Properties

Label 383.2.a.c.1.14
Level $383$
Weight $2$
Character 383.1
Self dual yes
Analytic conductor $3.058$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [383,2,Mod(1,383)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(383, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("383.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 383.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.05827039742\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.539970 q^{2} +2.48089 q^{3} -1.70843 q^{4} +2.73147 q^{5} +1.33961 q^{6} +1.35462 q^{7} -2.00244 q^{8} +3.15479 q^{9} +1.47491 q^{10} -4.30500 q^{11} -4.23842 q^{12} +5.54722 q^{13} +0.731456 q^{14} +6.77647 q^{15} +2.33560 q^{16} -5.42078 q^{17} +1.70350 q^{18} -3.09802 q^{19} -4.66654 q^{20} +3.36066 q^{21} -2.32457 q^{22} +1.64916 q^{23} -4.96783 q^{24} +2.46095 q^{25} +2.99534 q^{26} +0.384027 q^{27} -2.31428 q^{28} +4.85413 q^{29} +3.65910 q^{30} -6.13774 q^{31} +5.26604 q^{32} -10.6802 q^{33} -2.92706 q^{34} +3.70011 q^{35} -5.38975 q^{36} +10.9948 q^{37} -1.67284 q^{38} +13.7620 q^{39} -5.46962 q^{40} -8.10516 q^{41} +1.81466 q^{42} -4.50158 q^{43} +7.35479 q^{44} +8.61724 q^{45} +0.890496 q^{46} -3.65706 q^{47} +5.79436 q^{48} -5.16500 q^{49} +1.32884 q^{50} -13.4483 q^{51} -9.47705 q^{52} -3.35241 q^{53} +0.207363 q^{54} -11.7590 q^{55} -2.71255 q^{56} -7.68583 q^{57} +2.62109 q^{58} +7.79764 q^{59} -11.5771 q^{60} +10.3211 q^{61} -3.31420 q^{62} +4.27355 q^{63} -1.82770 q^{64} +15.1521 q^{65} -5.76699 q^{66} -14.9913 q^{67} +9.26103 q^{68} +4.09137 q^{69} +1.99795 q^{70} -1.79839 q^{71} -6.31730 q^{72} +3.93808 q^{73} +5.93686 q^{74} +6.10532 q^{75} +5.29275 q^{76} -5.83164 q^{77} +7.43109 q^{78} +5.41776 q^{79} +6.37964 q^{80} -8.51166 q^{81} -4.37655 q^{82} +2.79742 q^{83} -5.74146 q^{84} -14.8067 q^{85} -2.43072 q^{86} +12.0426 q^{87} +8.62051 q^{88} -3.32724 q^{89} +4.65305 q^{90} +7.51439 q^{91} -2.81747 q^{92} -15.2270 q^{93} -1.97471 q^{94} -8.46215 q^{95} +13.0645 q^{96} +6.40340 q^{97} -2.78895 q^{98} -13.5814 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5 q^{2} + 2 q^{3} + 29 q^{4} + 3 q^{5} + q^{6} + 17 q^{7} + 15 q^{8} + 34 q^{9} + q^{10} - 7 q^{12} + 28 q^{13} - 8 q^{14} - 2 q^{15} + 35 q^{16} + 16 q^{17} + 19 q^{18} + 13 q^{19} - 4 q^{20}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.539970 0.381817 0.190908 0.981608i \(-0.438857\pi\)
0.190908 + 0.981608i \(0.438857\pi\)
\(3\) 2.48089 1.43234 0.716170 0.697926i \(-0.245893\pi\)
0.716170 + 0.697926i \(0.245893\pi\)
\(4\) −1.70843 −0.854216
\(5\) 2.73147 1.22155 0.610776 0.791803i \(-0.290858\pi\)
0.610776 + 0.791803i \(0.290858\pi\)
\(6\) 1.33961 0.546892
\(7\) 1.35462 0.511999 0.256000 0.966677i \(-0.417595\pi\)
0.256000 + 0.966677i \(0.417595\pi\)
\(8\) −2.00244 −0.707971
\(9\) 3.15479 1.05160
\(10\) 1.47491 0.466409
\(11\) −4.30500 −1.29800 −0.649002 0.760786i \(-0.724814\pi\)
−0.649002 + 0.760786i \(0.724814\pi\)
\(12\) −4.23842 −1.22353
\(13\) 5.54722 1.53852 0.769262 0.638934i \(-0.220624\pi\)
0.769262 + 0.638934i \(0.220624\pi\)
\(14\) 0.731456 0.195490
\(15\) 6.77647 1.74968
\(16\) 2.33560 0.583901
\(17\) −5.42078 −1.31473 −0.657366 0.753571i \(-0.728330\pi\)
−0.657366 + 0.753571i \(0.728330\pi\)
\(18\) 1.70350 0.401518
\(19\) −3.09802 −0.710734 −0.355367 0.934727i \(-0.615644\pi\)
−0.355367 + 0.934727i \(0.615644\pi\)
\(20\) −4.66654 −1.04347
\(21\) 3.36066 0.733357
\(22\) −2.32457 −0.495600
\(23\) 1.64916 0.343873 0.171936 0.985108i \(-0.444998\pi\)
0.171936 + 0.985108i \(0.444998\pi\)
\(24\) −4.96783 −1.01405
\(25\) 2.46095 0.492189
\(26\) 2.99534 0.587434
\(27\) 0.384027 0.0739061
\(28\) −2.31428 −0.437358
\(29\) 4.85413 0.901390 0.450695 0.892678i \(-0.351176\pi\)
0.450695 + 0.892678i \(0.351176\pi\)
\(30\) 3.65910 0.668056
\(31\) −6.13774 −1.10237 −0.551185 0.834383i \(-0.685824\pi\)
−0.551185 + 0.834383i \(0.685824\pi\)
\(32\) 5.26604 0.930914
\(33\) −10.6802 −1.85918
\(34\) −2.92706 −0.501987
\(35\) 3.70011 0.625433
\(36\) −5.38975 −0.898292
\(37\) 10.9948 1.80753 0.903766 0.428028i \(-0.140791\pi\)
0.903766 + 0.428028i \(0.140791\pi\)
\(38\) −1.67284 −0.271370
\(39\) 13.7620 2.20369
\(40\) −5.46962 −0.864823
\(41\) −8.10516 −1.26581 −0.632906 0.774228i \(-0.718138\pi\)
−0.632906 + 0.774228i \(0.718138\pi\)
\(42\) 1.81466 0.280008
\(43\) −4.50158 −0.686485 −0.343243 0.939247i \(-0.611525\pi\)
−0.343243 + 0.939247i \(0.611525\pi\)
\(44\) 7.35479 1.10878
\(45\) 8.61724 1.28458
\(46\) 0.890496 0.131296
\(47\) −3.65706 −0.533438 −0.266719 0.963774i \(-0.585939\pi\)
−0.266719 + 0.963774i \(0.585939\pi\)
\(48\) 5.79436 0.836345
\(49\) −5.16500 −0.737857
\(50\) 1.32884 0.187926
\(51\) −13.4483 −1.88314
\(52\) −9.47705 −1.31423
\(53\) −3.35241 −0.460489 −0.230244 0.973133i \(-0.573953\pi\)
−0.230244 + 0.973133i \(0.573953\pi\)
\(54\) 0.207363 0.0282186
\(55\) −11.7590 −1.58558
\(56\) −2.71255 −0.362480
\(57\) −7.68583 −1.01801
\(58\) 2.62109 0.344166
\(59\) 7.79764 1.01517 0.507583 0.861603i \(-0.330539\pi\)
0.507583 + 0.861603i \(0.330539\pi\)
\(60\) −11.5771 −1.49460
\(61\) 10.3211 1.32148 0.660742 0.750613i \(-0.270242\pi\)
