Properties

Label 3808.2.a.l.1.4
Level $3808$
Weight $2$
Character 3808.1
Self dual yes
Analytic conductor $30.407$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.4070330897\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.93059344.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 13x^{4} + 41x^{2} - 8x - 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.644180\) of defining polynomial
Character \(\chi\) \(=\) 3808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.644180 q^{3} -2.53164 q^{5} +1.00000 q^{7} -2.58503 q^{9} +O(q^{10})\) \(q+0.644180 q^{3} -2.53164 q^{5} +1.00000 q^{7} -2.58503 q^{9} -2.23245 q^{11} -5.25278 q^{13} -1.63083 q^{15} -1.00000 q^{17} +2.57420 q^{19} +0.644180 q^{21} +3.02032 q^{23} +1.40921 q^{25} -3.59777 q^{27} -0.232452 q^{29} +6.24195 q^{31} -1.43810 q^{33} -2.53164 q^{35} +3.26418 q^{37} -3.38373 q^{39} -6.47116 q^{41} -4.37614 q^{43} +6.54438 q^{45} +10.1380 q^{47} +1.00000 q^{49} -0.644180 q^{51} +6.27501 q^{53} +5.65177 q^{55} +1.65825 q^{57} +1.13610 q^{59} -1.14215 q^{61} -2.58503 q^{63} +13.2981 q^{65} -9.62799 q^{67} +1.94563 q^{69} +7.88135 q^{71} +1.67627 q^{73} +0.907785 q^{75} -2.23245 q^{77} +3.38373 q^{79} +5.43749 q^{81} +15.6628 q^{83} +2.53164 q^{85} -0.149741 q^{87} +16.8164 q^{89} -5.25278 q^{91} +4.02094 q^{93} -6.51696 q^{95} -0.616763 q^{97} +5.77096 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{5} + 6 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 4 q^{5} + 6 q^{7} + 8 q^{9} - 4 q^{11} - 4 q^{13} - 2 q^{15} - 6 q^{17} - 6 q^{19} + 8 q^{25} + 8 q^{29} + 12 q^{31} + 28 q^{33} + 4 q^{35} + 10 q^{37} + 14 q^{39} + 14 q^{41} - 12 q^{43} + 22 q^{45} + 2 q^{47} + 6 q^{49} + 26 q^{53} + 10 q^{55} + 22 q^{57} + 22 q^{59} + 2 q^{61} + 8 q^{63} + 8 q^{65} - 14 q^{67} + 14 q^{69} - 4 q^{71} + 18 q^{73} - 28 q^{75} - 4 q^{77} - 14 q^{79} - 6 q^{81} + 8 q^{83} - 4 q^{85} + 28 q^{87} + 6 q^{89} - 4 q^{91} + 8 q^{93} - 2 q^{95} + 20 q^{97} - 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.644180 0.371917 0.185959 0.982558i \(-0.440461\pi\)
0.185959 + 0.982558i \(0.440461\pi\)
\(4\) 0 0
\(5\) −2.53164 −1.13218 −0.566092 0.824342i \(-0.691545\pi\)
−0.566092 + 0.824342i \(0.691545\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) −2.58503 −0.861677
\(10\) 0 0
\(11\) −2.23245 −0.673110 −0.336555 0.941664i \(-0.609262\pi\)
−0.336555 + 0.941664i \(0.609262\pi\)
\(12\) 0 0
\(13\) −5.25278 −1.45686 −0.728429 0.685121i \(-0.759749\pi\)
−0.728429 + 0.685121i \(0.759749\pi\)
\(14\) 0 0
\(15\) −1.63083 −0.421079
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 2.57420 0.590563 0.295281 0.955410i \(-0.404587\pi\)
0.295281 + 0.955410i \(0.404587\pi\)
\(20\) 0 0
\(21\) 0.644180 0.140572
\(22\) 0 0
\(23\) 3.02032 0.629781 0.314890 0.949128i \(-0.398032\pi\)
0.314890 + 0.949128i \(0.398032\pi\)
\(24\) 0 0
\(25\) 1.40921 0.281842
\(26\) 0 0
\(27\) −3.59777 −0.692390
\(28\) 0 0
\(29\) −0.232452 −0.0431653 −0.0215826 0.999767i \(-0.506871\pi\)
−0.0215826 + 0.999767i \(0.506871\pi\)
\(30\) 0 0
\(31\) 6.24195 1.12109 0.560543 0.828125i \(-0.310592\pi\)
0.560543 + 0.828125i \(0.310592\pi\)
\(32\) 0 0
\(33\) −1.43810 −0.250341
\(34\) 0 0
\(35\) −2.53164 −0.427926
\(36\) 0 0
\(37\) 3.26418 0.536628 0.268314 0.963331i \(-0.413533\pi\)
0.268314 + 0.963331i \(0.413533\pi\)
\(38\) 0 0
\(39\) −3.38373 −0.541831
\(40\) 0 0
\(41\) −6.47116 −1.01063 −0.505313 0.862936i \(-0.668623\pi\)
−0.505313 + 0.862936i \(0.668623\pi\)
\(42\) 0 0
\(43\) −4.37614 −0.667356 −0.333678 0.942687i \(-0.608290\pi\)
−0.333678 + 0.942687i \(0.608290\pi\)
\(44\) 0 0
\(45\) 6.54438 0.975578
\(46\) 0 0
\(47\) 10.1380 1.47878 0.739388 0.673280i \(-0.235115\pi\)
0.739388 + 0.673280i \(0.235115\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.644180 −0.0902032
\(52\) 0 0
\(53\) 6.27501 0.861939 0.430970 0.902366i \(-0.358172\pi\)
0.430970 + 0.902366i \(0.358172\pi\)
\(54\) 0 0
\(55\) 5.65177 0.762084
\(56\) 0 0
\(57\) 1.65825 0.219641
\(58\) 0 0
\(59\) 1.13610 0.147908 0.0739539 0.997262i \(-0.476438\pi\)
0.0739539 + 0.997262i \(0.476438\pi\)
\(60\) 0 0
\(61\) −1.14215 −0.146238 −0.0731188 0.997323i \(-0.523295\pi\)
−0.0731188 + 0.997323i \(0.523295\pi\)
\(62\) 0 0
