Properties

Label 383.2.a.c.1.21
Level $383$
Weight $2$
Character 383.1
Self dual yes
Analytic conductor $3.058$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [383,2,Mod(1,383)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(383, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("383.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 383.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.05827039742\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.21
Character \(\chi\) \(=\) 383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44206 q^{2} -1.30351 q^{3} +3.96367 q^{4} +4.41754 q^{5} -3.18325 q^{6} -1.22662 q^{7} +4.79540 q^{8} -1.30086 q^{9} +10.7879 q^{10} -4.93420 q^{11} -5.16667 q^{12} +2.75972 q^{13} -2.99548 q^{14} -5.75830 q^{15} +3.78332 q^{16} -3.42121 q^{17} -3.17679 q^{18} +2.87116 q^{19} +17.5097 q^{20} +1.59891 q^{21} -12.0496 q^{22} -6.71149 q^{23} -6.25084 q^{24} +14.5147 q^{25} +6.73941 q^{26} +5.60622 q^{27} -4.86191 q^{28} +5.97613 q^{29} -14.0621 q^{30} -0.194994 q^{31} -0.351691 q^{32} +6.43177 q^{33} -8.35481 q^{34} -5.41865 q^{35} -5.15619 q^{36} -4.58157 q^{37} +7.01154 q^{38} -3.59732 q^{39} +21.1839 q^{40} -8.40654 q^{41} +3.90464 q^{42} +2.87579 q^{43} -19.5575 q^{44} -5.74663 q^{45} -16.3899 q^{46} -3.79223 q^{47} -4.93159 q^{48} -5.49540 q^{49} +35.4457 q^{50} +4.45958 q^{51} +10.9386 q^{52} +9.85864 q^{53} +13.6907 q^{54} -21.7970 q^{55} -5.88213 q^{56} -3.74258 q^{57} +14.5941 q^{58} -0.738043 q^{59} -22.8240 q^{60} -3.24433 q^{61} -0.476188 q^{62} +1.59567 q^{63} -8.42549 q^{64} +12.1912 q^{65} +15.7068 q^{66} +9.93407 q^{67} -13.5605 q^{68} +8.74849 q^{69} -13.2327 q^{70} +12.8706 q^{71} -6.23816 q^{72} -7.87147 q^{73} -11.1885 q^{74} -18.9200 q^{75} +11.3803 q^{76} +6.05238 q^{77} -8.78488 q^{78} -6.52390 q^{79} +16.7130 q^{80} -3.40516 q^{81} -20.5293 q^{82} -4.20664 q^{83} +6.33755 q^{84} -15.1133 q^{85} +7.02286 q^{86} -7.78994 q^{87} -23.6614 q^{88} -11.1609 q^{89} -14.0336 q^{90} -3.38513 q^{91} -26.6021 q^{92} +0.254177 q^{93} -9.26086 q^{94} +12.6835 q^{95} +0.458433 q^{96} +9.67947 q^{97} -13.4201 q^{98} +6.41872 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5 q^{2} + 2 q^{3} + 29 q^{4} + 3 q^{5} + q^{6} + 17 q^{7} + 15 q^{8} + 34 q^{9} + q^{10} - 7 q^{12} + 28 q^{13} - 8 q^{14} - 2 q^{15} + 35 q^{16} + 16 q^{17} + 19 q^{18} + 13 q^{19} - 4 q^{20}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44206 1.72680 0.863399 0.504521i \(-0.168331\pi\)
0.863399 + 0.504521i \(0.168331\pi\)
\(3\) −1.30351 −0.752581 −0.376291 0.926502i \(-0.622801\pi\)
−0.376291 + 0.926502i \(0.622801\pi\)
\(4\) 3.96367 1.98183
\(5\) 4.41754 1.97558 0.987792 0.155776i \(-0.0497879\pi\)
0.987792 + 0.155776i \(0.0497879\pi\)
\(6\) −3.18325 −1.29956
\(7\) −1.22662 −0.463619 −0.231809 0.972761i \(-0.574465\pi\)
−0.231809 + 0.972761i \(0.574465\pi\)
\(8\) 4.79540 1.69543
\(9\) −1.30086 −0.433622
\(10\) 10.7879 3.41144
\(11\) −4.93420 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(12\) −5.16667 −1.49149
\(13\) 2.75972 0.765409 0.382705 0.923871i \(-0.374993\pi\)
0.382705 + 0.923871i \(0.374993\pi\)
\(14\) −2.99548 −0.800576
\(15\) −5.75830 −1.48679
\(16\) 3.78332 0.945830
\(17\) −3.42121 −0.829766 −0.414883 0.909875i \(-0.636177\pi\)
−0.414883 + 0.909875i \(0.636177\pi\)
\(18\) −3.17679 −0.748777
\(19\) 2.87116 0.658689 0.329344 0.944210i \(-0.393172\pi\)
0.329344 + 0.944210i \(0.393172\pi\)
\(20\) 17.5097 3.91528
\(21\) 1.59891 0.348911
\(22\) −12.0496 −2.56899
\(23\) −6.71149 −1.39944 −0.699721 0.714416i \(-0.746693\pi\)
−0.699721 + 0.714416i \(0.746693\pi\)
\(24\) −6.25084 −1.27595
\(25\) 14.5147 2.90293
\(26\) 6.73941 1.32171
\(27\) 5.60622 1.07892
\(28\) −4.86191 −0.918815
\(29\) 5.97613 1.10974 0.554870 0.831937i \(-0.312768\pi\)
0.554870 + 0.831937i \(0.312768\pi\)
\(30\) −14.0621 −2.56738
\(31\) −0.194994 −0.0350220 −0.0175110 0.999847i \(-0.505574\pi\)
−0.0175110 + 0.999847i \(0.505574\pi\)
\(32\) −0.351691 −0.0621709
\(33\) 6.43177 1.11963
\(34\) −8.35481 −1.43284