0.660742 + 0.750613i \(0.270242\pi\)
\(62\) −3.31420 −0.420903
\(63\) 4.27355 0.538417
\(64\) −1.82770 −0.228462
\(65\) 15.1521 1.87939
\(66\) −5.76699 −0.709868
\(67\) −14.9913 −1.83147 −0.915737 0.401777i \(-0.868393\pi\)
−0.915737 + 0.401777i \(0.868393\pi\)
\(68\) 9.26103 1.12307
\(69\) 4.09137 0.492543
\(70\) 1.99795 0.238801
\(71\) −1.79839 −0.213429 −0.106715 0.994290i \(-0.534033\pi\)
−0.106715 + 0.994290i \(0.534033\pi\)
\(72\) −6.31730 −0.744501
\(73\) 3.93808 0.460917 0.230458 0.973082i \(-0.425977\pi\)
0.230458 + 0.973082i \(0.425977\pi\)
\(74\) 5.93686 0.690146
\(75\) 6.10532 0.704982
\(76\) 5.29275 0.607120
\(77\) −5.83164 −0.664577
\(78\) 7.43109 0.841405
\(79\) 5.41776 0.609546 0.304773 0.952425i \(-0.401419\pi\)
0.304773 + 0.952425i \(0.401419\pi\)
\(80\) 6.37964 0.713265
\(81\) −8.51166 −0.945739
\(82\) −4.37655 −0.483309
\(83\) 2.79742 0.307056 0.153528 0.988144i \(-0.450936\pi\)
0.153528 + 0.988144i \(0.450936\pi\)
\(84\) −5.74146 −0.626445
\(85\) −14.8067 −1.60601
\(86\) −2.43072 −0.262112
\(87\) 12.0426 1.29110
\(88\) 8.62051 0.918950
\(89\) −3.32724 −0.352687 −0.176343 0.984329i \(-0.556427\pi\)
−0.176343 + 0.984329i \(0.556427\pi\)
\(90\) 4.65305 0.490475
\(91\) 7.51439 0.787722
\(92\) −2.81747 −0.293742
\(93\) −15.2270 −1.57897
\(94\) −1.97471 −0.203675
\(95\) −8.46215 −0.868198
\(96\) 13.0645 1.33339
\(97\) 6.40340 0.650167 0.325083 0.945685i \(-0.394608\pi\)
0.325083 + 0.945685i \(0.394608\pi\)
\(98\) −2.78895 −0.281726
\(99\) −13.5814 −1.36498
\(100\) −4.20436 −0.420436
\(101\) −18.0138 −1.79244 −0.896219 0.443612i \(-0.853697\pi\)
−0.896219 + 0.443612i \(0.853697\pi\)
\(102\) −7.26171 −0.719016
\(103\) −5.49753 −0.541688 −0.270844 0.962623i \(-0.587303\pi\)
−0.270844 + 0.962623i \(0.587303\pi\)
\(104\) −11.1080 −1.08923
\(105\) 9.17956 0.895833
\(106\) −1.81020 −0.175822
\(107\) 11.4265 1.10464 0.552322 0.833631i \(-0.313742\pi\)
0.552322 + 0.833631i \(0.313742\pi\)
\(108\) −0.656084 −0.0631318
\(109\) 8.82483 0.845265 0.422633 0.906301i \(-0.361106\pi\)
0.422633 + 0.906301i \(0.361106\pi\)
\(110\) −6.34950 −0.605401
\(111\) 27.2768 2.58900
\(112\) 3.16386 0.298957
\(113\) −12.6481 −1.18983 −0.594917 0.803787i \(-0.702815\pi\)
−0.594917 + 0.803787i \(0.702815\pi\)
\(114\) −4.15012 −0.388694
\(115\) 4.50463 0.420059
\(116\) −8.29296 −0.769982
\(117\) 17.5004 1.61791
\(118\) 4.21049 0.387607
\(119\) −7.34311 −0.673142
\(120\) −13.5695 −1.23872
\(121\) 7.53299 0.684817
\(122\) 5.57310 0.504565
\(123\) −20.1080 −1.81307
\(124\) 10.4859 0.941662
\(125\) −6.93536 −0.620317
\(126\) 2.30759 0.205577
\(127\) −9.10939 −0.808327 −0.404164 0.914687i \(-0.632437\pi\)
−0.404164 + 0.914687i \(0.632437\pi\)
\(128\) −11.5190 −1.01814
\(129\) −11.1679 −0.983280
\(130\) 8.18168 0.717581
\(131\) 9.44118 0.824880 0.412440 0.910985i \(-0.364677\pi\)
0.412440 + 0.910985i \(0.364677\pi\)
\(132\) 18.2464 1.58815
\(133\) −4.19664 −0.363895
\(134\) −8.09484 −0.699288
\(135\) 1.04896 0.0902801
\(136\) 10.8548 0.930792
\(137\) 15.4680 1.32152 0.660760 0.750598i \(-0.270234\pi\)
0.660760 + 0.750598i \(0.270234\pi\)
\(138\) 2.20922 0.188061
\(139\) 21.0357 1.78422 0.892112 0.451814i \(-0.149223\pi\)
0.892112 + 0.451814i \(0.149223\pi\)
\(140\) −6.32139 −0.534255
\(141\) −9.07276 −0.764064
\(142\) −0.971077 −0.0814909
\(143\) −23.8808 −1.99701
\(144\) 7.36835 0.614029
\(145\) 13.2589 1.10109
\(146\) 2.12644 0.175986
\(147\) −12.8138 −1.05686
\(148\) −18.7838 −1.54402
\(149\) 5.71337 0.468057 0.234029 0.972230i \(-0.424809\pi\)
0.234029 + 0.972230i \(0.424809\pi\)
\(150\) 3.29669 0.269174
\(151\) 14.3726 1.16962 0.584812 0.811169i \(-0.301168\pi\)
0.584812 + 0.811169i \(0.301168\pi\)
\(152\) 6.20360 0.503179
\(153\) −17.1014 −1.38257
\(154\) −3.14891 −0.253747
\(155\) −16.7651 −1.34660
\(156\) −23.5115 −1.88243
\(157\) −15.3958 −1.22872 −0.614359 0.789027i \(-0.710585\pi\)
−0.614359 + 0.789027i \(0.710585\pi\)
\(158\) 2.92543 0.232735
\(159\) −8.31694 −0.659577
\(160\) 14.3841 1.13716
\(161\) 2.23398 0.176063
\(162\) −4.59604 −0.361099
\(163\) −1.76284 −0.138076 −0.0690381 0.997614i \(-0.521993\pi\)
−0.0690381 + 0.997614i \(0.521993\pi\)
\(164\) 13.8471 1.08128
\(165\) −29.1727 −2.27109
\(166\) 1.51052 0.117239
\(167\) −6.42239 −0.496980 −0.248490 0.968634i \(-0.579934\pi\)
−0.248490 + 0.968634i \(0.579934\pi\)
\(168\) −6.72954 −0.519195
\(169\) 17.7717 1.36705
\(170\) −7.99519 −0.613203
\(171\) −9.77361 −0.747406
\(172\) 7.69065 0.586406
\(173\) 12.7475 0.969171 0.484586 0.874744i \(-0.338970\pi\)
0.484586 + 0.874744i \(0.338970\pi\)
\(174\) 6.50262 0.492963
\(175\) 3.33365 0.252000
\(176\) −10.0548 −0.757906
\(177\) 19.3450 1.45406
\(178\) −1.79661 −0.134662
\(179\) 2.68522 0.200703 0.100351 0.994952i \(-0.468003\pi\)
0.100351 + 0.994952i \(0.468003\pi\)
\(180\) −14.7220 −1.09731
\(181\) 23.9469 1.77996 0.889979 0.456001i \(-0.150719\pi\)
0.889979 + 0.456001i \(0.150719\pi\)
\(182\) 4.05755 0.300766
\(183\) 25.6055 1.89281
\(184\) −3.30234 −0.243452
\(185\) 30.0320 2.20799
\(186\) −8.22214 −0.602877
\(187\) 23.3364 1.70653
\(188\) 6.24784 0.455671
\(189\) 0.520212 0.0378398
\(190\) −4.56931 −0.331493