\(63\) −2.58503 −0.325683
\(64\) 0 0
\(65\) 13.2981 1.64943
\(66\) 0 0
\(67\) −9.62799 −1.17625 −0.588123 0.808771i \(-0.700133\pi\)
−0.588123 + 0.808771i \(0.700133\pi\)
\(68\) 0 0
\(69\) 1.94563 0.234227
\(70\) 0 0
\(71\) 7.88135 0.935344 0.467672 0.883902i \(-0.345093\pi\)
0.467672 + 0.883902i \(0.345093\pi\)
\(72\) 0 0
\(73\) 1.67627 0.196192 0.0980962 0.995177i \(-0.468725\pi\)
0.0980962 + 0.995177i \(0.468725\pi\)
\(74\) 0 0
\(75\) 0.907785 0.104822
\(76\) 0 0
\(77\) −2.23245 −0.254412
\(78\) 0 0
\(79\) 3.38373 0.380700 0.190350 0.981716i \(-0.439038\pi\)
0.190350 + 0.981716i \(0.439038\pi\)
\(80\) 0 0
\(81\) 5.43749 0.604165
\(82\) 0 0
\(83\) 15.6628 1.71922 0.859610 0.510950i \(-0.170706\pi\)
0.859610 + 0.510950i \(0.170706\pi\)
\(84\) 0 0
\(85\) 2.53164 0.274595
\(86\) 0 0
\(87\) −0.149741 −0.0160539
\(88\) 0 0
\(89\) 16.8164 1.78254 0.891270 0.453474i \(-0.149815\pi\)
0.891270 + 0.453474i \(0.149815\pi\)
\(90\) 0 0
\(91\) −5.25278 −0.550640
\(92\) 0 0
\(93\) 4.02094 0.416952
\(94\) 0 0
\(95\) −6.51696 −0.668626
\(96\) 0 0
\(97\) −0.616763 −0.0626228 −0.0313114 0.999510i \(-0.509968\pi\)
−0.0313114 + 0.999510i \(0.509968\pi\)
\(98\) 0 0
\(99\) 5.77096 0.580003
\(100\) 0 0
\(101\) 13.6375 1.35698 0.678490 0.734609i \(-0.262635\pi\)
0.678490 + 0.734609i \(0.262635\pi\)
\(102\) 0 0
\(103\) −8.02119 −0.790352 −0.395176 0.918605i \(-0.629316\pi\)
−0.395176 + 0.918605i \(0.629316\pi\)
\(104\) 0 0
\(105\) −1.63083 −0.159153
\(106\) 0 0
\(107\) 8.22058 0.794713 0.397357 0.917664i \(-0.369928\pi\)
0.397357 + 0.917664i \(0.369928\pi\)
\(108\) 0 0
\(109\) −5.59453 −0.535858 −0.267929 0.963439i \(-0.586339\pi\)
−0.267929 + 0.963439i \(0.586339\pi\)
\(110\) 0 0
\(111\) 2.10272 0.199581
\(112\) 0 0
\(113\) 5.17017 0.486369 0.243184 0.969980i \(-0.421808\pi\)
0.243184 + 0.969980i \(0.421808\pi\)
\(114\) 0 0
\(115\) −7.64638 −0.713028
\(116\) 0 0
\(117\) 13.5786 1.25534
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −6.01616 −0.546923
\(122\) 0 0
\(123\) −4.16859 −0.375869
\(124\) 0 0
\(125\) 9.09059 0.813087
\(126\) 0 0
\(127\) 7.13639 0.633253 0.316626 0.948550i \(-0.397450\pi\)
0.316626 + 0.948550i \(0.397450\pi\)
\(128\) 0 0
\(129\) −2.81902 −0.248201
\(130\) 0 0
\(131\) −10.5435 −0.921194 −0.460597 0.887609i \(-0.652365\pi\)
−0.460597 + 0.887609i \(0.652365\pi\)
\(132\) 0 0
\(133\) 2.57420 0.223212
\(134\) 0 0
\(135\) 9.10825 0.783914
\(136\) 0 0
\(137\) 3.58575 0.306352 0.153176 0.988199i \(-0.451050\pi\)
0.153176 + 0.988199i \(0.451050\pi\)
\(138\) 0 0
\(139\) −8.90646 −0.755436 −0.377718 0.925921i \(-0.623291\pi\)
−0.377718 + 0.925921i \(0.623291\pi\)
\(140\) 0 0
\(141\) 6.53068 0.549983
\(142\) 0 0
\(143\) 11.7266 0.980625
\(144\) 0 0
\(145\) 0.588486 0.0488711
\(146\) 0 0
\(147\) 0.644180 0.0531311
\(148\) 0 0
\(149\) −15.3248 −1.25546 −0.627730 0.778431i \(-0.716016\pi\)
−0.627730 + 0.778431i \(0.716016\pi\)
\(150\) 0 0
\(151\) −6.17776 −0.502739 −0.251370 0.967891i \(-0.580881\pi\)
−0.251370 + 0.967891i \(0.580881\pi\)
\(152\) 0 0
\(153\) 2.58503 0.208987
\(154\) 0 0
\(155\) −15.8024 −1.26928
\(156\) 0 0
\(157\) 3.03309 0.242067 0.121034 0.992648i \(-0.461379\pi\)
0.121034 + 0.992648i \(0.461379\pi\)
\(158\) 0 0
\(159\) 4.04224 0.320570
\(160\) 0 0
\(161\) 3.02032 0.238035
\(162\) 0 0
\(163\) −18.3161 −1.43462 −0.717312 0.696752i \(-0.754628\pi\)
−0.717312 + 0.696752i \(0.754628\pi\)
\(164\) 0 0
\(165\) 3.64076 0.283433
\(166\) 0 0
\(167\) −5.61198 −0.434268 −0.217134 0.976142i \(-0.569671\pi\)
−0.217134 + 0.976142i \(0.569671\pi\)
\(168\) 0 0
\(169\) 14.5917 1.12243
\(170\) 0 0
\(171\) −6.65440 −0.508874
\(172\) 0 0
\(173\) −23.3613 −1.77613 −0.888064 0.459720i \(-0.847950\pi\)
−0.888064 + 0.459720i \(0.847950\pi\)
\(174\) 0 0
\(175\) 1.40921 0.106526
\(176\) 0 0
\(177\) 0.731854 0.0550095
\(178\) 0 0
\(179\) −5.84203 −0.436654 −0.218327 0.975876i \(-0.570060\pi\)
−0.218327 + 0.975876i \(0.570060\pi\)
\(180\) 0 0
\(181\) 24.1189 1.79274 0.896370 0.443306i \(-0.146194\pi\)
0.896370 + 0.443306i \(0.146194\pi\)
\(182\) 0 0
\(183\) −0.735751 −0.0543883
\(184\) 0 0
\(185\) −8.26374 −0.607562
\(186\) 0 0
\(187\) 2.23245 0.163253
\(188\) 0 0
\(189\) −3.59777 −0.261699
\(190\) 0 0