\(35\) −5.41865 −0.915918
\(36\) −5.15619 −0.859366
\(37\) −4.58157 −0.753206 −0.376603 0.926375i \(-0.622908\pi\)
−0.376603 + 0.926375i \(0.622908\pi\)
\(38\) 7.01154 1.13742
\(39\) −3.59732 −0.576032
\(40\) 21.1839 3.34946
\(41\) −8.40654 −1.31288 −0.656441 0.754378i \(-0.727939\pi\)
−0.656441 + 0.754378i \(0.727939\pi\)
\(42\) 3.90464 0.602499
\(43\) 2.87579 0.438554 0.219277 0.975663i \(-0.429630\pi\)
0.219277 + 0.975663i \(0.429630\pi\)
\(44\) −19.5575 −2.94840
\(45\) −5.74663 −0.856656
\(46\) −16.3899 −2.41656
\(47\) −3.79223 −0.553153 −0.276577 0.960992i \(-0.589200\pi\)
−0.276577 + 0.960992i \(0.589200\pi\)
\(48\) −4.93159 −0.711814
\(49\) −5.49540 −0.785058
\(50\) 35.4457 5.01278
\(51\) 4.45958 0.624466
\(52\) 10.9386 1.51691
\(53\) 9.85864 1.35419 0.677094 0.735897i \(-0.263239\pi\)
0.677094 + 0.735897i \(0.263239\pi\)
\(54\) 13.6907 1.86307
\(55\) −21.7970 −2.93911
\(56\) −5.88213 −0.786033
\(57\) −3.74258 −0.495717
\(58\) 14.5941 1.91630
\(59\) −0.738043 −0.0960850 −0.0480425 0.998845i \(-0.515298\pi\)
−0.0480425 + 0.998845i \(0.515298\pi\)
\(60\) −22.8240 −2.94657
\(61\) −3.24433 −0.415394 −0.207697 0.978193i \(-0.566597\pi\)
−0.207697 + 0.978193i \(0.566597\pi\)
\(62\) −0.476188 −0.0604760
\(63\) 1.59567 0.201035
\(64\) −8.42549 −1.05319
\(65\) 12.1912 1.51213
\(66\) 15.7068 1.93337
\(67\) 9.93407 1.21364 0.606820 0.794839i \(-0.292445\pi\)
0.606820 + 0.794839i \(0.292445\pi\)
\(68\) −13.5605 −1.64446
\(69\) 8.74849 1.05319
\(70\) −13.2327 −1.58161
\(71\) 12.8706 1.52745 0.763727 0.645539i \(-0.223367\pi\)
0.763727 + 0.645539i \(0.223367\pi\)
\(72\) −6.23816 −0.735174
\(73\) −7.87147 −0.921286 −0.460643 0.887586i \(-0.652381\pi\)
−0.460643 + 0.887586i \(0.652381\pi\)
\(74\) −11.1885 −1.30063
\(75\) −18.9200 −2.18469
\(76\) 11.3803 1.30541
\(77\) 6.05238 0.689733
\(78\) −8.78488 −0.994692
\(79\) −6.52390 −0.733997 −0.366998 0.930222i \(-0.619615\pi\)
−0.366998 + 0.930222i \(0.619615\pi\)
\(80\) 16.7130 1.86857
\(81\) −3.40516 −0.378351
\(82\) −20.5293 −2.26708
\(83\) −4.20664 −0.461738 −0.230869 0.972985i \(-0.574157\pi\)
−0.230869 + 0.972985i \(0.574157\pi\)
\(84\) 6.33755 0.691483
\(85\) −15.1133 −1.63927
\(86\) 7.02286 0.757294
\(87\) −7.78994 −0.835169
\(88\) −23.6614 −2.52232
\(89\) −11.1609 −1.18305 −0.591524 0.806287i \(-0.701474\pi\)
−0.591524 + 0.806287i \(0.701474\pi\)
\(90\) −14.0336 −1.47927
\(91\) −3.38513 −0.354858
\(92\) −26.6021 −2.77346
\(93\) 0.254177 0.0263569
\(94\) −9.26086 −0.955185
\(95\) 12.6835 1.30130
\(96\) 0.458433 0.0467886
\(97\) 9.67947 0.982801 0.491401 0.870934i \(-0.336485\pi\)
0.491401 + 0.870934i \(0.336485\pi\)
\(98\) −13.4201 −1.35564
\(99\) 6.41872 0.645106
\(100\) 57.5313 5.75313
\(101\) 18.4717 1.83800 0.919002 0.394253i \(-0.128996\pi\)
0.919002 + 0.394253i \(0.128996\pi\)
\(102\) 10.8906 1.07833
\(103\) 7.23595 0.712980 0.356490 0.934299i \(-0.383973\pi\)
0.356490 + 0.934299i \(0.383973\pi\)
\(104\) 13.2340 1.29770
\(105\) 7.06325 0.689303
\(106\) 24.0754 2.33841
\(107\) −5.16239 −0.499067 −0.249533 0.968366i \(-0.580277\pi\)
−0.249533 + 0.968366i \(0.580277\pi\)
\(108\) 22.2212 2.13823
\(109\) 9.36439 0.896946 0.448473 0.893796i \(-0.351968\pi\)
0.448473 + 0.893796i \(0.351968\pi\)
\(110\) −53.2297 −5.07525
\(111\) 5.97212 0.566849
\(112\) −4.64070 −0.438505
\(113\) −1.59371 −0.149924 −0.0749620 0.997186i \(-0.523884\pi\)
−0.0749620 + 0.997186i \(0.523884\pi\)
\(114\) −9.13961 −0.856003
\(115\) −29.6483 −2.76472
\(116\) 23.6874 2.19932
\(117\) −3.59003 −0.331898
\(118\) −1.80235 −0.165919
\(119\) 4.19653 0.384695
\(120\) −27.6133 −2.52074
\(121\) 13.3463 1.21330
\(122\) −7.92286 −0.717302
\(123\) 10.9580 0.988050
\(124\) −0.772893 −0.0694078
\(125\) 42.0315 3.75941
\(126\) 3.89672 0.347147
\(127\) 17.2146 1.52754 0.763772 0.645486i \(-0.223345\pi\)
0.763772 + 0.645486i \(0.223345\pi\)
\(128\) −19.8722 −1.75647
\(129\) −3.74862 −0.330047
\(130\) 29.7716 2.61114
\(131\) −3.66928 −0.320587 −0.160293 0.987069i \(-0.551244\pi\)
−0.160293 + 0.987069i \(0.551244\pi\)
\(132\) 25.4934 2.21891