\(191\) 4.81947 0.348724 0.174362 0.984682i \(-0.444214\pi\)
0.174362 + 0.984682i \(0.444214\pi\)
\(192\) −4.53431 −0.327236
\(193\) 18.6941 1.34563 0.672815 0.739811i \(-0.265085\pi\)
0.672815 + 0.739811i \(0.265085\pi\)
\(194\) 3.45765 0.248245
\(195\) 37.5906 2.69192
\(196\) 8.82405 0.630289
\(197\) 15.7481 1.12200 0.561002 0.827814i \(-0.310416\pi\)
0.561002 + 0.827814i \(0.310416\pi\)
\(198\) −7.33354 −0.521172
\(199\) 8.78805 0.622969 0.311484 0.950251i \(-0.399174\pi\)
0.311484 + 0.950251i \(0.399174\pi\)
\(200\) −4.92790 −0.348455
\(201\) −37.1916 −2.62329
\(202\) −9.72691 −0.684383
\(203\) 6.57552 0.461511
\(204\) 22.9756 1.60861
\(205\) −22.1390 −1.54626
\(206\) −2.96851 −0.206826
\(207\) 5.20275 0.361616
\(208\) 12.9561 0.898345
\(209\) 13.3369 0.922536
\(210\) 4.95669 0.342044
\(211\) 13.9226 0.958475 0.479237 0.877685i \(-0.340913\pi\)
0.479237 + 0.877685i \(0.340913\pi\)
\(212\) 5.72736 0.393357
\(213\) −4.46160 −0.305704
\(214\) 6.16999 0.421772
\(215\) −12.2960 −0.838577
\(216\) −0.768993 −0.0523233
\(217\) −8.31431 −0.564412
\(218\) 4.76515 0.322736
\(219\) 9.76992 0.660190
\(220\) 20.0894 1.35443
\(221\) −30.0703 −2.02275
\(222\) 14.7287 0.988524
\(223\) 15.2357 1.02026 0.510128 0.860099i \(-0.329598\pi\)
0.510128 + 0.860099i \(0.329598\pi\)
\(224\) 7.13350 0.476627
\(225\) 7.76378 0.517585
\(226\) −6.82961 −0.454299
\(227\) −16.5841 −1.10073 −0.550363 0.834925i \(-0.685511\pi\)
−0.550363 + 0.834925i \(0.685511\pi\)
\(228\) 13.1307 0.869602
\(229\) 19.0304 1.25757 0.628783 0.777581i \(-0.283553\pi\)
0.628783 + 0.777581i \(0.283553\pi\)
\(230\) 2.43237 0.160385
\(231\) −14.4676 −0.951901
\(232\) −9.72013 −0.638158
\(233\) −10.1471 −0.664758 −0.332379 0.943146i \(-0.607851\pi\)
−0.332379 + 0.943146i \(0.607851\pi\)
\(234\) 9.44967 0.617744
\(235\) −9.98917 −0.651622
\(236\) −13.3217 −0.867171
\(237\) 13.4408 0.873077
\(238\) −3.96506 −0.257017
\(239\) 13.5022 0.873382 0.436691 0.899611i \(-0.356150\pi\)
0.436691 + 0.899611i \(0.356150\pi\)
\(240\) 15.8272 1.02164
\(241\) −11.5583 −0.744537 −0.372268 0.928125i \(-0.621420\pi\)
−0.372268 + 0.928125i \(0.621420\pi\)
\(242\) 4.06759 0.261475
\(243\) −22.2685 −1.42853
\(244\) −17.6329 −1.12883
\(245\) −14.1081 −0.901331
\(246\) −10.8577 −0.692262
\(247\) −17.1854 −1.09348
\(248\) 12.2905 0.780446
\(249\) 6.94007 0.439809
\(250\) −3.74489 −0.236848
\(251\) 4.61960 0.291587 0.145793 0.989315i \(-0.453427\pi\)
0.145793 + 0.989315i \(0.453427\pi\)
\(252\) −7.30108 −0.459925
\(253\) −7.09961 −0.446349
\(254\) −4.91880 −0.308633
\(255\) −36.7338 −2.30036
\(256\) −2.56452 −0.160283
\(257\) −19.3079 −1.20439 −0.602196 0.798348i \(-0.705708\pi\)
−0.602196 + 0.798348i \(0.705708\pi\)
\(258\) −6.03034 −0.375433
\(259\) 14.8938 0.925454
\(260\) −25.8863 −1.60540
\(261\) 15.3138 0.947900
\(262\) 5.09796 0.314953
\(263\) −10.0777 −0.621418 −0.310709 0.950505i \(-0.600566\pi\)
−0.310709 + 0.950505i \(0.600566\pi\)
\(264\) 21.3865 1.31625
\(265\) −9.15701 −0.562511
\(266\) −2.26606 −0.138941
\(267\) −8.25451 −0.505168
\(268\) 25.6116 1.56448
\(269\) 24.2492 1.47850 0.739250 0.673431i \(-0.235180\pi\)
0.739250 + 0.673431i \(0.235180\pi\)
\(270\) 0.566408 0.0344705
\(271\) −19.6610 −1.19432 −0.597159 0.802123i \(-0.703704\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(272\) −12.6608 −0.767673
\(273\) 18.6423 1.12829
\(274\) 8.35226 0.504578
\(275\) −10.5944 −0.638864
\(276\) −6.98983 −0.420738
\(277\) 31.9027 1.91685 0.958423 0.285353i \(-0.0921108\pi\)
0.958423 + 0.285353i \(0.0921108\pi\)
\(278\) 11.3587 0.681247
\(279\) −19.3633 −1.15925
\(280\) −7.40927 −0.442789
\(281\) −18.4310 −1.09950 −0.549752 0.835328i \(-0.685278\pi\)
−0.549752 + 0.835328i \(0.685278\pi\)
\(282\) −4.89902 −0.291732
\(283\) −9.31764 −0.553876 −0.276938 0.960888i \(-0.589320\pi\)
−0.276938 + 0.960888i \(0.589320\pi\)
\(284\) 3.07242 0.182315
\(285\) −20.9936 −1.24355
\(286\) −12.8949 −0.762492
\(287\) −10.9794 −0.648095
\(288\) 16.6133 0.978947
\(289\) 12.3849 0.728522
\(290\) 7.15944 0.420417
\(291\) 15.8861 0.931260
\(292\) −6.72793 −0.393723
\(293\) 22.8134 1.33277 0.666387 0.745606i \(-0.267840\pi\)
0.666387 + 0.745606i \(0.267840\pi\)
\(294\) −6.91906 −0.403528
\(295\) 21.2990 1.24008
\(296\) −22.0164 −1.27968
\(297\) −1.65324 −0.0959305
\(298\) 3.08505 0.178712
\(299\) 9.14824 0.529057
\(300\) −10.4305 −0.602207
\(301\) −6.09794 −0.351480
\(302\) 7.76078 0.446582
\(303\) −44.6901 −2.56738
\(304\) −7.23574 −0.414998
\(305\) 28.1919 1.61426
\(306\) −9.23428 −0.527889
\(307\) −0.269272 −0.0153682 −0.00768409 0.999970i \(-0.502446\pi\)
−0.00768409 + 0.999970i \(0.502446\pi\)
\(308\) 9.96296 0.567692
\(309\) −13.6388 −0.775881
\(310\) −9.05264 −0.514155
\(311\) 17.8358 1.01138 0.505688 0.862717i \(-0.331239\pi\)
0.505688 + 0.862717i \(0.331239\pi\)
\(312\) −27.5577 −1.56015
\(313\) −28.0566 −1.58585 −0.792925 0.609319i \(-0.791443\pi\)
−0.792925 + 0.609319i \(0.791443\pi\)
\(314\) −8.31327 −0.469145
\(315\) 11.6731 0.657705
\(316\) −9.25587 −0.520684
\(317\) −3.77260 −0.211890 −0.105945 0.994372i \(-0.533787\pi\)
−0.105945 + 0.994372i \(0.533787\pi\)
