Properties

Label 3822.2.c.c
Level $3822$
Weight $2$
Character orbit 3822.c
Analytic conductor $30.519$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3822,2,Mod(883,3822)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3822.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3822 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3822.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.5188236525\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - q^{3} - q^{4} + 2 i q^{5} + i q^{6} + i q^{8} + q^{9} + 2 q^{10} + q^{12} + (3 i - 2) q^{13} - 2 i q^{15} + q^{16} + 2 q^{17} - i q^{18} + 4 i q^{19} - 2 i q^{20} - 6 q^{23} - i q^{24} + \cdots - 2 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 2 q^{9} + 4 q^{10} + 2 q^{12} - 4 q^{13} + 2 q^{16} + 4 q^{17} - 12 q^{23} + 2 q^{25} + 6 q^{26} - 2 q^{27} - 4 q^{30} - 2 q^{36} + 8 q^{38} + 4 q^{39} - 4 q^{40} + 8 q^{43} - 2 q^{48}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3822\mathbb{Z}\right)^\times\).

\(n\) \(1471\) \(2549\) \(3433\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 2.00000i 1.00000i 0 1.00000i 1.00000 2.00000
883.2 1.00000i −1.00000 −1.00000 2.00000i 1.00000i 0 1.00000i 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3822.2.c.c 2
7.b odd 2 1 546.2.c.b 2
13.b even 2 1 inner 3822.2.c.c 2
21.c even 2 1 1638.2.c.b 2
28.d even 2 1 4368.2.h.f 2
91.b odd 2 1 546.2.c.b 2
91.i even 4 1 7098.2.a.k 1
91.i even 4 1 7098.2.a.bc 1
273.g even 2 1 1638.2.c.b 2
364.h even 2 1 4368.2.h.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.c.b 2 7.b odd 2 1
546.2.c.b 2 91.b odd 2 1
1638.2.c.b 2 21.c even 2 1
1638.2.c.b 2 273.g even 2 1
3822.2.c.c 2 1.a even 1 1 trivial
3822.2.c.c 2 13.b even 2 1 inner
4368.2.h.f 2 28.d even 2 1
4368.2.h.f 2 364.h even 2 1
7098.2.a.k 1 91.i even 4 1
7098.2.a.bc 1 91.i even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3822, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display
\( T_{19}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 13 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T + 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T - 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 36 \) Copy content Toggle raw display
$61$ \( (T + 12)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 196 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 196 \) Copy content Toggle raw display
$89$ \( T^{2} + 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less