\(133\) −3.52182 −0.305381
\(134\) 24.2596 2.09571
\(135\) 24.7657 2.13149
\(136\) −16.4061 −1.40681
\(137\) −19.7407 −1.68656 −0.843279 0.537476i \(-0.819378\pi\)
−0.843279 + 0.537476i \(0.819378\pi\)
\(138\) 21.3643 1.81865
\(139\) −4.32368 −0.366730 −0.183365 0.983045i \(-0.558699\pi\)
−0.183365 + 0.983045i \(0.558699\pi\)
\(140\) −21.4777 −1.81520
\(141\) 4.94320 0.416293
\(142\) 31.4307 2.63761
\(143\) −13.6170 −1.13871
\(144\) −4.92159 −0.410132
\(145\) 26.3998 2.19238
\(146\) −19.2226 −1.59087
\(147\) 7.16331 0.590819
\(148\) −18.1598 −1.49273
\(149\) −1.16167 −0.0951676 −0.0475838 0.998867i \(-0.515152\pi\)
−0.0475838 + 0.998867i \(0.515152\pi\)
\(150\) −46.2038 −3.77253
\(151\) 20.2459 1.64758 0.823792 0.566892i \(-0.191854\pi\)
0.823792 + 0.566892i \(0.191854\pi\)
\(152\) 13.7683 1.11676
\(153\) 4.45054 0.359804
\(154\) 14.7803 1.19103
\(155\) −0.861396 −0.0691890
\(156\) −14.2586 −1.14160
\(157\) 6.68344 0.533397 0.266698 0.963780i \(-0.414067\pi\)
0.266698 + 0.963780i \(0.414067\pi\)
\(158\) −15.9318 −1.26746
\(159\) −12.8508 −1.01914
\(160\) −1.55361 −0.122824
\(161\) 8.23245 0.648808
\(162\) −8.31560 −0.653335
\(163\) −0.00663327 −0.000519558 0 −0.000259779 1.00000i \(-0.500083\pi\)
−0.000259779 1.00000i \(0.500083\pi\)
\(164\) −33.3207 −2.60191
\(165\) 28.4126 2.21192
\(166\) −10.2729 −0.797329
\(167\) 12.2768 0.950007 0.475004 0.879984i \(-0.342447\pi\)
0.475004 + 0.879984i \(0.342447\pi\)
\(168\) 7.66741 0.591553
\(169\) −5.38394 −0.414149
\(170\) −36.9077 −2.83069
\(171\) −3.73499 −0.285622
\(172\) 11.3987 0.869141
\(173\) 6.44792 0.490226 0.245113 0.969494i \(-0.421175\pi\)
0.245113 + 0.969494i \(0.421175\pi\)
\(174\) −19.0235 −1.44217
\(175\) −17.8040 −1.34586
\(176\) −18.6676 −1.40713
\(177\) 0.962045 0.0723117
\(178\) −27.2555 −2.04289
\(179\) 5.75748 0.430334 0.215167 0.976577i \(-0.430970\pi\)
0.215167 + 0.976577i \(0.430970\pi\)
\(180\) −22.7777 −1.69775
\(181\) −11.7080 −0.870249 −0.435124 0.900370i \(-0.643296\pi\)
−0.435124 + 0.900370i \(0.643296\pi\)
\(182\) −8.26670 −0.612769
\(183\) 4.22902 0.312618
\(184\) −32.1843 −2.37265
\(185\) −20.2393 −1.48802
\(186\) 0.620716 0.0455131
\(187\) 16.8809 1.23446
\(188\) −15.0311 −1.09626
\(189\) −6.87670 −0.500206
\(190\) 30.9738 2.24707
\(191\) −13.9644 −1.01043 −0.505213 0.862995i \(-0.668586\pi\)
−0.505213 + 0.862995i \(0.668586\pi\)
\(192\) 10.9827 0.792608
\(193\) −8.89789 −0.640484 −0.320242 0.947336i \(-0.603764\pi\)
−0.320242 + 0.947336i \(0.603764\pi\)
\(194\) 23.6379 1.69710
\(195\) −15.8913 −1.13800
\(196\) −21.7819 −1.55585
\(197\) 20.7045 1.47513 0.737567 0.675274i \(-0.235974\pi\)
0.737567 + 0.675274i \(0.235974\pi\)
\(198\) 15.6749 1.11397
\(199\) −12.8212 −0.908870 −0.454435 0.890780i \(-0.650159\pi\)
−0.454435 + 0.890780i \(0.650159\pi\)
\(200\) 69.6036 4.92172
\(201\) −12.9491 −0.913362
\(202\) 45.1091 3.17386
\(203\) −7.33044 −0.514496
\(204\) 17.6763 1.23759
\(205\) −37.1363 −2.59371
\(206\) 17.6706 1.23117
\(207\) 8.73074 0.606829
\(208\) 10.4409 0.723947
\(209\) −14.1669 −0.979942
\(210\) 17.2489 1.19029
\(211\) 19.3376 1.33125 0.665627 0.746285i \(-0.268164\pi\)
0.665627 + 0.746285i \(0.268164\pi\)
\(212\) 39.0764 2.68377
\(213\) −16.7769 −1.14953
\(214\) −12.6069 −0.861788
\(215\) 12.7039 0.866400
\(216\) 26.8840 1.82923
\(217\) 0.239184 0.0162369
\(218\) 22.8684 1.54884
\(219\) 10.2605 0.693342
\(220\) −86.3961 −5.82482
\(221\) −9.44159 −0.635110
\(222\) 14.5843 0.978833
\(223\) 1.42361 0.0953321 0.0476660 0.998863i \(-0.484822\pi\)
0.0476660 + 0.998863i \(0.484822\pi\)
\(224\) 0.431392 0.0288236
\(225\) −18.8816 −1.25878
\(226\) −3.89195 −0.258888
\(227\) 0.569455 0.0377960 0.0188980 0.999821i \(-0.493984\pi\)
0.0188980 + 0.999821i \(0.493984\pi\)
\(228\) −14.8343 −0.982428
\(229\) 20.8298 1.37647 0.688236 0.725486i \(-0.258385\pi\)
0.688236 + 0.725486i \(0.258385\pi\)
\(230\) −72.4030 −4.77411
\(231\) −7.88934 −0.519080
\(232\) 28.6579 1.88148
\(233\) 0.611253 0.0400445 0.0200223 0.999800i \(-0.493626\pi\)
0.0200223 + 0.999800i \(0.493626\pi\)