\(318\) −4.49090 −0.251837
\(319\) −20.8970 −1.17001
\(320\) −4.99231 −0.279078
\(321\) 28.3479 1.58223
\(322\) 1.20629 0.0672237
\(323\) 16.7937 0.934425
\(324\) 14.5416 0.807866
\(325\) 13.6514 0.757244
\(326\) −0.951880 −0.0527198
\(327\) 21.8934 1.21071
\(328\) 16.2301 0.896158
\(329\) −4.95394 −0.273120
\(330\) −15.7524 −0.867140
\(331\) −18.4890 −1.01625 −0.508124 0.861284i \(-0.669661\pi\)
−0.508124 + 0.861284i \(0.669661\pi\)
\(332\) −4.77919 −0.262292
\(333\) 34.6863 1.90080
\(334\) −3.46790 −0.189755
\(335\) −40.9482 −2.23724
\(336\) 7.84917 0.428208
\(337\) 3.24765 0.176911 0.0884555 0.996080i \(-0.471807\pi\)
0.0884555 + 0.996080i \(0.471807\pi\)
\(338\) 9.59619 0.521964
\(339\) −31.3785 −1.70425
\(340\) 25.2963 1.37188
\(341\) 26.4229 1.43088
\(342\) −5.27746 −0.285372
\(343\) −16.4790 −0.889781
\(344\) 9.01417 0.486011
\(345\) 11.1755 0.601667
\(346\) 6.88325 0.370046
\(347\) −16.5021 −0.885880 −0.442940 0.896551i \(-0.646065\pi\)
−0.442940 + 0.896551i \(0.646065\pi\)
\(348\) −20.5739 −1.10288
\(349\) −14.2112 −0.760707 −0.380354 0.924841i \(-0.624198\pi\)
−0.380354 + 0.924841i \(0.624198\pi\)
\(350\) 1.80007 0.0962180
\(351\) 2.13029 0.113706
\(352\) −22.6703 −1.20833
\(353\) −15.3811 −0.818651 −0.409326 0.912388i \(-0.634236\pi\)
−0.409326 + 0.912388i \(0.634236\pi\)
\(354\) 10.4458 0.555186
\(355\) −4.91225 −0.260715
\(356\) 5.68437 0.301271
\(357\) −18.2174 −0.964168
\(358\) 1.44994 0.0766317
\(359\) −1.83336 −0.0967611 −0.0483805 0.998829i \(-0.515406\pi\)
−0.0483805 + 0.998829i \(0.515406\pi\)
\(360\) −17.2555 −0.909446
\(361\) −9.40229 −0.494858
\(362\) 12.9306 0.679618
\(363\) 18.6885 0.980891
\(364\) −12.8378 −0.672885
\(365\) 10.7567 0.563034
\(366\) 13.8262 0.722708
\(367\) −15.2837 −0.797805 −0.398902 0.916993i \(-0.630609\pi\)
−0.398902 + 0.916993i \(0.630609\pi\)
\(368\) 3.85178 0.200788
\(369\) −25.5701 −1.33113
\(370\) 16.2164 0.843049
\(371\) −4.54125 −0.235770
\(372\) 26.0143 1.34878
\(373\) 6.84654 0.354500 0.177250 0.984166i \(-0.443280\pi\)
0.177250 + 0.984166i \(0.443280\pi\)
\(374\) 12.6010 0.651582
\(375\) −17.2058 −0.888506
\(376\) 7.32306 0.377658
\(377\) 26.9270 1.38681
\(378\) 0.280899 0.0144479
\(379\) 17.4822 0.898000 0.449000 0.893532i \(-0.351780\pi\)
0.449000 + 0.893532i \(0.351780\pi\)
\(380\) 14.4570 0.741629
\(381\) −22.5993 −1.15780
\(382\) 2.60237 0.133149
\(383\) 1.00000 0.0510976
\(384\) −28.5773 −1.45833
\(385\) −15.9290 −0.811816
\(386\) 10.0943 0.513784
\(387\) −14.2016 −0.721906
\(388\) −10.9398 −0.555383
\(389\) −2.45177 −0.124310 −0.0621549 0.998067i \(-0.519797\pi\)
−0.0621549 + 0.998067i \(0.519797\pi\)
\(390\) 20.2978 1.02782
\(391\) −8.93972 −0.452101
\(392\) 10.3426 0.522381
\(393\) 23.4225 1.18151
\(394\) 8.50350 0.428400
\(395\) 14.7985 0.744592
\(396\) 23.2029 1.16599
\(397\) 19.5293 0.980146 0.490073 0.871681i \(-0.336970\pi\)
0.490073 + 0.871681i \(0.336970\pi\)
\(398\) 4.74529 0.237860
\(399\) −10.4114 −0.521221
\(400\) 5.74779 0.287390
\(401\) 6.94861 0.346997 0.173499 0.984834i \(-0.444493\pi\)
0.173499 + 0.984834i \(0.444493\pi\)
\(402\) −20.0824 −1.00162
\(403\) −34.0474 −1.69602
\(404\) 30.7753 1.53113
\(405\) −23.2494 −1.15527
\(406\) 3.55059 0.176213
\(407\) −47.3325 −2.34618
\(408\) 26.9295 1.33321
\(409\) 16.3598 0.808939 0.404470 0.914551i \(-0.367456\pi\)
0.404470 + 0.914551i \(0.367456\pi\)
\(410\) −11.9544 −0.590386
\(411\) 38.3743 1.89287
\(412\) 9.39216 0.462719
\(413\) 10.5629 0.519764
\(414\) 2.80933 0.138071
\(415\) 7.64106 0.375085
\(416\) 29.2119 1.43223
\(417\) 52.1872 2.55562
\(418\) 7.20156 0.352240
\(419\) −35.5721 −1.73781 −0.868906 0.494977i \(-0.835176\pi\)
−0.868906 + 0.494977i \(0.835176\pi\)
\(420\) −15.6827 −0.765235
\(421\) −19.9670 −0.973133 −0.486567 0.873643i \(-0.661751\pi\)
−0.486567 + 0.873643i \(0.661751\pi\)
\(422\) 7.51782 0.365962
\(423\) −11.5373 −0.560962
\(424\) 6.71301 0.326013
\(425\) −13.3402 −0.647097
\(426\) −2.40913 −0.116723
\(427\) 13.9812 0.676598
\(428\) −19.5215 −0.943605
\(429\) −59.2455 −2.86040
\(430\) −6.63945 −0.320183
\(431\) −31.6695 −1.52546 −0.762732 0.646715i \(-0.776142\pi\)
−0.762732 + 0.646715i \(0.776142\pi\)
\(432\) 0.896935 0.0431538
\(433\) 25.9453 1.24685 0.623426 0.781883i \(-0.285740\pi\)
0.623426 + 0.781883i \(0.285740\pi\)
\(434\) −4.48948 −0.215502
\(435\) 32.8939 1.57714
\(436\) −15.0766 −0.722039
\(437\) −5.10912 −0.244402
\(438\) 5.27547 0.252072
\(439\) −0.721438 −0.0344324 −0.0172162 0.999852i \(-0.505480\pi\)
−0.0172162 + 0.999852i \(0.505480\pi\)
\(440\) 23.5467 1.12254
\(441\) −16.2945 −0.775929
\(442\) −16.2371 −0.772319
\(443\) −24.0001 −1.14028 −0.570139 0.821548i \(-0.693111\pi\)
−0.570139 + 0.821548i \(0.693111\pi\)
\(444\) −46.6006 −2.21156
\(445\) −9.08827 −0.430825
\(446\) 8.22681 0.389551
\(447\) 14.1742 0.670417
\(448\) −2.47584 −0.116972
\(449\) −2.52659 −0.119237 −0.0596185 0.998221i \(-0.518988\pi\)
−0.0596185 + 0.998221i \(0.518988\pi\)
\(450\) 4.19221 0.197623
\(451\) 34.8927 1.64303
\(452\) 21.6084 1.01638
\(453\) 35.6568 1.67530
\(454\) −8.95494 −0.420276
\(455\) 20.5254 0.962244
\(456\) 15.3904 0.720723