\(191\) −10.9353 −0.791253 −0.395627 0.918411i \(-0.629473\pi\)
−0.395627 + 0.918411i \(0.629473\pi\)
\(192\) 0 0
\(193\) 5.38605 0.387696 0.193848 0.981032i \(-0.437903\pi\)
0.193848 + 0.981032i \(0.437903\pi\)
\(194\) 0 0
\(195\) 8.56640 0.613453
\(196\) 0 0
\(197\) 20.2473 1.44256 0.721279 0.692644i \(-0.243554\pi\)
0.721279 + 0.692644i \(0.243554\pi\)
\(198\) 0 0
\(199\) 4.73197 0.335441 0.167720 0.985835i \(-0.446359\pi\)
0.167720 + 0.985835i \(0.446359\pi\)
\(200\) 0 0
\(201\) −6.20216 −0.437467
\(202\) 0 0
\(203\) −0.232452 −0.0163149
\(204\) 0 0
\(205\) 16.3827 1.14421
\(206\) 0 0
\(207\) −7.80763 −0.542668
\(208\) 0 0
\(209\) −5.74678 −0.397513
\(210\) 0 0
\(211\) 12.0289 0.828106 0.414053 0.910253i \(-0.364113\pi\)
0.414053 + 0.910253i \(0.364113\pi\)
\(212\) 0 0
\(213\) 5.07701 0.347871
\(214\) 0 0
\(215\) 11.0788 0.755570
\(216\) 0 0
\(217\) 6.24195 0.423731
\(218\) 0 0
\(219\) 1.07982 0.0729674
\(220\) 0 0
\(221\) 5.25278 0.353340
\(222\) 0 0
\(223\) 26.3066 1.76162 0.880810 0.473470i \(-0.156999\pi\)
0.880810 + 0.473470i \(0.156999\pi\)
\(224\) 0 0
\(225\) −3.64285 −0.242857
\(226\) 0 0
\(227\) −12.9452 −0.859205 −0.429603 0.903018i \(-0.641346\pi\)
−0.429603 + 0.903018i \(0.641346\pi\)
\(228\) 0 0
\(229\) 11.9309 0.788415 0.394207 0.919021i \(-0.371019\pi\)
0.394207 + 0.919021i \(0.371019\pi\)
\(230\) 0 0
\(231\) −1.43810 −0.0946201
\(232\) 0 0
\(233\) 17.9552 1.17628 0.588141 0.808758i \(-0.299860\pi\)
0.588141 + 0.808758i \(0.299860\pi\)
\(234\) 0 0
\(235\) −25.6657 −1.67425
\(236\) 0 0
\(237\) 2.17973 0.141589
\(238\) 0 0
\(239\) 19.0273 1.23077 0.615386 0.788226i \(-0.289000\pi\)
0.615386 + 0.788226i \(0.289000\pi\)
\(240\) 0 0
\(241\) −24.8273 −1.59927 −0.799633 0.600489i \(-0.794973\pi\)
−0.799633 + 0.600489i \(0.794973\pi\)
\(242\) 0 0
\(243\) 14.2960 0.917090
\(244\) 0 0
\(245\) −2.53164 −0.161741
\(246\) 0 0
\(247\) −13.5217 −0.860366
\(248\) 0 0
\(249\) 10.0897 0.639408
\(250\) 0 0
\(251\) 10.6601 0.672861 0.336431 0.941708i \(-0.390780\pi\)
0.336431 + 0.941708i \(0.390780\pi\)
\(252\) 0 0
\(253\) −6.74273 −0.423912
\(254\) 0 0
\(255\) 1.63083 0.102127
\(256\) 0 0
\(257\) 20.0555 1.25103 0.625513 0.780214i \(-0.284890\pi\)
0.625513 + 0.780214i \(0.284890\pi\)
\(258\) 0 0
\(259\) 3.26418 0.202826
\(260\) 0 0
\(261\) 0.600897 0.0371946
\(262\) 0 0
\(263\) −14.8216 −0.913938 −0.456969 0.889483i \(-0.651065\pi\)
−0.456969 + 0.889483i \(0.651065\pi\)
\(264\) 0 0
\(265\) −15.8861 −0.975874
\(266\) 0 0
\(267\) 10.8328 0.662957
\(268\) 0 0
\(269\) 27.1783 1.65709 0.828546 0.559921i \(-0.189168\pi\)
0.828546 + 0.559921i \(0.189168\pi\)
\(270\) 0 0
\(271\) 18.4417 1.12026 0.560128 0.828406i \(-0.310752\pi\)
0.560128 + 0.828406i \(0.310752\pi\)
\(272\) 0 0
\(273\) −3.38373 −0.204793
\(274\) 0 0
\(275\) −3.14599 −0.189711
\(276\) 0 0
\(277\) −9.25080 −0.555826 −0.277913 0.960606i \(-0.589643\pi\)
−0.277913 + 0.960606i \(0.589643\pi\)
\(278\) 0 0
\(279\) −16.1356 −0.966015
\(280\) 0 0
\(281\) 2.18341 0.130251 0.0651257 0.997877i \(-0.479255\pi\)
0.0651257 + 0.997877i \(0.479255\pi\)
\(282\) 0 0
\(283\) −9.32228 −0.554152 −0.277076 0.960848i \(-0.589365\pi\)
−0.277076 + 0.960848i \(0.589365\pi\)
\(284\) 0 0
\(285\) −4.19809 −0.248674
\(286\) 0 0
\(287\) −6.47116 −0.381980
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −0.397307 −0.0232905
\(292\) 0 0
\(293\) 5.03911 0.294388 0.147194 0.989108i \(-0.452976\pi\)
0.147194 + 0.989108i \(0.452976\pi\)
\(294\) 0 0
\(295\) −2.87620 −0.167459
\(296\) 0 0
\(297\) 8.03184 0.466055
\(298\) 0 0
\(299\) −15.8651 −0.917501
\(300\) 0 0
\(301\) −4.37614 −0.252237
\(302\) 0 0
\(303\) 8.78500 0.504685
\(304\) 0 0
\(305\) 2.89152 0.165568
\(306\) 0 0
\(307\) −8.14430 −0.464820 −0.232410 0.972618i \(-0.574661\pi\)
−0.232410 + 0.972618i \(0.574661\pi\)
\(308\) 0 0
\(309\) −5.16709 −0.293946
\(310\) 0 0
\(311\) 2.13704 0.121180 0.0605901 0.998163i \(-0.480702\pi\)
0.0605901 + 0.998163i \(0.480702\pi\)
\(312\) 0 0
\(313\) −8.04392 −0.454669 −0.227335 0.973817i \(-0.573001\pi\)
−0.227335 + 0.973817i \(0.573001\pi\)
\(314\) 0 0
\(315\) 6.54438 0.368734
\(316\) 0 0
\(317\) 26.3395 1.47938 0.739688 0.672950i \(-0.234973\pi\)
0.739688 + 0.672950i \(0.234973\pi\)