\(234\) −8.76706 −0.573121
\(235\) −16.7523 −1.09280
\(236\) −2.92536 −0.190424
\(237\) 8.50397 0.552392
\(238\) 10.2482 0.664291
\(239\) −23.1736 −1.49898 −0.749488 0.662017i \(-0.769700\pi\)
−0.749488 + 0.662017i \(0.769700\pi\)
\(240\) −21.7855 −1.40625
\(241\) −20.3842 −1.31306 −0.656530 0.754300i \(-0.727977\pi\)
−0.656530 + 0.754300i \(0.727977\pi\)
\(242\) 32.5925 2.09512
\(243\) −12.3800 −0.794177
\(244\) −12.8595 −0.823242
\(245\) −24.2762 −1.55095
\(246\) 26.7601 1.70616
\(247\) 7.92360 0.504166
\(248\) −0.935075 −0.0593773
\(249\) 5.48339 0.347496
\(250\) 102.643 6.49174
\(251\) 9.66207 0.609864 0.304932 0.952374i \(-0.401366\pi\)
0.304932 + 0.952374i \(0.401366\pi\)
\(252\) 6.32469 0.398418
\(253\) 33.1158 2.08197
\(254\) 42.0390 2.63776
\(255\) 19.7004 1.23369
\(256\) −31.6781 −1.97988
\(257\) −25.9262 −1.61723 −0.808617 0.588335i \(-0.799784\pi\)
−0.808617 + 0.588335i \(0.799784\pi\)
\(258\) −9.15436 −0.569925
\(259\) 5.61985 0.349200
\(260\) 48.3218 2.99679
\(261\) −7.77414 −0.481207
\(262\) −8.96062 −0.553589
\(263\) 5.20973 0.321246 0.160623 0.987016i \(-0.448650\pi\)
0.160623 + 0.987016i \(0.448650\pi\)
\(264\) 30.8429 1.89825
\(265\) 43.5509 2.67531
\(266\) −8.60050 −0.527331
\(267\) 14.5483 0.890340
\(268\) 39.3753 2.40523
\(269\) 2.05246 0.125140 0.0625702 0.998041i \(-0.480070\pi\)
0.0625702 + 0.998041i \(0.480070\pi\)
\(270\) 60.4793 3.68066
\(271\) −6.32559 −0.384252 −0.192126 0.981370i \(-0.561538\pi\)
−0.192126 + 0.981370i \(0.561538\pi\)
\(272\) −12.9435 −0.784817
\(273\) 4.41255 0.267060
\(274\) −48.2079 −2.91235
\(275\) −71.6182 −4.31874
\(276\) 34.6761 2.08726
\(277\) −1.02544 −0.0616129 −0.0308065 0.999525i \(-0.509808\pi\)
−0.0308065 + 0.999525i \(0.509808\pi\)
\(278\) −10.5587 −0.633269
\(279\) 0.253661 0.0151863
\(280\) −25.9846 −1.55287
\(281\) 31.0337 1.85132 0.925658 0.378361i \(-0.123512\pi\)
0.925658 + 0.378361i \(0.123512\pi\)
\(282\) 12.0716 0.718854
\(283\) −18.0620 −1.07368 −0.536839 0.843685i \(-0.680382\pi\)
−0.536839 + 0.843685i \(0.680382\pi\)
\(284\) 51.0146 3.02716
\(285\) −16.5330 −0.979330
\(286\) −33.2536 −1.96633
\(287\) 10.3116 0.608677
\(288\) 0.457503 0.0269586
\(289\) −5.29531 −0.311489
\(290\) 64.4700 3.78581
\(291\) −12.6173 −0.739638
\(292\) −31.1999 −1.82583
\(293\) 3.31959 0.193932 0.0969662 0.995288i \(-0.469086\pi\)
0.0969662 + 0.995288i \(0.469086\pi\)
\(294\) 17.4932 1.02023
\(295\) −3.26033 −0.189824
\(296\) −21.9704 −1.27701
\(297\) −27.6622 −1.60512
\(298\) −2.83687 −0.164335
\(299\) −18.5219 −1.07115
\(300\) −74.9926 −4.32970
\(301\) −3.52750 −0.203322
\(302\) 49.4416 2.84505
\(303\) −24.0780 −1.38325
\(304\) 10.8625 0.623007
\(305\) −14.3320 −0.820647
\(306\) 10.8685 0.621310
\(307\) 25.6866 1.46601 0.733006 0.680222i \(-0.238117\pi\)
0.733006 + 0.680222i \(0.238117\pi\)
\(308\) 23.9896 1.36694
\(309\) −9.43213 −0.536575
\(310\) −2.10358 −0.119475
\(311\) 15.0042 0.850811 0.425406 0.905003i \(-0.360131\pi\)
0.425406 + 0.905003i \(0.360131\pi\)
\(312\) −17.2506 −0.976622
\(313\) −12.6102 −0.712772 −0.356386 0.934339i \(-0.615991\pi\)
−0.356386 + 0.934339i \(0.615991\pi\)
\(314\) 16.3214 0.921069
\(315\) 7.04893 0.397162
\(316\) −25.8586 −1.45466
\(317\) −5.63738 −0.316627 −0.158313 0.987389i \(-0.550606\pi\)
−0.158313 + 0.987389i \(0.550606\pi\)
\(318\) −31.3825 −1.75984
\(319\) −29.4874 −1.65098
\(320\) −37.2200 −2.08066
\(321\) 6.72922 0.375588
\(322\) 20.1042 1.12036
\(323\) −9.82284 −0.546557
\(324\) −13.4969 −0.749828
\(325\) 40.0565 2.22193
\(326\) −0.0161989 −0.000897172 0
\(327\) −12.2066 −0.675024
\(328\) −40.3127 −2.22590
\(329\) 4.65163 0.256452
\(330\) 69.3853 3.81954
\(331\) −7.28945 −0.400664 −0.200332 0.979728i \(-0.564202\pi\)
−0.200332 + 0.979728i \(0.564202\pi\)
\(332\) −16.6737 −0.915089
\(333\) 5.96001 0.326606
\(334\) 29.9807 1.64047
\(335\) 43.8842 2.39765
\(336\) 6.04919 0.330010
\(337\) 4.75243 0.258881 0.129441 0.991587i \(-0.458682\pi\)
0.129441 + 0.991587i \(0.458682\pi\)
\(338\) −13.1479 −0.715152
\(339\) 2.07742 0.112830