\(457\) −6.40528 −0.299627 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(458\) 10.2759 0.480160
\(459\) −2.08173 −0.0971667
\(460\) −7.69585 −0.358821
\(461\) −27.2474 −1.26904 −0.634518 0.772908i \(-0.718801\pi\)
−0.634518 + 0.772908i \(0.718801\pi\)
\(462\) −7.81210 −0.363452
\(463\) −29.8580 −1.38762 −0.693809 0.720159i \(-0.744069\pi\)
−0.693809 + 0.720159i \(0.744069\pi\)
\(464\) 11.3373 0.526322
\(465\) −41.5922 −1.92879
\(466\) −5.47913 −0.253816
\(467\) −27.1904 −1.25822 −0.629111 0.777315i \(-0.716581\pi\)
−0.629111 + 0.777315i \(0.716581\pi\)
\(468\) −29.8982 −1.38204
\(469\) −20.3075 −0.937713
\(470\) −5.39386 −0.248800
\(471\) −38.1952 −1.75994
\(472\) −15.6143 −0.718708
\(473\) 19.3793 0.891061
\(474\) 7.25766 0.333355
\(475\) −7.62405 −0.349815
\(476\) 12.5452 0.575008
\(477\) −10.5762 −0.484249
\(478\) 7.29077 0.333472
\(479\) −31.9144 −1.45820 −0.729102 0.684405i \(-0.760062\pi\)
−0.729102 + 0.684405i \(0.760062\pi\)
\(480\) 35.6852 1.62880
\(481\) 60.9905 2.78093
\(482\) −6.24115 −0.284277
\(483\) 5.54226 0.252182
\(484\) −12.8696 −0.584981
\(485\) 17.4907 0.794213
\(486\) −12.0243 −0.545435
\(487\) 2.25580 0.102220 0.0511100 0.998693i \(-0.483724\pi\)
0.0511100 + 0.998693i \(0.483724\pi\)
\(488\) −20.6675 −0.935572
\(489\) −4.37340 −0.197772
\(490\) −7.61793 −0.344143
\(491\) −33.5872 −1.51577 −0.757884 0.652389i \(-0.773767\pi\)
−0.757884 + 0.652389i \(0.773767\pi\)
\(492\) 34.3531 1.54876
\(493\) −26.3132 −1.18509
\(494\) −9.27960 −0.417509
\(495\) −37.0972 −1.66739
\(496\) −14.3353 −0.643675
\(497\) −2.43614 −0.109276
\(498\) 3.74743 0.167926
\(499\) 15.3567 0.687460 0.343730 0.939069i \(-0.388309\pi\)
0.343730 + 0.939069i \(0.388309\pi\)
\(500\) 11.8486 0.529885
\(501\) −15.9332 −0.711844
\(502\) 2.49445 0.111333
\(503\) 16.3889 0.730747 0.365373 0.930861i \(-0.380941\pi\)
0.365373 + 0.930861i \(0.380941\pi\)
\(504\) −8.55755 −0.381184
\(505\) −49.2042 −2.18956
\(506\) −3.83358 −0.170423
\(507\) 44.0895 1.95809
\(508\) 15.5628 0.690486
\(509\) 41.0905 1.82131 0.910653 0.413171i \(-0.135579\pi\)
0.910653 + 0.413171i \(0.135579\pi\)
\(510\) −19.8352 −0.878315
\(511\) 5.33461 0.235989
\(512\) 21.6532 0.956946
\(513\) −1.18972 −0.0525275
\(514\) −10.4257 −0.459857
\(515\) −15.0164 −0.661700
\(516\) 19.0796 0.839933
\(517\) 15.7436 0.692405
\(518\) 8.04220 0.353354
\(519\) 31.6250 1.38818
\(520\) −30.3412 −1.33055
\(521\) −35.8082 −1.56879 −0.784393 0.620264i \(-0.787025\pi\)
−0.784393 + 0.620264i \(0.787025\pi\)
\(522\) 8.26900 0.361924
\(523\) −12.8860 −0.563467 −0.281734 0.959493i \(-0.590909\pi\)
−0.281734 + 0.959493i \(0.590909\pi\)
\(524\) −16.1296 −0.704625
\(525\) 8.27041 0.360950
\(526\) −5.44166 −0.237268
\(527\) 33.2713 1.44932
\(528\) −24.9447 −1.08558
\(529\) −20.2803 −0.881751
\(530\) −4.94452 −0.214776
\(531\) 24.5999 1.06755
\(532\) 7.16968 0.310845
\(533\) −44.9611 −1.94748
\(534\) −4.45719 −0.192881
\(535\) 31.2113 1.34938
\(536\) 30.0192 1.29663
\(537\) 6.66173 0.287475
\(538\) 13.0939 0.564516
\(539\) 22.2353 0.957742
\(540\) −1.79208 −0.0771187
\(541\) −0.426739 −0.0183469 −0.00917347 0.999958i \(-0.502920\pi\)
−0.00917347 + 0.999958i \(0.502920\pi\)
\(542\) −10.6163 −0.456011
\(543\) 59.4095 2.54951
\(544\) −28.5461 −1.22390
\(545\) 24.1048 1.03254
\(546\) 10.0663 0.430799
\(547\) 39.6287 1.69440 0.847201 0.531273i \(-0.178286\pi\)
0.847201 + 0.531273i \(0.178286\pi\)
\(548\) −26.4260 −1.12886
\(549\) 32.5610 1.38967
\(550\) −5.72064 −0.243929
\(551\) −15.0382 −0.640648
\(552\) −8.19274 −0.348706
\(553\) 7.33902 0.312087
\(554\) 17.2265 0.731884
\(555\) 74.5059 3.16260
\(556\) −35.9381 −1.52411
\(557\) −5.49023 −0.232628 −0.116314 0.993212i \(-0.537108\pi\)
−0.116314 + 0.993212i \(0.537108\pi\)
\(558\) −10.4556 −0.442621
\(559\) −24.9713 −1.05617
\(560\) 8.64200 0.365191
\(561\) 57.8950 2.44433
\(562\) −9.95222 −0.419809
\(563\) 34.7674 1.46527 0.732635 0.680622i \(-0.238290\pi\)
0.732635 + 0.680622i \(0.238290\pi\)
\(564\) 15.5002 0.652676
\(565\) −34.5480 −1.45344
\(566\) −5.03125 −0.211479
\(567\) −11.5301 −0.484218
\(568\) 3.60117 0.151102
\(569\) 5.33205 0.223531 0.111766 0.993735i \(-0.464349\pi\)
0.111766 + 0.993735i \(0.464349\pi\)
\(570\) −11.3359 −0.474810
\(571\) 4.52883 0.189525 0.0947627 0.995500i \(-0.469791\pi\)
0.0947627 + 0.995500i \(0.469791\pi\)
\(572\) 40.7987 1.70588
\(573\) 11.9565 0.499492
\(574\) −5.92856 −0.247454
\(575\) 4.05848 0.169251
\(576\) −5.76601 −0.240250
\(577\) 16.2747 0.677524 0.338762 0.940872i \(-0.389992\pi\)
0.338762 + 0.940872i \(0.389992\pi\)
\(578\) 6.68746 0.278162
\(579\) 46.3779 1.92740
\(580\) −22.6520 −0.940573
\(581\) 3.78944 0.157212
\(582\) 8.57803 0.355571
\(583\) 14.4321 0.597717
\(584\) −7.88578 −0.326316
\(585\) 47.8017 1.97636
\(586\) 12.3186 0.508875
\(587\) −3.98036 −0.164287 −0.0821436 0.996621i \(-0.526177\pi\)
−0.0821436 + 0.996621i \(0.526177\pi\)
\(588\) 21.8915 0.902788
\(589\) 19.0148 0.783492
\(590\) 11.5009 0.473483
\(591\) 39.0692 1.60709
\(592\) 25.6795 1.05542
\(593\) 3.50713 0.144021 0.0720103 0.997404i \(-0.477059\pi\)
0.0720103 + 0.997404i \(0.477059\pi\)
\(594\) −0.892698 −0.0366279