\(318\) 0 0
\(319\) 0.518939 0.0290550
\(320\) 0 0
\(321\) 5.29553 0.295568
\(322\) 0 0
\(323\) −2.57420 −0.143232
\(324\) 0 0
\(325\) −7.40227 −0.410604
\(326\) 0 0
\(327\) −3.60388 −0.199295
\(328\) 0 0
\(329\) 10.1380 0.558925
\(330\) 0 0
\(331\) 15.9085 0.874408 0.437204 0.899362i \(-0.355969\pi\)
0.437204 + 0.899362i \(0.355969\pi\)
\(332\) 0 0
\(333\) −8.43802 −0.462401
\(334\) 0 0
\(335\) 24.3746 1.33173
\(336\) 0 0
\(337\) 12.0768 0.657864 0.328932 0.944354i \(-0.393311\pi\)
0.328932 + 0.944354i \(0.393311\pi\)
\(338\) 0 0
\(339\) 3.33052 0.180889
\(340\) 0 0
\(341\) −13.9348 −0.754614
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −4.92564 −0.265188
\(346\) 0 0
\(347\) −4.40403 −0.236421 −0.118210 0.992989i \(-0.537716\pi\)
−0.118210 + 0.992989i \(0.537716\pi\)
\(348\) 0 0
\(349\) −16.9043 −0.904866 −0.452433 0.891798i \(-0.649444\pi\)
−0.452433 + 0.891798i \(0.649444\pi\)
\(350\) 0 0
\(351\) 18.8983 1.00871
\(352\) 0 0
\(353\) −11.8874 −0.632704 −0.316352 0.948642i \(-0.602458\pi\)
−0.316352 + 0.948642i \(0.602458\pi\)
\(354\) 0 0
\(355\) −19.9527 −1.05898
\(356\) 0 0
\(357\) −0.644180 −0.0340936
\(358\) 0 0
\(359\) −19.0842 −1.00723 −0.503613 0.863929i \(-0.667996\pi\)
−0.503613 + 0.863929i \(0.667996\pi\)
\(360\) 0 0
\(361\) −12.3735 −0.651236
\(362\) 0 0
\(363\) −3.87549 −0.203410
\(364\) 0 0
\(365\) −4.24371 −0.222126
\(366\) 0 0
\(367\) 22.6353 1.18155 0.590777 0.806835i \(-0.298821\pi\)
0.590777 + 0.806835i \(0.298821\pi\)
\(368\) 0 0
\(369\) 16.7282 0.870833
\(370\) 0 0
\(371\) 6.27501 0.325782
\(372\) 0 0
\(373\) −36.7066 −1.90059 −0.950297 0.311343i \(-0.899221\pi\)
−0.950297 + 0.311343i \(0.899221\pi\)
\(374\) 0 0
\(375\) 5.85598 0.302401
\(376\) 0 0
\(377\) 1.22102 0.0628857
\(378\) 0 0
\(379\) 18.0207 0.925660 0.462830 0.886447i \(-0.346834\pi\)
0.462830 + 0.886447i \(0.346834\pi\)
\(380\) 0 0
\(381\) 4.59712 0.235518
\(382\) 0 0
\(383\) 21.0899 1.07764 0.538821 0.842421i \(-0.318870\pi\)
0.538821 + 0.842421i \(0.318870\pi\)
\(384\) 0 0
\(385\) 5.65177 0.288041
\(386\) 0 0
\(387\) 11.3125 0.575045
\(388\) 0 0
\(389\) 1.72499 0.0874603 0.0437302 0.999043i \(-0.486076\pi\)
0.0437302 + 0.999043i \(0.486076\pi\)
\(390\) 0 0
\(391\) −3.02032 −0.152744
\(392\) 0 0
\(393\) −6.79194 −0.342608
\(394\) 0 0
\(395\) −8.56640 −0.431022
\(396\) 0 0
\(397\) 25.7157 1.29063 0.645316 0.763916i \(-0.276726\pi\)
0.645316 + 0.763916i \(0.276726\pi\)
\(398\) 0 0
\(399\) 1.65825 0.0830163
\(400\) 0 0
\(401\) −3.46437 −0.173002 −0.0865011 0.996252i \(-0.527569\pi\)
−0.0865011 + 0.996252i \(0.527569\pi\)
\(402\) 0 0
\(403\) −32.7875 −1.63326
\(404\) 0 0
\(405\) −13.7658 −0.684027
\(406\) 0 0
\(407\) −7.28713 −0.361210
\(408\) 0 0
\(409\) −24.0357 −1.18849 −0.594244 0.804285i \(-0.702549\pi\)
−0.594244 + 0.804285i \(0.702549\pi\)
\(410\) 0 0
\(411\) 2.30987 0.113938
\(412\) 0 0
\(413\) 1.13610 0.0559039
\(414\) 0 0
\(415\) −39.6527 −1.94648
\(416\) 0 0
\(417\) −5.73736 −0.280960
\(418\) 0 0
\(419\) 2.87998 0.140696 0.0703481 0.997523i \(-0.477589\pi\)
0.0703481 + 0.997523i \(0.477589\pi\)
\(420\) 0 0
\(421\) −17.1075 −0.833767 −0.416883 0.908960i \(-0.636878\pi\)
−0.416883 + 0.908960i \(0.636878\pi\)
\(422\) 0 0
\(423\) −26.2070 −1.27423
\(424\) 0 0
\(425\) −1.40921 −0.0683567
\(426\) 0 0
\(427\) −1.14215 −0.0552726
\(428\) 0 0
\(429\) 7.55402 0.364712
\(430\) 0 0
\(431\) −9.13203 −0.439874 −0.219937 0.975514i \(-0.570585\pi\)
−0.219937 + 0.975514i \(0.570585\pi\)
\(432\) 0 0
\(433\) 23.5045 1.12955 0.564776 0.825244i \(-0.308962\pi\)
0.564776 + 0.825244i \(0.308962\pi\)
\(434\) 0 0
\(435\) 0.379091 0.0181760
\(436\) 0 0
\(437\) 7.77492 0.371925
\(438\) 0 0
\(439\) 4.41378 0.210658 0.105329 0.994437i \(-0.466410\pi\)
0.105329 + 0.994437i \(0.466410\pi\)
\(440\) 0 0
\(441\) −2.58503 −0.123097
\(442\) 0 0
\(443\) −39.7219 −1.88724 −0.943622 0.331026i \(-0.892605\pi\)
−0.943622 + 0.331026i \(0.892605\pi\)
\(444\) 0 0
\(445\) −42.5732 −2.01816
\(446\) 0 0
\(447\) −9.87195 −0.466927
\(448\) 0 0
\(449\) 18.3900 0.867876 0.433938 0.900943i \(-0.357124\pi\)
0.433938 + 0.900943i \(0.357124\pi\)
\(450\) 0 0
\(451\) 14.4466 0.680262
\(452\) 0 0
\(453\) −3.97959 −0.186977
\(454\) 0 0
\(455\) 13.2981 0.623427