\(340\) −59.9043 −3.24877
\(341\) 0.962141 0.0521028
\(342\) −9.12107 −0.493211
\(343\) 15.3271 0.827586
\(344\) 13.7905 0.743537
\(345\) 38.6468 2.08067
\(346\) 15.7462 0.846522
\(347\) −21.8331 −1.17206 −0.586031 0.810289i \(-0.699310\pi\)
−0.586031 + 0.810289i \(0.699310\pi\)
\(348\) −30.8767 −1.65517
\(349\) −20.8788 −1.11762 −0.558809 0.829297i \(-0.688741\pi\)
−0.558809 + 0.829297i \(0.688741\pi\)
\(350\) −43.4785 −2.32402
\(351\) 15.4716 0.825813
\(352\) 1.73531 0.0924926
\(353\) 0.0487347 0.00259388 0.00129694 0.999999i \(-0.499587\pi\)
0.00129694 + 0.999999i \(0.499587\pi\)
\(354\) 2.34937 0.124868
\(355\) 56.8562 3.01761
\(356\) −44.2379 −2.34460
\(357\) −5.47021 −0.289514
\(358\) 14.0601 0.743100
\(359\) −34.2870 −1.80960 −0.904800 0.425837i \(-0.859980\pi\)
−0.904800 + 0.425837i \(0.859980\pi\)
\(360\) −27.5573 −1.45240
\(361\) −10.7565 −0.566129
\(362\) −28.5917 −1.50274
\(363\) −17.3970 −0.913106
\(364\) −13.4175 −0.703270
\(365\) −34.7725 −1.82008
\(366\) 10.3275 0.539828
\(367\) 17.7340 0.925706 0.462853 0.886435i \(-0.346826\pi\)
0.462853 + 0.886435i \(0.346826\pi\)
\(368\) −25.3917 −1.32363
\(369\) 10.9358 0.569294
\(370\) −49.4256 −2.56951
\(371\) −12.0928 −0.627827
\(372\) 1.00747 0.0522350
\(373\) 19.0851 0.988188 0.494094 0.869408i \(-0.335500\pi\)
0.494094 + 0.869408i \(0.335500\pi\)
\(374\) 41.2243 2.13166
\(375\) −54.7884 −2.82926
\(376\) −18.1852 −0.937832
\(377\) 16.4925 0.849405
\(378\) −16.7933 −0.863755
\(379\) 1.87124 0.0961189 0.0480594 0.998844i \(-0.484696\pi\)
0.0480594 + 0.998844i \(0.484696\pi\)
\(380\) 50.2730 2.57895
\(381\) −22.4393 −1.14960
\(382\) −34.1018 −1.74480
\(383\) 1.00000 0.0510976
\(384\) 25.9036 1.32189
\(385\) 26.7367 1.36263
\(386\) −21.7292 −1.10599
\(387\) −3.74101 −0.190166
\(388\) 38.3662 1.94775
\(389\) −26.3435 −1.33567 −0.667833 0.744311i \(-0.732778\pi\)
−0.667833 + 0.744311i \(0.732778\pi\)
\(390\) −38.8076 −1.96510
\(391\) 22.9614 1.16121
\(392\) −26.3526 −1.33101
\(393\) 4.78294 0.241268
\(394\) 50.5617 2.54726
\(395\) −28.8196 −1.45007
\(396\) 25.4417 1.27849
\(397\) 22.8068 1.14464 0.572321 0.820030i \(-0.306043\pi\)
0.572321 + 0.820030i \(0.306043\pi\)
\(398\) −31.3101 −1.56944
\(399\) 4.59072 0.229824
\(400\) 54.9136 2.74568
\(401\) −1.73361 −0.0865726 −0.0432863 0.999063i \(-0.513783\pi\)
−0.0432863 + 0.999063i \(0.513783\pi\)
\(402\) −31.6226 −1.57719
\(403\) −0.538130 −0.0268062
\(404\) 73.2157 3.64262
\(405\) −15.0424 −0.747464
\(406\) −17.9014 −0.888431
\(407\) 22.6064 1.12056
\(408\) 21.3854 1.05874
\(409\) −17.4437 −0.862533 −0.431267 0.902224i \(-0.641933\pi\)
−0.431267 + 0.902224i \(0.641933\pi\)
\(410\) −90.6890 −4.47881
\(411\) 25.7321 1.26927
\(412\) 28.6809 1.41301
\(413\) 0.905298 0.0445468
\(414\) 21.3210 1.04787
\(415\) −18.5830 −0.912203
\(416\) −0.970571 −0.0475861
\(417\) 5.63596 0.275994
\(418\) −34.5963 −1.69216
\(419\) −27.0556 −1.32175 −0.660876 0.750495i \(-0.729815\pi\)
−0.660876 + 0.750495i \(0.729815\pi\)
\(420\) 27.9964 1.36608
\(421\) −17.0036 −0.828703 −0.414351 0.910117i \(-0.635991\pi\)
−0.414351 + 0.910117i \(0.635991\pi\)
\(422\) 47.2235 2.29881
\(423\) 4.93318 0.239859
\(424\) 47.2761 2.29593
\(425\) −49.6578 −2.40876
\(426\) −40.9702 −1.98501
\(427\) 3.97957 0.192585
\(428\) −20.4620 −0.989067
\(429\) 17.7499 0.856973
\(430\) 31.0238 1.49610
\(431\) −10.8218 −0.521265 −0.260633 0.965438i \(-0.583931\pi\)
−0.260633 + 0.965438i \(0.583931\pi\)
\(432\) 21.2101 1.02047
\(433\) 3.71372 0.178470 0.0892351 0.996011i \(-0.471558\pi\)
0.0892351 + 0.996011i \(0.471558\pi\)
\(434\) 0.584102 0.0280378
\(435\) −34.4124 −1.64995
\(436\) 37.1173 1.77760
\(437\) −19.2697 −0.921797
\(438\) 25.0568 1.19726
\(439\) 13.8548 0.661251 0.330626 0.943762i \(-0.392740\pi\)
0.330626 + 0.943762i \(0.392740\pi\)
\(440\) −104.525 −4.98305
\(441\) 7.14878 0.340418
\(442\) −23.0570 −1.09671
\(443\) 19.5049 0.926705 0.463352 0.886174i \(-0.346646\pi\)
0.463352 + 0.886174i \(0.346646\pi\)
\(444\) 23.6715 1.12340
\(445\) −49.3035 −2.33721
\(446\) 3.47655 0.164619
