(722\) 0 0
\(723\) − 10.0683i − 0.374443i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 35.6031i − 1.32044i −0.751070 0.660222i \(-0.770462\pi\)
0.751070 0.660222i \(-0.229538\pi\)
\(728\) 0 0
\(729\) −17.3343 −0.642011
\(730\) 0 0
\(731\) 13.7800 0.509673
\(732\) 0 0
\(733\) 37.2476i 1.37577i 0.725818 + 0.687886i \(0.241461\pi\)
−0.725818 + 0.687886i \(0.758539\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5.08710i − 0.187386i
\(738\) 0 0
\(739\) 26.1515 0.961998 0.480999 0.876721i \(-0.340274\pi\)
0.480999 + 0.876721i \(0.340274\pi\)
\(740\) 0 0
\(741\) 11.9187 0.437846
\(742\) 0 0
\(743\) − 16.4700i − 0.604226i −0.953272 0.302113i \(-0.902308\pi\)
0.953272 0.302113i \(-0.0976920\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5.61424i 0.205414i
\(748\) 0 0
\(749\) 5.17216 0.188987
\(750\) 0 0
\(751\) −24.0052 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(752\) 0 0
\(753\) − 3.04026i − 0.110793i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.5457i 1.25558i 0.778381 + 0.627792i \(0.216041\pi\)
−0.778381 + 0.627792i \(0.783959\pi\)
\(758\) 0 0
\(759\) 5.83025 0.211625
\(760\) 0 0
\(761\) −34.6920 −1.25758 −0.628792 0.777573i \(-0.716450\pi\)
−0.628792 + 0.777573i \(0.716450\pi\)
\(762\) 0 0
\(763\) 7.10543i 0.257234i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 26.7362i 0.965387i
\(768\) 0 0
\(769\) 30.1152 1.08598 0.542991 0.839738i \(-0.317292\pi\)
0.542991 + 0.839738i \(0.317292\pi\)
\(770\) 0 0
\(771\) −47.0096 −1.69301
\(772\) 0 0
\(773\) − 29.9879i − 1.07859i −0.842117 0.539295i \(-0.818691\pi\)
0.842117 0.539295i \(-0.181309\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 3.39611i − 0.121835i
\(778\) 0 0
\(779\) 10.6870 0.382901
\(780\) 0 0
\(781\) −3.81549 −0.136529
\(782\) 0 0
\(783\) 28.8952i 1.03263i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.3894i 0.370342i 0.982706 + 0.185171i \(0.0592838\pi\)
−0.982706 + 0.185171i \(0.940716\pi\)
\(788\) 0 0
\(789\) −14.5334 −0.517401
\(790\) 0 0
\(791\) −6.68524 −0.237700
\(792\) 0 0
\(793\) 65.9833i 2.34314i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.8854i 1.16486i 0.812881 + 0.582430i \(0.197898\pi\)
−0.812881 + 0.582430i \(0.802102\pi\)
\(798\) 0 0
\(799\) −9.01612 −0.318967
\(800\) 0 0
\(801\) −5.87212 −0.207481
\(802\) 0 0
\(803\) − 6.58145i − 0.232254i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.1545i 0.639070i
\(808\) 0 0
\(809\) 16.5347 0.581329 0.290664 0.956825i \(-0.406124\pi\)
0.290664 + 0.956825i \(0.406124\pi\)
\(810\) 0 0
\(811\) 2.88477 0.101298 0.0506489 0.998717i \(-0.483871\pi\)
0.0506489 + 0.998717i \(0.483871\pi\)
\(812\) 0 0
\(813\) − 32.5431i − 1.14134i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.04878i − 0.106663i
\(818\) 0 0
\(819\) −5.74078 −0.200599
\(820\) 0 0
\(821\) −10.0122 −0.349428 −0.174714 0.984619i \(-0.555900\pi\)
−0.174714 + 0.984619i \(0.555900\pi\)