\(456\) 0 0
\(457\) 30.5510 1.42911 0.714557 0.699577i \(-0.246628\pi\)
0.714557 + 0.699577i \(0.246628\pi\)
\(458\) 0 0
\(459\) 3.59777 0.167929
\(460\) 0 0
\(461\) −32.9266 −1.53354 −0.766772 0.641920i \(-0.778138\pi\)
−0.766772 + 0.641920i \(0.778138\pi\)
\(462\) 0 0
\(463\) 27.9500 1.29895 0.649474 0.760384i \(-0.274989\pi\)
0.649474 + 0.760384i \(0.274989\pi\)
\(464\) 0 0
\(465\) −10.1796 −0.472066
\(466\) 0 0
\(467\) −23.5747 −1.09091 −0.545453 0.838141i \(-0.683643\pi\)
−0.545453 + 0.838141i \(0.683643\pi\)
\(468\) 0 0
\(469\) −9.62799 −0.444579
\(470\) 0 0
\(471\) 1.95386 0.0900290
\(472\) 0 0
\(473\) 9.76953 0.449204
\(474\) 0 0
\(475\) 3.62759 0.166445
\(476\) 0 0
\(477\) −16.2211 −0.742714
\(478\) 0 0
\(479\) −16.8208 −0.768563 −0.384281 0.923216i \(-0.625551\pi\)
−0.384281 + 0.923216i \(0.625551\pi\)
\(480\) 0 0
\(481\) −17.1460 −0.781791
\(482\) 0 0
\(483\) 1.94563 0.0885293
\(484\) 0 0
\(485\) 1.56142 0.0709006
\(486\) 0 0
\(487\) −26.3615 −1.19456 −0.597278 0.802035i \(-0.703751\pi\)
−0.597278 + 0.802035i \(0.703751\pi\)
\(488\) 0 0
\(489\) −11.7988 −0.533562
\(490\) 0 0
\(491\) 14.1855 0.640182 0.320091 0.947387i \(-0.396286\pi\)
0.320091 + 0.947387i \(0.396286\pi\)
\(492\) 0 0
\(493\) 0.232452 0.0104691
\(494\) 0 0
\(495\) −14.6100 −0.656671
\(496\) 0 0
\(497\) 7.88135 0.353527
\(498\) 0 0
\(499\) 17.3945 0.778683 0.389341 0.921094i \(-0.372703\pi\)
0.389341 + 0.921094i \(0.372703\pi\)
\(500\) 0 0
\(501\) −3.61513 −0.161512
\(502\) 0 0
\(503\) 37.3654 1.66604 0.833021 0.553241i \(-0.186609\pi\)
0.833021 + 0.553241i \(0.186609\pi\)
\(504\) 0 0
\(505\) −34.5252 −1.53635
\(506\) 0 0
\(507\) 9.39965 0.417453
\(508\) 0 0
\(509\) 18.1939 0.806430 0.403215 0.915105i \(-0.367893\pi\)
0.403215 + 0.915105i \(0.367893\pi\)
\(510\) 0 0
\(511\) 1.67627 0.0741538
\(512\) 0 0
\(513\) −9.26138 −0.408900
\(514\) 0 0
\(515\) 20.3068 0.894824
\(516\) 0 0
\(517\) −22.6325 −0.995378
\(518\) 0 0
\(519\) −15.0489 −0.660573
\(520\) 0 0
\(521\) 6.70351 0.293686 0.146843 0.989160i \(-0.453089\pi\)
0.146843 + 0.989160i \(0.453089\pi\)
\(522\) 0 0
\(523\) 4.02474 0.175990 0.0879948 0.996121i \(-0.471954\pi\)
0.0879948 + 0.996121i \(0.471954\pi\)
\(524\) 0 0
\(525\) 0.907785 0.0396190
\(526\) 0 0
\(527\) −6.24195 −0.271903
\(528\) 0 0
\(529\) −13.8776 −0.603376
\(530\) 0 0
\(531\) −2.93686 −0.127449
\(532\) 0 0
\(533\) 33.9915 1.47234
\(534\) 0 0
\(535\) −20.8116 −0.899762
\(536\) 0 0
\(537\) −3.76332 −0.162399
\(538\) 0 0
\(539\) −2.23245 −0.0961585
\(540\) 0 0
\(541\) −13.9857 −0.601291 −0.300646 0.953736i \(-0.597202\pi\)
−0.300646 + 0.953736i \(0.597202\pi\)
\(542\) 0 0
\(543\) 15.5369 0.666752
\(544\) 0 0
\(545\) 14.1633 0.606691
\(546\) 0 0
\(547\) −36.1152 −1.54418 −0.772088 0.635516i \(-0.780788\pi\)
−0.772088 + 0.635516i \(0.780788\pi\)
\(548\) 0 0
\(549\) 2.95250 0.126010
\(550\) 0 0
\(551\) −0.598379 −0.0254918
\(552\) 0 0
\(553\) 3.38373 0.143891
\(554\) 0 0
\(555\) −5.32334 −0.225963
\(556\) 0 0
\(557\) 4.42618 0.187543 0.0937716 0.995594i \(-0.470108\pi\)
0.0937716 + 0.995594i \(0.470108\pi\)
\(558\) 0 0
\(559\) 22.9869 0.972242
\(560\) 0 0
\(561\) 1.43810 0.0607167
\(562\) 0 0
\(563\) 29.1911 1.23026 0.615129 0.788426i \(-0.289104\pi\)
0.615129 + 0.788426i \(0.289104\pi\)
\(564\) 0 0
\(565\) −13.0890 −0.550659
\(566\) 0 0
\(567\) 5.43749 0.228353
\(568\) 0 0
\(569\) −2.84863 −0.119421 −0.0597103 0.998216i \(-0.519018\pi\)
−0.0597103 + 0.998216i \(0.519018\pi\)
\(570\) 0 0
\(571\) 2.68846 0.112508 0.0562542 0.998416i \(-0.482084\pi\)
0.0562542 + 0.998416i \(0.482084\pi\)
\(572\) 0 0
\(573\) −7.04433 −0.294281
\(574\) 0 0
\(575\) 4.25627 0.177499
\(576\) 0 0
\(577\) −8.47099 −0.352652 −0.176326 0.984332i \(-0.556421\pi\)
−0.176326 + 0.984332i \(0.556421\pi\)
\(578\) 0 0
\(579\) 3.46958 0.144191
\(580\) 0 0
\(581\) 15.6628 0.649804
\(582\) 0 0
\(583\) −14.0087 −0.580180
\(584\) 0 0
\(585\) −34.3761 −1.42128
\(586\) 0 0
\(587\) 22.1521 0.914316 0.457158 0.889385i \(-0.348867\pi\)
0.457158 + 0.889385i \(0.348867\pi\)
\(588\) 0 0
\(589\) 16.0680 0.662072
\(590\) 0 0
\(591\) 13.0429 0.536513
\(592\) 0 0
\(593\) 40.7679 1.67414 0.837068 0.547099i \(-0.184268\pi\)
0.837068 + 0.547099i \(0.184268\pi\)