\(447\) 1.51424 0.0716213
\(448\) 10.3349 0.488277
\(449\) 12.8651 0.607140 0.303570 0.952809i \(-0.401821\pi\)
0.303570 + 0.952809i \(0.401821\pi\)
\(450\) −46.1101 −2.17365
\(451\) 41.4795 1.95319
\(452\) −6.31695 −0.297124
\(453\) −26.3906 −1.23994
\(454\) 1.39064 0.0652662
\(455\) −14.9540 −0.701052
\(456\) −17.9471 −0.840452
\(457\) 17.1052 0.800145 0.400073 0.916483i \(-0.368985\pi\)
0.400073 + 0.916483i \(0.368985\pi\)
\(458\) 50.8677 2.37689
\(459\) −19.1801 −0.895248
\(460\) −117.516 −5.47921
\(461\) −19.8511 −0.924558 −0.462279 0.886734i \(-0.652968\pi\)
−0.462279 + 0.886734i \(0.652968\pi\)
\(462\) −19.2662 −0.896347
\(463\) 36.6304 1.70236 0.851180 0.524874i \(-0.175888\pi\)
0.851180 + 0.524874i \(0.175888\pi\)
\(464\) 22.6096 1.04962
\(465\) 1.12284 0.0520703
\(466\) 1.49272 0.0691488
\(467\) −15.8665 −0.734215 −0.367107 0.930179i \(-0.619652\pi\)
−0.367107 + 0.930179i \(0.619652\pi\)
\(468\) −14.2297 −0.657766
\(469\) −12.1853 −0.562666
\(470\) −40.9102 −1.88705
\(471\) −8.71192 −0.401424
\(472\) −3.53921 −0.162905
\(473\) −14.1897 −0.652444
\(474\) 20.7672 0.953870
\(475\) 41.6739 1.91213
\(476\) 16.6336 0.762402
\(477\) −12.8248 −0.587205
\(478\) −56.5914 −2.58843
\(479\) −38.7555 −1.77078 −0.885391 0.464847i \(-0.846109\pi\)
−0.885391 + 0.464847i \(0.846109\pi\)
\(480\) 2.02515 0.0924349
\(481\) −12.6439 −0.576511
\(482\) −49.7794 −2.26739
\(483\) −10.7311 −0.488281
\(484\) 52.9002 2.40456
\(485\) 42.7595 1.94161
\(486\) −30.2327 −1.37138
\(487\) 22.7319 1.03008 0.515041 0.857165i \(-0.327777\pi\)
0.515041 + 0.857165i \(0.327777\pi\)
\(488\) −15.5579 −0.704271
\(489\) 0.00864652 0.000391009 0
\(490\) −59.2839 −2.67817
\(491\) −7.38185 −0.333138 −0.166569 0.986030i \(-0.553269\pi\)
−0.166569 + 0.986030i \(0.553269\pi\)
\(492\) 43.4339 1.95815
\(493\) −20.4456 −0.920824
\(494\) 19.3499 0.870594
\(495\) 28.3550 1.27446
\(496\) −0.737726 −0.0331249
\(497\) −15.7873 −0.708157
\(498\) 13.3908 0.600055
\(499\) 3.32458 0.148828 0.0744142 0.997227i \(-0.476291\pi\)
0.0744142 + 0.997227i \(0.476291\pi\)
\(500\) 166.599 7.45052
\(501\) −16.0029 −0.714958
\(502\) 23.5954 1.05311
\(503\) 14.6797 0.654536 0.327268 0.944932i \(-0.393872\pi\)
0.327268 + 0.944932i \(0.393872\pi\)
\(504\) 7.65186 0.340841
\(505\) 81.5996 3.63113
\(506\) 80.8709 3.59515
\(507\) 7.01801 0.311681
\(508\) 68.2328 3.02734
\(509\) −30.9528 −1.37196 −0.685980 0.727620i \(-0.740626\pi\)
−0.685980 + 0.727620i \(0.740626\pi\)
\(510\) 48.1096 2.13033
\(511\) 9.65530 0.427125
\(512\) −37.6156 −1.66239
\(513\) 16.0963 0.710670
\(514\) −63.3135 −2.79264
\(515\) 31.9651 1.40855
\(516\) −14.8583 −0.654099
\(517\) 18.7116 0.822935
\(518\) 13.7240 0.602999
\(519\) −8.40492 −0.368935
\(520\) 58.4616 2.56371
\(521\) 25.7946 1.13008 0.565041 0.825063i \(-0.308860\pi\)
0.565041 + 0.825063i \(0.308860\pi\)
\(522\) −18.9849 −0.830948
\(523\) −29.0590 −1.27066 −0.635331 0.772240i \(-0.719136\pi\)
−0.635331 + 0.772240i \(0.719136\pi\)
\(524\) −14.5438 −0.635350
\(525\) 23.2077 1.01287
\(526\) 12.7225 0.554726
\(527\) 0.667117 0.0290601
\(528\) 24.3334 1.05898
\(529\) 22.0441 0.958440
\(530\) 106.354 4.61973
\(531\) 0.960094 0.0416645
\(532\) −13.9593 −0.605213
\(533\) −23.1997 −1.00489
\(534\) 35.5278 1.53744
\(535\) −22.8051 −0.985949
\(536\) 47.6378 2.05764
\(537\) −7.50492 −0.323861
\(538\) 5.01222 0.216092
\(539\) 27.1154 1.16794
\(540\) 98.1629 4.22426
\(541\) −7.48017 −0.321598 −0.160799 0.986987i \(-0.551407\pi\)
−0.160799 + 0.986987i \(0.551407\pi\)
\(542\) −15.4475 −0.663527
\(543\) 15.2615 0.654933
\(544\) 1.20321 0.0515873
\(545\) 41.3676 1.77199
\(546\) 10.7757 0.461158
\(547\) −39.8193 −1.70255 −0.851276 0.524718i \(-0.824171\pi\)
−0.851276 + 0.524718i \(0.824171\pi\)
\(548\) −78.2454 −3.34248
\(549\) 4.22044 0.180124
\(550\) −174.896 −7.45760
\(551\) 17.1584 0.730973
\(552\) 41.9525 1.78562
\(553\) 8.00235 0.340295
\(554\) −2.50420 −0.106393
\(555\) 26.3821 1.11986
\(556\) −17.1376 −0.726798
\(557\) 38.5971 1.63541 0.817707 0.575635i \(-0.195245\pi\)