\(595\) −20.0575 −0.822278
\(596\) −9.76090 −0.399822
\(597\) 21.8022 0.892303
\(598\) 4.93978 0.202003
\(599\) −5.73453 −0.234306 −0.117153 0.993114i \(-0.537377\pi\)
−0.117153 + 0.993114i \(0.537377\pi\)
\(600\) −12.2256 −0.499107
\(601\) 33.1801 1.35344 0.676721 0.736239i \(-0.263400\pi\)
0.676721 + 0.736239i \(0.263400\pi\)
\(602\) −3.29271 −0.134201
\(603\) −47.2944 −1.92598
\(604\) −24.5546 −0.999112
\(605\) 20.5761 0.836539
\(606\) −24.1314 −0.980269
\(607\) −16.1721 −0.656404 −0.328202 0.944608i \(-0.606443\pi\)
−0.328202 + 0.944608i \(0.606443\pi\)
\(608\) −16.3143 −0.661632
\(609\) 16.3131 0.661041
\(610\) 15.2228 0.616352
\(611\) −20.2866 −0.820706
\(612\) 29.2167 1.18101
\(613\) 28.0274 1.13202 0.566008 0.824400i \(-0.308487\pi\)
0.566008 + 0.824400i \(0.308487\pi\)
\(614\) −0.145399 −0.00586783
\(615\) −54.9244 −2.21476
\(616\) 11.6775 0.470501
\(617\) −41.1738 −1.65760 −0.828798 0.559548i \(-0.810975\pi\)
−0.828798 + 0.559548i \(0.810975\pi\)
\(618\) −7.36452 −0.296245
\(619\) −13.9142 −0.559257 −0.279629 0.960108i \(-0.590211\pi\)
−0.279629 + 0.960108i \(0.590211\pi\)
\(620\) 28.6420 1.15029
\(621\) 0.633321 0.0254143
\(622\) 9.63081 0.386160
\(623\) −4.50716 −0.180575
\(624\) 32.1426 1.28674
\(625\) −31.2485 −1.24994
\(626\) −15.1497 −0.605505
\(627\) 33.0874 1.32139
\(628\) 26.3027 1.04959
\(629\) −59.6003 −2.37642
\(630\) 6.30313 0.251123
\(631\) −27.6205 −1.09955 −0.549777 0.835311i \(-0.685287\pi\)
−0.549777 + 0.835311i \(0.685287\pi\)
\(632\) −10.8488 −0.431541
\(633\) 34.5405 1.37286
\(634\) −2.03709 −0.0809032
\(635\) −24.8820 −0.987414
\(636\) 14.2089 0.563421
\(637\) −28.6514 −1.13521
\(638\) −11.2838 −0.446729
\(639\) −5.67355 −0.224442
\(640\) −31.4638 −1.24372
\(641\) 9.35059 0.369326 0.184663 0.982802i \(-0.440881\pi\)
0.184663 + 0.982802i \(0.440881\pi\)
\(642\) 15.3070 0.604121
\(643\) 38.5809 1.52148 0.760742 0.649055i \(-0.224835\pi\)
0.760742 + 0.649055i \(0.224835\pi\)
\(644\) −3.81661 −0.150396
\(645\) −30.5049 −1.20113
\(646\) 9.06809 0.356779
\(647\) 35.0047 1.37618 0.688089 0.725626i \(-0.258450\pi\)
0.688089 + 0.725626i \(0.258450\pi\)
\(648\) 17.0441 0.669556
\(649\) −33.5688 −1.31769
\(650\) 7.37136 0.289129
\(651\) −20.6269 −0.808430
\(652\) 3.01169 0.117947
\(653\) 40.0726 1.56816 0.784081 0.620658i \(-0.213135\pi\)
0.784081 + 0.620658i \(0.213135\pi\)
\(654\) 11.8218 0.462268
\(655\) 25.7883 1.00763
\(656\) −18.9304 −0.739109
\(657\) 12.4238 0.484699
\(658\) −2.67498 −0.104282
\(659\) −22.5703 −0.879214 −0.439607 0.898190i \(-0.644882\pi\)
−0.439607 + 0.898190i \(0.644882\pi\)
\(660\) 49.8395 1.94000
\(661\) 24.4543 0.951160 0.475580 0.879672i \(-0.342238\pi\)
0.475580 + 0.879672i \(0.342238\pi\)
\(662\) −9.98351 −0.388020
\(663\) −74.6009 −2.89726
\(664\) −5.60167 −0.217387
\(665\) −11.4630 −0.444517
\(666\) 18.7296 0.725756
\(667\) 8.00523 0.309964
\(668\) 10.9722 0.424528
\(669\) 37.7980 1.46135
\(670\) −22.1108 −0.854216
\(671\) −44.4324 −1.71529
\(672\) 17.6974 0.682692
\(673\) 46.9363 1.80926 0.904630 0.426197i \(-0.140147\pi\)
0.904630 + 0.426197i \(0.140147\pi\)
\(674\) 1.75364 0.0675476
\(675\) 0.945070 0.0363758
\(676\) −30.3617 −1.16776
\(677\) 2.16566 0.0832330 0.0416165 0.999134i \(-0.486749\pi\)
0.0416165 + 0.999134i \(0.486749\pi\)
\(678\) −16.9435 −0.650710
\(679\) 8.67419 0.332885
\(680\) 29.6496 1.13701
\(681\) −41.1433 −1.57662
\(682\) 14.2676 0.546335
\(683\) −11.7699 −0.450364 −0.225182 0.974317i \(-0.572298\pi\)
−0.225182 + 0.974317i \(0.572298\pi\)
\(684\) 16.6975 0.638446
\(685\) 42.2504 1.61430
\(686\) −8.89816 −0.339733
\(687\) 47.2123 1.80126
\(688\) −10.5139 −0.400839
\(689\) −18.5966 −0.708473
\(690\) 6.03442 0.229727
\(691\) 2.10859 0.0802147 0.0401074 0.999195i \(-0.487230\pi\)
0.0401074 + 0.999195i \(0.487230\pi\)
\(692\) −21.7782 −0.827882
\(693\) −18.3976 −0.698868
\(694\) −8.91066 −0.338244
\(695\) 57.4584 2.17952
\(696\) −24.1145 −0.914059
\(697\) 43.9363 1.66421
\(698\) −7.67362 −0.290451
\(699\) −25.1738 −0.952160
\(700\) −5.69532 −0.215263
\(701\) −9.83263 −0.371373 −0.185687 0.982609i \(-0.559451\pi\)
−0.185687 + 0.982609i \(0.559451\pi\)
\(702\) 1.15029 0.0434149
\(703\) −34.0620 −1.28467
\(704\) 7.86823 0.296545
\(705\) −24.7820 −0.933344
\(706\) −8.30532 −0.312575
\(707\) −24.4019 −0.917727
\(708\) −33.0497 −1.24208
\(709\) −24.1121 −0.905549 −0.452774 0.891625i \(-0.649566\pi\)
−0.452774 + 0.891625i \(0.649566\pi\)
\(710\) −2.65247 −0.0995454
\(711\) 17.0919 0.640997
\(712\) 6.66261 0.249692
\(713\) −10.1221 −0.379075
\(714\) −9.83687 −0.368136
\(715\) −65.2297 −2.43945
\(716\) −4.58752 −0.171444
\(717\) 33.4973 1.25098
\(718\) −0.989961 −0.0369450
\(719\) 13.4949 0.503276 0.251638 0.967821i \(-0.419031\pi\)
0.251638 + 0.967821i \(0.419031\pi\)
\(720\) 20.1264 0.750068
\(721\) −7.44708 −0.277344
\(722\) −5.07696 −0.188945
\(723\) −28.6749 −1.06643
\(724\) −40.9116 −1.52047
\(725\) 11.9458 0.443654
\(726\) 10.0912 0.374521
\(727\) −21.5643 −0.799776 −0.399888 0.916564i \(-0.630951\pi\)
−0.399888 + 0.916564i \(0.630951\pi\)
\(728\) −15.0471 −0.557684
\(729\) −29.7107 −1.10040
\(730\) 5.80833 0.214976