\(594\) 0 0
\(595\) 2.53164 0.103787
\(596\) 0 0
\(597\) 3.04824 0.124756
\(598\) 0 0
\(599\) −8.20893 −0.335408 −0.167704 0.985837i \(-0.553635\pi\)
−0.167704 + 0.985837i \(0.553635\pi\)
\(600\) 0 0
\(601\) 17.1112 0.697981 0.348990 0.937126i \(-0.386525\pi\)
0.348990 + 0.937126i \(0.386525\pi\)
\(602\) 0 0
\(603\) 24.8887 1.01355
\(604\) 0 0
\(605\) 15.2308 0.619218
\(606\) 0 0
\(607\) 7.07815 0.287293 0.143647 0.989629i \(-0.454117\pi\)
0.143647 + 0.989629i \(0.454117\pi\)
\(608\) 0 0
\(609\) −0.149741 −0.00606781
\(610\) 0 0
\(611\) −53.2525 −2.15437
\(612\) 0 0
\(613\) −12.7724 −0.515871 −0.257935 0.966162i \(-0.583042\pi\)
−0.257935 + 0.966162i \(0.583042\pi\)
\(614\) 0 0
\(615\) 10.5534 0.425553
\(616\) 0 0
\(617\) −14.2332 −0.573009 −0.286504 0.958079i \(-0.592493\pi\)
−0.286504 + 0.958079i \(0.592493\pi\)
\(618\) 0 0
\(619\) 23.6954 0.952399 0.476199 0.879337i \(-0.342014\pi\)
0.476199 + 0.879337i \(0.342014\pi\)
\(620\) 0 0
\(621\) −10.8664 −0.436054
\(622\) 0 0
\(623\) 16.8164 0.673736
\(624\) 0 0
\(625\) −30.0602 −1.20241
\(626\) 0 0
\(627\) −3.70196 −0.147842
\(628\) 0 0
\(629\) −3.26418 −0.130152
\(630\) 0 0
\(631\) 22.3675 0.890435 0.445217 0.895423i \(-0.353126\pi\)
0.445217 + 0.895423i \(0.353126\pi\)
\(632\) 0 0
\(633\) 7.74879 0.307987
\(634\) 0 0
\(635\) −18.0668 −0.716959
\(636\) 0 0
\(637\) −5.25278 −0.208123
\(638\) 0 0
\(639\) −20.3735 −0.805965
\(640\) 0 0
\(641\) 11.4522 0.452333 0.226167 0.974089i \(-0.427381\pi\)
0.226167 + 0.974089i \(0.427381\pi\)
\(642\) 0 0
\(643\) 2.27858 0.0898586 0.0449293 0.998990i \(-0.485694\pi\)
0.0449293 + 0.998990i \(0.485694\pi\)
\(644\) 0 0
\(645\) 7.13676 0.281010
\(646\) 0 0
\(647\) −5.52484 −0.217204 −0.108602 0.994085i \(-0.534637\pi\)
−0.108602 + 0.994085i \(0.534637\pi\)
\(648\) 0 0
\(649\) −2.53629 −0.0995582
\(650\) 0 0
\(651\) 4.02094 0.157593
\(652\) 0 0
\(653\) 9.20106 0.360065 0.180033 0.983661i \(-0.442380\pi\)
0.180033 + 0.983661i \(0.442380\pi\)
\(654\) 0 0
\(655\) 26.6925 1.04296
\(656\) 0 0
\(657\) −4.33321 −0.169055
\(658\) 0 0
\(659\) 2.93917 0.114494 0.0572469 0.998360i \(-0.481768\pi\)
0.0572469 + 0.998360i \(0.481768\pi\)
\(660\) 0 0
\(661\) 5.41241 0.210518 0.105259 0.994445i \(-0.466433\pi\)
0.105259 + 0.994445i \(0.466433\pi\)
\(662\) 0 0
\(663\) 3.38373 0.131413
\(664\) 0 0
\(665\) −6.51696 −0.252717
\(666\) 0 0
\(667\) −0.702081 −0.0271847
\(668\) 0 0
\(669\) 16.9462 0.655177
\(670\) 0 0
\(671\) 2.54980 0.0984339
\(672\) 0 0
\(673\) −44.8633 −1.72935 −0.864677 0.502328i \(-0.832477\pi\)
−0.864677 + 0.502328i \(0.832477\pi\)
\(674\) 0 0
\(675\) −5.07001 −0.195145
\(676\) 0 0
\(677\) 7.92315 0.304511 0.152256 0.988341i \(-0.451346\pi\)
0.152256 + 0.988341i \(0.451346\pi\)
\(678\) 0 0
\(679\) −0.616763 −0.0236692
\(680\) 0 0
\(681\) −8.33906 −0.319553
\(682\) 0 0
\(683\) −39.8206 −1.52369 −0.761847 0.647757i \(-0.775707\pi\)
−0.761847 + 0.647757i \(0.775707\pi\)
\(684\) 0 0
\(685\) −9.07785 −0.346847
\(686\) 0 0
\(687\) 7.68564 0.293225
\(688\) 0 0
\(689\) −32.9612 −1.25572
\(690\) 0 0
\(691\) 8.92588 0.339557 0.169778 0.985482i \(-0.445695\pi\)
0.169778 + 0.985482i \(0.445695\pi\)
\(692\) 0 0
\(693\) 5.77096 0.219221
\(694\) 0 0
\(695\) 22.5480 0.855293
\(696\) 0 0
\(697\) 6.47116 0.245113
\(698\) 0 0
\(699\) 11.5664 0.437480
\(700\) 0 0
\(701\) −41.1490 −1.55418 −0.777088 0.629392i \(-0.783304\pi\)
−0.777088 + 0.629392i \(0.783304\pi\)
\(702\) 0 0
\(703\) 8.40267 0.316913
\(704\) 0 0
\(705\) −16.5333 −0.622682
\(706\) 0 0
\(707\) 13.6375 0.512890
\(708\) 0 0
\(709\) −0.447742 −0.0168153 −0.00840766 0.999965i \(-0.502676\pi\)
−0.00840766 + 0.999965i \(0.502676\pi\)
\(710\) 0 0
\(711\) −8.74706 −0.328040
\(712\) 0 0
\(713\) 18.8527 0.706039
\(714\) 0 0
\(715\) −29.6875 −1.11025
\(716\) 0 0
\(717\) 12.2570 0.457746
\(718\) 0 0
\(719\) −23.5887 −0.879712 −0.439856 0.898068i \(-0.644970\pi\)
−0.439856 + 0.898068i \(0.644970\pi\)
\(720\) 0 0
\(721\) −8.02119 −0.298725
\(722\) 0 0
\(723\) −15.9932 −0.594795
\(724\) 0 0
\(725\) −0.327574 −0.0121658
\(726\) 0 0
\(727\) −22.0040 −0.816082 −0.408041 0.912964i \(-0.633788\pi\)
−0.408041 + 0.912964i \(0.633788\pi\)
\(728\) 0 0
\(729\) −7.10325 −0.263083
\(730\) 0 0