0.817707 + 0.575635i \(0.195245\pi\)
\(558\) 0.619457 0.0262237
\(559\) 7.93638 0.335673
\(560\) −20.5005 −0.866303
\(561\) −22.0044 −0.929028
\(562\) 75.7863 3.19685
\(563\) 17.6178 0.742500 0.371250 0.928533i \(-0.378929\pi\)
0.371250 + 0.928533i \(0.378929\pi\)
\(564\) 19.5932 0.825023
\(565\) −7.04029 −0.296187
\(566\) −44.1086 −1.85402
\(567\) 4.17683 0.175411
\(568\) 61.7194 2.58969
\(569\) 3.57925 0.150050 0.0750250 0.997182i \(-0.476096\pi\)
0.0750250 + 0.997182i \(0.476096\pi\)
\(570\) −40.3746 −1.69111
\(571\) −9.34854 −0.391224 −0.195612 0.980681i \(-0.562669\pi\)
−0.195612 + 0.980681i \(0.562669\pi\)
\(572\) −53.9733 −2.25674
\(573\) 18.2027 0.760427
\(574\) 25.1817 1.05106
\(575\) −97.4151 −4.06249
\(576\) 10.9604 0.456684
\(577\) −30.6054 −1.27412 −0.637060 0.770814i \(-0.719850\pi\)
−0.637060 + 0.770814i \(0.719850\pi\)
\(578\) −12.9315 −0.537878
\(579\) 11.5985 0.482016
\(580\) 104.640 4.34494
\(581\) 5.15995 0.214071
\(582\) −30.8122 −1.27720
\(583\) −48.6444 −2.01465
\(584\) −37.7468 −1.56197
\(585\) −15.8591 −0.655693
\(586\) 8.10664 0.334882
\(587\) −28.0845 −1.15917 −0.579587 0.814911i \(-0.696786\pi\)
−0.579587 + 0.814911i \(0.696786\pi\)
\(588\) 28.3930 1.17091
\(589\) −0.559860 −0.0230686
\(590\) −7.96194 −0.327788
\(591\) −26.9885 −1.11016
\(592\) −17.3335 −0.712404
\(593\) 12.8428 0.527391 0.263696 0.964606i \(-0.415059\pi\)
0.263696 + 0.964606i \(0.415059\pi\)
\(594\) −67.5527 −2.77172
\(595\) 18.5383 0.759998
\(596\) −4.60447 −0.188606
\(597\) 16.7125 0.683998
\(598\) −45.2315 −1.84965
\(599\) 15.2335 0.622425 0.311213 0.950340i \(-0.399265\pi\)
0.311213 + 0.950340i \(0.399265\pi\)
\(600\) −90.7289 −3.70399
\(601\) −37.6906 −1.53743 −0.768716 0.639590i \(-0.779104\pi\)
−0.768716 + 0.639590i \(0.779104\pi\)
\(602\) −8.61438 −0.351096
\(603\) −12.9229 −0.526260
\(604\) 80.2478 3.26524
\(605\) 58.9578 2.39697
\(606\) −58.8001 −2.38859
\(607\) 10.9735 0.445400 0.222700 0.974887i \(-0.428513\pi\)
0.222700 + 0.974887i \(0.428513\pi\)
\(608\) −1.00976 −0.0409512
\(609\) 9.55530 0.387200
\(610\) −34.9996 −1.41709
\(611\) −10.4655 −0.423389
\(612\) 17.6404 0.713072
\(613\) 15.1246 0.610876 0.305438 0.952212i \(-0.401197\pi\)
0.305438 + 0.952212i \(0.401197\pi\)
\(614\) 62.7283 2.53151
\(615\) 48.4074 1.95198
\(616\) 29.0236 1.16939
\(617\) 27.6660 1.11379 0.556896 0.830582i \(-0.311992\pi\)
0.556896 + 0.830582i \(0.311992\pi\)
\(618\) −23.0338 −0.926557
\(619\) −28.4029 −1.14161 −0.570805 0.821086i \(-0.693369\pi\)
−0.570805 + 0.821086i \(0.693369\pi\)
\(620\) −3.41429 −0.137121
\(621\) −37.6261 −1.50988
\(622\) 36.6412 1.46918
\(623\) 13.6901 0.548484
\(624\) −13.6098 −0.544829
\(625\) 113.102 4.52410
\(626\) −30.7949 −1.23081
\(627\) 18.4666 0.737486
\(628\) 26.4909 1.05710
\(629\) 15.6745 0.624985
\(630\) 17.2139 0.685819
\(631\) 32.6756 1.30079 0.650397 0.759594i \(-0.274603\pi\)
0.650397 + 0.759594i \(0.274603\pi\)
\(632\) −31.2847 −1.24444
\(633\) −25.2067 −1.00188
\(634\) −13.7668 −0.546751
\(635\) 76.0460 3.01779
\(636\) −50.9364 −2.01976
\(637\) −15.1658 −0.600890
\(638\) −72.0101 −2.85091
\(639\) −16.7429 −0.662337
\(640\) −87.7862 −3.47005
\(641\) −25.2343 −0.996696 −0.498348 0.866977i \(-0.666060\pi\)
−0.498348 + 0.866977i \(0.666060\pi\)
\(642\) 16.4332 0.648565
\(643\) 12.6574 0.499158 0.249579 0.968354i \(-0.419708\pi\)
0.249579 + 0.968354i \(0.419708\pi\)
\(644\) 32.6307 1.28583
\(645\) −16.5597 −0.652036
\(646\) −23.9880 −0.943794
\(647\) −31.2847 −1.22993 −0.614965 0.788555i \(-0.710830\pi\)
−0.614965 + 0.788555i \(0.710830\pi\)
\(648\) −16.3291 −0.641466
\(649\) 3.64165 0.142947
\(650\) 97.8204 3.83683
\(651\) −0.311779 −0.0122196
\(652\) −0.0262921 −0.00102968
\(653\) −10.8026 −0.422738 −0.211369 0.977406i \(-0.567792\pi\)
−0.211369 + 0.977406i \(0.567792\pi\)
\(654\) −29.8092 −1.16563
\(655\) −16.2092 −0.633346
\(656\) −31.8046 −1.24176
\(657\) 10.2397 0.399489
\(658\) 11.3596 0.442842
\(659\) −18.4059 −0.716993 −0.358496 0.933531i \(-0.616710\pi\)
−0.358496 + 0.933531i \(0.616710\pi\)
\(660\) 112.618 4.38365