\(731\) 24.4021 0.902544
\(732\) −43.7453 −1.61687
\(733\) −38.9418 −1.43835 −0.719175 0.694829i \(-0.755480\pi\)
−0.719175 + 0.694829i \(0.755480\pi\)
\(734\) −8.25277 −0.304615
\(735\) −35.0005 −1.29101
\(736\) 8.68453 0.320116
\(737\) 64.5373 2.37726
\(738\) −13.8071 −0.508246
\(739\) −13.0039 −0.478356 −0.239178 0.970976i \(-0.576878\pi\)
−0.239178 + 0.970976i \(0.576878\pi\)
\(740\) −51.3076 −1.88610
\(741\) −42.6350 −1.56624
\(742\) −2.45214 −0.0900209
\(743\) 25.8102 0.946883 0.473442 0.880825i \(-0.343012\pi\)
0.473442 + 0.880825i \(0.343012\pi\)
\(744\) 30.4913 1.11786
\(745\) 15.6059 0.571756
\(746\) 3.69693 0.135354
\(747\) 8.82527 0.322900
\(748\) −39.8687 −1.45774
\(749\) 15.4786 0.565577
\(750\) −9.29064 −0.339246
\(751\) 46.2279 1.68688 0.843441 0.537222i \(-0.180526\pi\)
0.843441 + 0.537222i \(0.180526\pi\)
\(752\) −8.54145 −0.311475
\(753\) 11.4607 0.417652
\(754\) 14.5398 0.529507
\(755\) 39.2583 1.42876
\(756\) −0.888746 −0.0323234
\(757\) −19.1363 −0.695520 −0.347760 0.937584i \(-0.613058\pi\)
−0.347760 + 0.937584i \(0.613058\pi\)
\(758\) 9.43987 0.342871
\(759\) −17.6133 −0.639323
\(760\) 16.9450 0.614659
\(761\) −32.1134 −1.16411 −0.582054 0.813150i \(-0.697751\pi\)
−0.582054 + 0.813150i \(0.697751\pi\)
\(762\) −12.2030 −0.442067
\(763\) 11.9543 0.432775
\(764\) −8.23373 −0.297886
\(765\) −46.7121 −1.68888
\(766\) 0.539970 0.0195099
\(767\) 43.2552 1.56186
\(768\) −6.36228 −0.229579
\(769\) 16.6496 0.600398 0.300199 0.953877i \(-0.402947\pi\)
0.300199 + 0.953877i \(0.402947\pi\)
\(770\) −8.60118 −0.309965
\(771\) −47.9006 −1.72510
\(772\) −31.9376 −1.14946
\(773\) 17.3562 0.624258 0.312129 0.950040i \(-0.398958\pi\)
0.312129 + 0.950040i \(0.398958\pi\)
\(774\) −7.66843 −0.275636
\(775\) −15.1046 −0.542574
\(776\) −12.8225 −0.460299
\(777\) 36.9498 1.32557
\(778\) −1.32388 −0.0474636
\(779\) 25.1099 0.899656
\(780\) −64.2210 −2.29948
\(781\) 7.74205 0.277032
\(782\) −4.82718 −0.172620
\(783\) 1.86412 0.0666182
\(784\) −12.0634 −0.430835
\(785\) −42.0532 −1.50094
\(786\) 12.6475 0.451120
\(787\) 13.5810 0.484109 0.242055 0.970263i \(-0.422179\pi\)
0.242055 + 0.970263i \(0.422179\pi\)
\(788\) −26.9045 −0.958434
\(789\) −25.0016 −0.890081
\(790\) 7.99073 0.284298
\(791\) −17.1334 −0.609194
\(792\) 27.1959 0.966366
\(793\) 57.2536 2.03313
\(794\) 10.5452 0.374236
\(795\) −22.7175 −0.805707
\(796\) −15.0138 −0.532150
\(797\) 5.18177 0.183548 0.0917738 0.995780i \(-0.470746\pi\)
0.0917738 + 0.995780i \(0.470746\pi\)
\(798\) −5.62184 −0.199011
\(799\) 19.8241 0.701328
\(800\) 12.9594 0.458186
\(801\) −10.4968 −0.370885
\(802\) 3.75205 0.132489
\(803\) −16.9534 −0.598273
\(804\) 63.5394 2.24086
\(805\) 6.10207 0.215070
\(806\) −18.3846 −0.647570
\(807\) 60.1595 2.11771
\(808\) 36.0716 1.26899
\(809\) −29.9242 −1.05208 −0.526040 0.850460i \(-0.676324\pi\)
−0.526040 + 0.850460i \(0.676324\pi\)
\(810\) −12.5540 −0.441101
\(811\) 16.4093 0.576207 0.288104 0.957599i \(-0.406975\pi\)
0.288104 + 0.957599i \(0.406975\pi\)
\(812\) −11.2338 −0.394230
\(813\) −48.7766 −1.71067
\(814\) −25.5582 −0.895813
\(815\) −4.81514 −0.168667
\(816\) −31.4100 −1.09957
\(817\) 13.9460 0.487908
\(818\) 8.83380 0.308867
\(819\) 23.7064 0.828367
\(820\) 37.8230 1.32084
\(821\) 54.2340 1.89278 0.946390 0.323027i \(-0.104701\pi\)
0.946390 + 0.323027i \(0.104701\pi\)
\(822\) 20.7210 0.722728
\(823\) 13.3010 0.463645 0.231822 0.972758i \(-0.425531\pi\)
0.231822 + 0.972758i \(0.425531\pi\)
\(824\) 11.0085 0.383499
\(825\) −26.2834 −0.915070
\(826\) 5.70363 0.198455
\(827\) 1.11572 0.0387974 0.0193987 0.999812i \(-0.493825\pi\)
0.0193987 + 0.999812i \(0.493825\pi\)
\(828\) −8.88855 −0.308898
\(829\) −44.8448 −1.55752 −0.778762 0.627319i \(-0.784152\pi\)
−0.778762 + 0.627319i \(0.784152\pi\)
\(830\) 4.12595 0.143214
\(831\) 79.1469 2.74557
\(832\) −10.1386 −0.351494
\(833\) 27.9983 0.970085
\(834\) 28.1795 0.975777
\(835\) −17.5426 −0.607087
\(836\) −22.7853 −0.788045
\(837\) −2.35706 −0.0814718
\(838\) −19.2079 −0.663526
\(839\) −9.45493 −0.326420 −0.163210 0.986591i \(-0.552185\pi\)
−0.163210 + 0.986591i \(0.552185\pi\)
\(840\) −18.3816 −0.634224
\(841\) −5.43738 −0.187496
\(842\) −10.7816 −0.371559
\(843\) −45.7253 −1.57486
\(844\) −23.7859 −0.818744
\(845\) 48.5429 1.66993
\(846\) −6.22979 −0.214185
\(847\) 10.2043 0.350626
\(848\) −7.82990 −0.268880
\(849\) −23.1160 −0.793339
\(850\) −7.20334 −0.247072
\(851\) 18.1321 0.621561
\(852\) 7.62233 0.261137
\(853\) −5.37961 −0.184194 −0.0920972 0.995750i \(-0.529357\pi\)
−0.0920972 + 0.995750i \(0.529357\pi\)
\(854\) 7.54944 0.258337
\(855\) −26.6963 −0.912996
\(856\) −22.8810 −0.782056
\(857\) 23.4497 0.801026 0.400513 0.916291i \(-0.368832\pi\)
0.400513 + 0.916291i \(0.368832\pi\)
\(858\) −31.9908 −1.09215
\(859\) −54.4080 −1.85638 −0.928189 0.372108i \(-0.878635\pi\)
−0.928189 + 0.372108i \(0.878635\pi\)
\(860\) 21.0068 0.716326
\(861\) −27.2387 −0.928292
\(862\) −17.1006 −0.582448
\(863\) −38.8938 −1.32396 −0.661981 0.749521i \(-0.730284\pi\)
−0.661981 + 0.749521i \(0.730284\pi\)
\(864\) 2.02230 0.0688002
\(865\) 34.8193 1.18389
\(866\) 14.0097 0.476069
\(867\) 30.7254 1.04349