\(731\) 4.37614 0.161858
\(732\) 0 0
\(733\) −25.7809 −0.952238 −0.476119 0.879381i \(-0.657957\pi\)
−0.476119 + 0.879381i \(0.657957\pi\)
\(734\) 0 0
\(735\) −1.63083 −0.0601542
\(736\) 0 0
\(737\) 21.4940 0.791743
\(738\) 0 0
\(739\) −25.3808 −0.933647 −0.466823 0.884351i \(-0.654602\pi\)
−0.466823 + 0.884351i \(0.654602\pi\)
\(740\) 0 0
\(741\) −8.71041 −0.319985
\(742\) 0 0
\(743\) 14.4501 0.530122 0.265061 0.964232i \(-0.414608\pi\)
0.265061 + 0.964232i \(0.414608\pi\)
\(744\) 0 0
\(745\) 38.7970 1.42141
\(746\) 0 0
\(747\) −40.4890 −1.48141
\(748\) 0 0
\(749\) 8.22058 0.300373
\(750\) 0 0
\(751\) 49.9082 1.82118 0.910588 0.413316i \(-0.135630\pi\)
0.910588 + 0.413316i \(0.135630\pi\)
\(752\) 0 0
\(753\) 6.86704 0.250249
\(754\) 0 0
\(755\) 15.6399 0.569193
\(756\) 0 0
\(757\) 29.6587 1.07796 0.538982 0.842317i \(-0.318809\pi\)
0.538982 + 0.842317i \(0.318809\pi\)
\(758\) 0 0
\(759\) −4.34353 −0.157660
\(760\) 0 0
\(761\) 5.59792 0.202924 0.101462 0.994839i \(-0.467648\pi\)
0.101462 + 0.994839i \(0.467648\pi\)
\(762\) 0 0
\(763\) −5.59453 −0.202535
\(764\) 0 0
\(765\) −6.54438 −0.236612
\(766\) 0 0
\(767\) −5.96769 −0.215481
\(768\) 0 0
\(769\) 13.5885 0.490014 0.245007 0.969521i \(-0.421210\pi\)
0.245007 + 0.969521i \(0.421210\pi\)
\(770\) 0 0
\(771\) 12.9193 0.465278
\(772\) 0 0
\(773\) −20.2316 −0.727679 −0.363840 0.931462i \(-0.618534\pi\)
−0.363840 + 0.931462i \(0.618534\pi\)
\(774\) 0 0
\(775\) 8.79621 0.315969
\(776\) 0 0
\(777\) 2.10272 0.0754347
\(778\) 0 0
\(779\) −16.6581 −0.596837
\(780\) 0 0
\(781\) −17.5947 −0.629589
\(782\) 0 0
\(783\) 0.836309 0.0298872
\(784\) 0 0
\(785\) −7.67870 −0.274065
\(786\) 0 0
\(787\) 42.0470 1.49882 0.749408 0.662109i \(-0.230338\pi\)
0.749408 + 0.662109i \(0.230338\pi\)
\(788\) 0 0
\(789\) −9.54777 −0.339910
\(790\) 0 0
\(791\) 5.17017 0.183830
\(792\) 0 0
\(793\) 5.99947 0.213047
\(794\) 0 0
\(795\) −10.2335 −0.362945
\(796\) 0 0
\(797\) 7.91996 0.280539 0.140270 0.990113i \(-0.455203\pi\)
0.140270 + 0.990113i \(0.455203\pi\)
\(798\) 0 0
\(799\) −10.1380 −0.358656
\(800\) 0 0
\(801\) −43.4710 −1.53597
\(802\) 0 0
\(803\) −3.74219 −0.132059
\(804\) 0 0
\(805\) −7.64638 −0.269499
\(806\) 0 0
\(807\) 17.5077 0.616302
\(808\) 0 0
\(809\) 54.6264 1.92056 0.960281 0.279036i \(-0.0900148\pi\)
0.960281 + 0.279036i \(0.0900148\pi\)
\(810\) 0 0
\(811\) −37.4955 −1.31664 −0.658322 0.752736i \(-0.728734\pi\)
−0.658322 + 0.752736i \(0.728734\pi\)
\(812\) 0 0
\(813\) 11.8798 0.416643
\(814\) 0 0
\(815\) 46.3697 1.62426
\(816\) 0 0
\(817\) −11.2651 −0.394115
\(818\) 0 0
\(819\) 13.5786 0.474474
\(820\) 0 0
\(821\) 12.0468 0.420435 0.210217 0.977655i \(-0.432583\pi\)
0.210217 + 0.977655i \(0.432583\pi\)
\(822\) 0 0
\(823\) −19.9529 −0.695513 −0.347756 0.937585i \(-0.613056\pi\)
−0.347756 + 0.937585i \(0.613056\pi\)
\(824\) 0 0
\(825\) −2.02659 −0.0705567
\(826\) 0 0
\(827\) −12.6415 −0.439589 −0.219794 0.975546i \(-0.570539\pi\)
−0.219794 + 0.975546i \(0.570539\pi\)
\(828\) 0 0
\(829\) −10.1202 −0.351489 −0.175744 0.984436i \(-0.556233\pi\)
−0.175744 + 0.984436i \(0.556233\pi\)
\(830\) 0 0
\(831\) −5.95918 −0.206722
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 14.2075 0.491672
\(836\) 0 0
\(837\) −22.4571 −0.776230
\(838\) 0 0
\(839\) 44.0050 1.51922 0.759610 0.650379i \(-0.225390\pi\)
0.759610 + 0.650379i \(0.225390\pi\)
\(840\) 0 0
\(841\) −28.9460 −0.998137
\(842\) 0 0
\(843\) 1.40651 0.0484428
\(844\) 0 0
\(845\) −36.9408 −1.27080
\(846\) 0 0
\(847\) −6.01616 −0.206718
\(848\) 0 0
\(849\) −6.00523 −0.206099
\(850\) 0 0
\(851\) 9.85889 0.337958
\(852\) 0 0
\(853\) −25.7767 −0.882576 −0.441288 0.897365i \(-0.645478\pi\)
−0.441288 + 0.897365i \(0.645478\pi\)
\(854\) 0 0
\(855\) 16.8465 0.576140
\(856\) 0 0
\(857\) −19.8662 −0.678616 −0.339308 0.940675i \(-0.610193\pi\)
−0.339308 + 0.940675i \(0.610193\pi\)
\(858\) 0 0
\(859\) 14.2553 0.486385 0.243193 0.969978i \(-0.421805\pi\)
0.243193 + 0.969978i \(0.421805\pi\)
\(860\) 0 0
\(861\) −4.16859 −0.142065
\(862\) 0 0
\(863\) 3.41168 0.116135 0.0580674 0.998313i \(-0.481506\pi\)
0.0580674 + 0.998313i \(0.481506\pi\)
\(864\) 0 0
\(865\) 59.1425 2.01090
\(866\) 0 0
\(867\) 0.644180 0.0218775
\(868\) 0 0