\(822\) 0 0
\(823\) − 26.1520i − 0.911602i −0.890082 0.455801i \(-0.849353\pi\)
0.890082 0.455801i \(-0.150647\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 25.1880i − 0.875873i −0.899006 0.437936i \(-0.855710\pi\)
0.899006 0.437936i \(-0.144290\pi\)
\(828\) 0 0
\(829\) −3.32822 −0.115594 −0.0577969 0.998328i \(-0.518408\pi\)
−0.0577969 + 0.998328i \(0.518408\pi\)
\(830\) 0 0
\(831\) −3.00716 −0.104317
\(832\) 0 0
\(833\) 24.6097i 0.852676i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 27.9924i − 0.967557i
\(838\) 0 0
\(839\) 50.5339 1.74462 0.872312 0.488949i \(-0.162620\pi\)
0.872312 + 0.488949i \(0.162620\pi\)
\(840\) 0 0
\(841\) 14.9171 0.514384
\(842\) 0 0
\(843\) 11.0016i 0.378915i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 13.3885i 0.460036i
\(848\) 0 0
\(849\) −54.6383 −1.87518
\(850\) 0 0
\(851\) 8.24454 0.282619
\(852\) 0 0
\(853\) 54.6636i 1.87165i 0.352470 + 0.935823i \(0.385342\pi\)
−0.352470 + 0.935823i \(0.614658\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.8578i 0.951603i 0.879553 + 0.475802i \(0.157842\pi\)
−0.879553 + 0.475802i \(0.842158\pi\)
\(858\) 0 0
\(859\) 55.2474 1.88502 0.942509 0.334181i \(-0.108460\pi\)
0.942509 + 0.334181i \(0.108460\pi\)
\(860\) 0 0
\(861\) −25.8007 −0.879285
\(862\) 0 0
\(863\) 27.3258i 0.930181i 0.885263 + 0.465090i \(0.153978\pi\)
−0.885263 + 0.465090i \(0.846022\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.63838i 0.225451i
\(868\) 0 0
\(869\) 1.31619 0.0446487
\(870\) 0 0
\(871\) −60.9500 −2.06521
\(872\) 0 0
\(873\) 5.04548i 0.170764i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 13.3409i − 0.450489i −0.974302 0.225245i \(-0.927682\pi\)
0.974302 0.225245i \(-0.0723181\pi\)
\(878\) 0 0
\(879\) 11.4605 0.386554
\(880\) 0 0
\(881\) −44.5458 −1.50079 −0.750393 0.660992i \(-0.770136\pi\)
−0.750393 + 0.660992i \(0.770136\pi\)
\(882\) 0 0
\(883\) 23.4498i 0.789148i 0.918864 + 0.394574i \(0.129108\pi\)
−0.918864 + 0.394574i \(0.870892\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 40.1362i − 1.34764i −0.738895 0.673821i \(-0.764652\pi\)
0.738895 0.673821i \(-0.235348\pi\)
\(888\) 0 0
\(889\) −22.9451 −0.769553
\(890\) 0 0
\(891\) 5.49010 0.183925
\(892\) 0 0
\(893\) 1.99478i 0.0667528i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 69.8539i − 2.33235i
\(898\) 0 0
\(899\) −42.5450 −1.41895
\(900\) 0 0
\(901\) 63.6611 2.12086
\(902\) 0 0
\(903\) 7.36040i 0.244939i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 35.8062i − 1.18893i −0.804123 0.594463i \(-0.797364\pi\)
0.804123 0.594463i \(-0.202636\pi\)
\(908\) 0 0
\(909\) −13.1972 −0.437723
\(910\) 0 0
\(911\) −29.5302 −0.978381 −0.489190 0.872177i \(-0.662708\pi\)
−0.489190 + 0.872177i \(0.662708\pi\)
\(912\) 0 0
\(913\) 3.85839i 0.127694i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.0774i 0.596967i
\(918\) 0 0