\(868\) 14.2044 0.482130
\(869\) −23.3234 −0.791193
\(870\) 17.7617 0.602179
\(871\) −83.1599 −2.81777
\(872\) −17.6712 −0.598423
\(873\) 20.2014 0.683714
\(874\) −2.75877 −0.0933168
\(875\) −9.39479 −0.317602
\(876\) −16.6912 −0.563945
\(877\) −4.45544 −0.150450 −0.0752248 0.997167i \(-0.523967\pi\)
−0.0752248 + 0.997167i \(0.523967\pi\)
\(878\) −0.389555 −0.0131469
\(879\) 56.5975 1.90899
\(880\) −27.4643 −0.925822
\(881\) −47.1137 −1.58730 −0.793650 0.608375i \(-0.791822\pi\)
−0.793650 + 0.608375i \(0.791822\pi\)
\(882\) −8.79855 −0.296263
\(883\) 16.6598 0.560646 0.280323 0.959906i \(-0.409558\pi\)
0.280323 + 0.959906i \(0.409558\pi\)
\(884\) 51.3730 1.72786
\(885\) 52.8405 1.77621
\(886\) −12.9593 −0.435377
\(887\) −45.3101 −1.52137 −0.760683 0.649124i \(-0.775136\pi\)
−0.760683 + 0.649124i \(0.775136\pi\)
\(888\) −54.6203 −1.83294
\(889\) −12.3398 −0.413863
\(890\) −4.90740 −0.164496
\(891\) 36.6426 1.22757
\(892\) −26.0291 −0.871519
\(893\) 11.3296 0.379132
\(894\) 7.65366 0.255977
\(895\) 7.33461 0.245169
\(896\) −15.6039 −0.521289
\(897\) 22.6957 0.757789
\(898\) −1.36428 −0.0455267
\(899\) −29.7934 −0.993666
\(900\) −13.2639 −0.442129
\(901\) 18.1727 0.605420
\(902\) 18.8410 0.627337
\(903\) −15.1283 −0.503438
\(904\) 25.3271 0.842368
\(905\) 65.4103 2.17431
\(906\) 19.2536 0.639658
\(907\) −15.9304 −0.528960 −0.264480 0.964391i \(-0.585200\pi\)
−0.264480 + 0.964391i \(0.585200\pi\)
\(908\) 28.3328 0.940258
\(909\) −56.8298 −1.88492
\(910\) 11.0831 0.367401
\(911\) −7.16283 −0.237315 −0.118658 0.992935i \(-0.537859\pi\)
−0.118658 + 0.992935i \(0.537859\pi\)
\(912\) −17.9510 −0.594418
\(913\) −12.0429 −0.398560
\(914\) −3.45866 −0.114402
\(915\) 69.9408 2.31217
\(916\) −32.5122 −1.07423
\(917\) 12.7892 0.422338
\(918\) −1.12407 −0.0370999
\(919\) 33.0856 1.09139 0.545696 0.837983i \(-0.316265\pi\)
0.545696 + 0.837983i \(0.316265\pi\)
\(920\) −9.02026 −0.297389
\(921\) −0.668034 −0.0220125
\(922\) −14.7128 −0.484539
\(923\) −9.97606 −0.328366
\(924\) 24.7170 0.813129
\(925\) 27.0576 0.889647
\(926\) −16.1224 −0.529816
\(927\) −17.3436 −0.569638
\(928\) 25.5621 0.839117
\(929\) −4.13741 −0.135744 −0.0678720 0.997694i \(-0.521621\pi\)
−0.0678720 + 0.997694i \(0.521621\pi\)
\(930\) −22.4586 −0.736445
\(931\) 16.0013 0.524420
\(932\) 17.3356 0.567847
\(933\) 44.2486 1.44863
\(934\) −14.6820 −0.480410
\(935\) 63.7429 2.08461
\(936\) −35.0435 −1.14543
\(937\) −36.4951 −1.19224 −0.596122 0.802894i \(-0.703292\pi\)
−0.596122 + 0.802894i \(0.703292\pi\)
\(938\) −10.9655 −0.358035
\(939\) −69.6051 −2.27148
\(940\) 17.0658 0.556626
\(941\) 54.2568 1.76872 0.884360 0.466806i \(-0.154595\pi\)
0.884360 + 0.466806i \(0.154595\pi\)
\(942\) −20.6243 −0.671975
\(943\) −13.3667 −0.435279
\(944\) 18.2122 0.592756
\(945\) 1.42094 0.0462233
\(946\) 10.4642 0.340222
\(947\) −42.3195 −1.37520 −0.687600 0.726089i \(-0.741336\pi\)
−0.687600 + 0.726089i \(0.741336\pi\)
\(948\) −22.9628 −0.745796
\(949\) 21.8454 0.709131
\(950\) −4.11676 −0.133565
\(951\) −9.35938 −0.303499
\(952\) 14.7042 0.476565
\(953\) 0.450629 0.0145973 0.00729864 0.999973i \(-0.497677\pi\)
0.00729864 + 0.999973i \(0.497677\pi\)
\(954\) −5.71081 −0.184894
\(955\) 13.1642 0.425985
\(956\) −23.0675 −0.746057
\(957\) −51.8431 −1.67585
\(958\) −17.2328 −0.556767
\(959\) 20.9533 0.676617
\(960\) −12.3853 −0.399735
\(961\) 6.67181 0.215220
\(962\) 32.9331 1.06181
\(963\) 36.0484 1.16164
\(964\) 19.7466 0.635995
\(965\) 51.0624 1.64376
\(966\) 2.99266 0.0962872
\(967\) 48.1547 1.54855 0.774275 0.632850i \(-0.218115\pi\)
0.774275 + 0.632850i \(0.218115\pi\)
\(968\) −15.0844 −0.484830
\(969\) 41.6632 1.33841
\(970\) 9.44447 0.303244
\(971\) 30.1454 0.967413 0.483706 0.875230i \(-0.339290\pi\)
0.483706 + 0.875230i \(0.339290\pi\)
\(972\) 38.0443 1.22027
\(973\) 28.4954 0.913521
\(974\) 1.21807 0.0390293
\(975\) 33.8676 1.08463
\(976\) 24.1060 0.771615
\(977\) −37.5821 −1.20236 −0.601179 0.799114i \(-0.705302\pi\)
−0.601179 + 0.799114i \(0.705302\pi\)
\(978\) −2.36151 −0.0755127
\(979\) 14.3238 0.457789
\(980\) 24.1027 0.769931
\(981\) 27.8405 0.888879
\(982\) −18.1361 −0.578746
\(983\) 29.4214 0.938395 0.469198 0.883093i \(-0.344543\pi\)
0.469198 + 0.883093i \(0.344543\pi\)
\(984\) 40.2651 1.28360
\(985\) 43.0155 1.37059
\(986\) −14.2084 −0.452486
\(987\) −12.2902 −0.391200
\(988\) 29.3601 0.934068
\(989\) −7.42382 −0.236064
\(990\) −20.0314 −0.636639
\(991\) −41.5670 −1.32042 −0.660209 0.751082i \(-0.729532\pi\)
−0.660209 + 0.751082i \(0.729532\pi\)
\(992\) −32.3216 −1.02621
\(993\) −45.8691 −1.45561
\(994\) −1.31544 −0.0417233
\(995\) 24.0043 0.760989
\(996\) −11.8566 −0.375692
\(997\) −11.1707 −0.353780 −0.176890 0.984231i \(-0.556604\pi\)
−0.176890 + 0.984231i \(0.556604\pi\)
\(998\) 8.29216 0.262484
\(999\) 4.22230 0.133588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 383.2.a.c.1.14 24
3.2 odd 2 3447.2.a.j.1.11 24
4.3 odd 2 6128.2.a.p.1.6 24
5.4 even 2 9575.2.a.e.1.11 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.14 24 1.1 even 1 trivial
3447.2.a.j.1.11 24 3.2 odd 2
6128.2.a.p.1.6 24 4.3 odd 2
9575.2.a.e.1.11 24 5.4 even 2