\(869\) −7.55402 −0.256253
\(870\) 0 0
\(871\) 50.5737 1.71362
\(872\) 0 0
\(873\) 1.59435 0.0539607
\(874\) 0 0
\(875\) 9.09059 0.307318
\(876\) 0 0
\(877\) 20.4852 0.691738 0.345869 0.938283i \(-0.387584\pi\)
0.345869 + 0.938283i \(0.387584\pi\)
\(878\) 0 0
\(879\) 3.24609 0.109488
\(880\) 0 0
\(881\) 4.91501 0.165591 0.0827955 0.996567i \(-0.473615\pi\)
0.0827955 + 0.996567i \(0.473615\pi\)
\(882\) 0 0
\(883\) −22.5908 −0.760241 −0.380121 0.924937i \(-0.624118\pi\)
−0.380121 + 0.924937i \(0.624118\pi\)
\(884\) 0 0
\(885\) −1.85279 −0.0622809
\(886\) 0 0
\(887\) −32.9356 −1.10587 −0.552934 0.833225i \(-0.686492\pi\)
−0.552934 + 0.833225i \(0.686492\pi\)
\(888\) 0 0
\(889\) 7.13639 0.239347
\(890\) 0 0
\(891\) −12.1389 −0.406670
\(892\) 0 0
\(893\) 26.0972 0.873310
\(894\) 0 0
\(895\) 14.7899 0.494372
\(896\) 0 0
\(897\) −10.2200 −0.341235
\(898\) 0 0
\(899\) −1.45095 −0.0483920
\(900\) 0 0
\(901\) −6.27501 −0.209051
\(902\) 0 0
\(903\) −2.81902 −0.0938112
\(904\) 0 0
\(905\) −61.0603 −2.02971
\(906\) 0 0
\(907\) −13.4000 −0.444939 −0.222469 0.974940i \(-0.571412\pi\)
−0.222469 + 0.974940i \(0.571412\pi\)
\(908\) 0 0
\(909\) −35.2533 −1.16928
\(910\) 0 0
\(911\) −28.1036 −0.931113 −0.465557 0.885018i \(-0.654146\pi\)
−0.465557 + 0.885018i \(0.654146\pi\)
\(912\) 0 0
\(913\) −34.9666 −1.15722
\(914\) 0 0
\(915\) 1.86266 0.0615776
\(916\) 0 0
\(917\) −10.5435 −0.348179
\(918\) 0 0
\(919\) 49.2243 1.62376 0.811881 0.583823i \(-0.198444\pi\)
0.811881 + 0.583823i \(0.198444\pi\)
\(920\) 0 0
\(921\) −5.24640 −0.172875
\(922\) 0 0
\(923\) −41.3989 −1.36266
\(924\) 0 0
\(925\) 4.59992 0.151244
\(926\) 0 0
\(927\) 20.7350 0.681028
\(928\) 0 0
\(929\) 6.33709 0.207913 0.103957 0.994582i \(-0.466850\pi\)
0.103957 + 0.994582i \(0.466850\pi\)
\(930\) 0 0
\(931\) 2.57420 0.0843661
\(932\) 0 0
\(933\) 1.37664 0.0450691
\(934\) 0 0
\(935\) −5.65177 −0.184833
\(936\) 0 0
\(937\) −1.88941 −0.0617244 −0.0308622 0.999524i \(-0.509825\pi\)
−0.0308622 + 0.999524i \(0.509825\pi\)
\(938\) 0 0
\(939\) −5.18173 −0.169099
\(940\) 0 0
\(941\) 12.7804 0.416630 0.208315 0.978062i \(-0.433202\pi\)
0.208315 + 0.978062i \(0.433202\pi\)
\(942\) 0 0
\(943\) −19.5450 −0.636472
\(944\) 0 0
\(945\) 9.10825 0.296292
\(946\) 0 0
\(947\) 59.9664 1.94865 0.974323 0.225153i \(-0.0722884\pi\)
0.974323 + 0.225153i \(0.0722884\pi\)
\(948\) 0 0
\(949\) −8.80507 −0.285825
\(950\) 0 0
\(951\) 16.9674 0.550206
\(952\) 0 0
\(953\) −42.4980 −1.37664 −0.688322 0.725405i \(-0.741653\pi\)
−0.688322 + 0.725405i \(0.741653\pi\)
\(954\) 0 0
\(955\) 27.6844 0.895845
\(956\) 0 0
\(957\) 0.334290 0.0108061
\(958\) 0 0
\(959\) 3.58575 0.115790
\(960\) 0 0
\(961\) 7.96189 0.256835
\(962\) 0 0
\(963\) −21.2505 −0.684787
\(964\) 0 0
\(965\) −13.6355 −0.438944
\(966\) 0 0
\(967\) −5.63019 −0.181055 −0.0905273 0.995894i \(-0.528855\pi\)
−0.0905273 + 0.995894i \(0.528855\pi\)
\(968\) 0 0
\(969\) −1.65825 −0.0532707
\(970\) 0 0
\(971\) −33.7682 −1.08367 −0.541836 0.840484i \(-0.682271\pi\)
−0.541836 + 0.840484i \(0.682271\pi\)
\(972\) 0 0
\(973\) −8.90646 −0.285528
\(974\) 0 0
\(975\) −4.76839 −0.152711
\(976\) 0 0
\(977\) −41.3432 −1.32269 −0.661344 0.750083i \(-0.730013\pi\)
−0.661344 + 0.750083i \(0.730013\pi\)
\(978\) 0 0
\(979\) −37.5419 −1.19984
\(980\) 0 0
\(981\) 14.4620 0.461737
\(982\) 0 0
\(983\) 9.91633 0.316282 0.158141 0.987417i \(-0.449450\pi\)
0.158141 + 0.987417i \(0.449450\pi\)
\(984\) 0 0
\(985\) −51.2588 −1.63324
\(986\) 0 0
\(987\) 6.53068 0.207874
\(988\) 0 0
\(989\) −13.2174 −0.420288
\(990\) 0 0
\(991\) −59.2450 −1.88198 −0.940990 0.338434i \(-0.890103\pi\)
−0.940990 + 0.338434i \(0.890103\pi\)
\(992\) 0 0
\(993\) 10.2479 0.325208
\(994\) 0 0
\(995\) −11.9797 −0.379781
\(996\) 0 0
\(997\) 15.0270 0.475911 0.237956 0.971276i \(-0.423523\pi\)
0.237956 + 0.971276i \(0.423523\pi\)
\(998\) 0 0
\(999\) −11.7438 −0.371556
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.2.a.l.1.4 yes 6
4.3 odd 2 3808.2.a.k.1.3 6
8.3 odd 2 7616.2.a.by.1.4 6
8.5 even 2 7616.2.a.bz.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3808.2.a.k.1.3 6 4.3 odd 2
3808.2.a.l.1.4 yes 6 1.1 even 1 trivial
7616.2.a.by.1.4 6 8.3 odd 2
7616.2.a.bz.1.3 6 8.5 even 2