\(919\) −11.7570 −0.387829 −0.193914 0.981018i \(-0.562118\pi\)
−0.193914 + 0.981018i \(0.562118\pi\)
\(920\) 0 0
\(921\) 10.3962 0.342567
\(922\) 0 0
\(923\) 45.7145i 1.50471i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.36769i 0.143454i
\(928\) 0 0
\(929\) 21.5189 0.706012 0.353006 0.935621i \(-0.385159\pi\)
0.353006 + 0.935621i \(0.385159\pi\)
\(930\) 0 0
\(931\) 5.44480 0.178446
\(932\) 0 0
\(933\) 7.56473i 0.247658i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31.7690i 1.03785i 0.854820 + 0.518924i \(0.173667\pi\)
−0.854820 + 0.518924i \(0.826333\pi\)
\(938\) 0 0
\(939\) 58.2778 1.90182
\(940\) 0 0
\(941\) −0.730603 −0.0238170 −0.0119085 0.999929i \(-0.503791\pi\)
−0.0119085 + 0.999929i \(0.503791\pi\)
\(942\) 0 0
\(943\) − 62.6348i − 2.03967i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.2171i 1.33938i 0.742643 + 0.669688i \(0.233572\pi\)
−0.742643 + 0.669688i \(0.766428\pi\)
\(948\) 0 0
\(949\) −78.8543 −2.55972
\(950\) 0 0
\(951\) −32.4692 −1.05289
\(952\) 0 0
\(953\) 39.9343i 1.29360i 0.762660 + 0.646800i \(0.223893\pi\)
−0.762660 + 0.646800i \(0.776107\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 6.59241i − 0.213102i
\(958\) 0 0
\(959\) −4.24357 −0.137032
\(960\) 0 0
\(961\) 10.2157 0.329539
\(962\) 0 0
\(963\) − 3.10105i − 0.0999300i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.73989i 0.281056i 0.990077 + 0.140528i \(0.0448800\pi\)
−0.990077 + 0.140528i \(0.955120\pi\)
\(968\) 0 0
\(969\) 8.74998 0.281090
\(970\) 0 0
\(971\) 7.49072 0.240389 0.120194 0.992750i \(-0.461648\pi\)
0.120194 + 0.992750i \(0.461648\pi\)
\(972\) 0 0
\(973\) − 5.00155i − 0.160342i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 51.6069i − 1.65105i −0.564364 0.825526i \(-0.690879\pi\)
0.564364 0.825526i \(-0.309121\pi\)
\(978\) 0 0
\(979\) −4.03561 −0.128979
\(980\) 0 0
\(981\) 4.26017 0.136017
\(982\) 0 0
\(983\) − 57.9017i − 1.84678i −0.383865 0.923389i \(-0.625407\pi\)
0.383865 0.923389i \(-0.374593\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 4.81582i − 0.153289i
\(988\) 0 0
\(989\) −17.8684 −0.568182
\(990\) 0 0
\(991\) −18.2369 −0.579314 −0.289657 0.957131i \(-0.593541\pi\)
−0.289657 + 0.957131i \(0.593541\pi\)
\(992\) 0 0
\(993\) 47.2435i 1.49923i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.7461i 0.340332i 0.985415 + 0.170166i \(0.0544305\pi\)
−0.985415 + 0.170166i \(0.945570\pi\)
\(998\) 0 0
\(999\) 6.13358 0.194058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.q.3649.3 12
5.2 odd 4 3800.2.a.ba.1.2 6
5.3 odd 4 3800.2.a.bc.1.5 yes 6
5.4 even 2 inner 3800.2.d.q.3649.10 12
20.3 even 4 7600.2.a.ch.1.2 6
20.7 even 4 7600.2.a.cl.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.2 6 5.2 odd 4
3800.2.a.bc.1.5 yes 6 5.3 odd 4
3800.2.d.q.3649.3 12 1.1 even 1 trivial
3800.2.d.q.3649.10 12 5.4 even 2 inner
7600.2.a.ch.1.2 6 20.3 even 4
7600.2.a.cl.1.5 6 20.7 even 4