\(661\) 0.369038 0.0143539 0.00717696 0.999974i \(-0.497715\pi\)
0.00717696 + 0.999974i \(0.497715\pi\)
\(662\) −17.8013 −0.691866
\(663\) 12.3072 0.477972
\(664\) −20.1725 −0.782844
\(665\) −15.5578 −0.603305
\(666\) 14.5547 0.563983
\(667\) −40.1088 −1.55302
\(668\) 48.6611 1.88276
\(669\) −1.85569 −0.0717451
\(670\) 107.168 4.14026
\(671\) 16.0082 0.617989
\(672\) −0.562323 −0.0216921
\(673\) 14.7123 0.567117 0.283558 0.958955i \(-0.408485\pi\)
0.283558 + 0.958955i \(0.408485\pi\)
\(674\) 11.6057 0.447036
\(675\) 81.3724 3.13202
\(676\) −21.3401 −0.820774
\(677\) −36.7312 −1.41169 −0.705847 0.708365i \(-0.749433\pi\)
−0.705847 + 0.708365i \(0.749433\pi\)
\(678\) 5.07319 0.194835
\(679\) −11.8730 −0.455645
\(680\) −72.4745 −2.77927
\(681\) −0.742289 −0.0284446
\(682\) 2.34961 0.0899711
\(683\) −17.8681 −0.683704 −0.341852 0.939754i \(-0.611054\pi\)
−0.341852 + 0.939754i \(0.611054\pi\)
\(684\) −14.8042 −0.566054
\(685\) −87.2051 −3.33194
\(686\) 37.4298 1.42908
\(687\) −27.1518 −1.03591
\(688\) 10.8800 0.414797
\(689\) 27.2071 1.03651
\(690\) 94.3779 3.59291
\(691\) −5.78876 −0.220215 −0.110107 0.993920i \(-0.535119\pi\)
−0.110107 + 0.993920i \(0.535119\pi\)
\(692\) 25.5574 0.971547
\(693\) −7.87334 −0.299083
\(694\) −53.3178 −2.02391
\(695\) −19.1001 −0.724506
\(696\) −37.3558 −1.41597
\(697\) 28.7606 1.08938
\(698\) −50.9874 −1.92990
\(699\) −0.796774 −0.0301367
\(700\) −70.5691 −2.66726
\(701\) 26.5640 1.00331 0.501655 0.865068i \(-0.332725\pi\)
0.501655 + 0.865068i \(0.332725\pi\)
\(702\) 37.7826 1.42601
\(703\) −13.1544 −0.496128
\(704\) 41.5730 1.56684
\(705\) 21.8368 0.822422
\(706\) 0.119013 0.00447911
\(707\) −22.6578 −0.852134
\(708\) 3.81323 0.143310
\(709\) 0.790245 0.0296783 0.0148391 0.999890i \(-0.495276\pi\)
0.0148391 + 0.999890i \(0.495276\pi\)
\(710\) 138.846 5.21081
\(711\) 8.48672 0.318277
\(712\) −53.5207 −2.00577
\(713\) 1.30870 0.0490113
\(714\) −13.3586 −0.499933
\(715\) −60.1537 −2.24962
\(716\) 22.8207 0.852850
\(717\) 30.2070 1.12810
\(718\) −83.7310 −3.12481
\(719\) −19.8774 −0.741303 −0.370652 0.928772i \(-0.620866\pi\)
−0.370652 + 0.928772i \(0.620866\pi\)
\(720\) −21.7413 −0.810251
\(721\) −8.87577 −0.330551
\(722\) −26.2679 −0.977591
\(723\) 26.5710 0.988185
\(724\) −46.4066 −1.72469
\(725\) 86.7416 3.22150
\(726\) −42.4846 −1.57675
\(727\) −33.9031 −1.25740 −0.628698 0.777650i \(-0.716412\pi\)
−0.628698 + 0.777650i \(0.716412\pi\)
\(728\) −16.2330 −0.601636
\(729\) 26.3529 0.976033
\(730\) −84.9167 −3.14291
\(731\) −9.83869 −0.363897
\(732\) 16.7624 0.619557
\(733\) 22.3552 0.825707 0.412853 0.910797i \(-0.364532\pi\)
0.412853 + 0.910797i \(0.364532\pi\)
\(734\) 43.3075 1.59851
\(735\) 31.6442 1.16721
\(736\) 2.36037 0.0870046
\(737\) −49.0166 −1.80555
\(738\) 26.7058 0.983056
\(739\) 17.1333 0.630259 0.315130 0.949049i \(-0.397952\pi\)
0.315130 + 0.949049i \(0.397952\pi\)
\(740\) −80.2218 −2.94901
\(741\) −10.3285 −0.379426
\(742\) −29.5314 −1.08413
\(743\) −31.7065 −1.16320 −0.581600 0.813475i \(-0.697573\pi\)
−0.581600 + 0.813475i \(0.697573\pi\)
\(744\) 1.21888 0.0446863
\(745\) −5.13172 −0.188012
\(746\) 46.6070 1.70640
\(747\) 5.47227 0.200220
\(748\) 66.9104 2.44649
\(749\) 6.33229 0.231377
\(750\) −133.797 −4.88556
\(751\) −46.4121 −1.69360 −0.846801 0.531909i \(-0.821475\pi\)
−0.846801 + 0.531909i \(0.821475\pi\)
\(752\) −14.3472 −0.523189
\(753\) −12.5946 −0.458972
\(754\) 40.2756 1.46675
\(755\) 89.4369 3.25494
\(756\) −27.2569 −0.991325
\(757\) −3.57900 −0.130081 −0.0650404 0.997883i \(-0.520718\pi\)
−0.0650404 + 0.997883i \(0.520718\pi\)
\(758\) 4.56967 0.165978
\(759\) −43.1668 −1.56685
\(760\) 60.8222 2.20625
\(761\) −28.1771 −1.02142 −0.510709 0.859754i \(-0.670617\pi\)
−0.510709 + 0.859754i \(0.670617\pi\)
\(762\) −54.7982 −1.98513
\(763\) −11.4865 −0.415841
\(764\) −55.3501 −2.00249
\(765\) 19.6604 0.710824
\(766\) 2.44206 0.0882353
\(767\) −2.03679 −0.0735443
\(768\) 41.2927 1.49002
\(769\) 12.0775 0.435527 0.217764 0.976002i \(-0.430124\pi\)
0.217764 + 0.976002i \(0.430124\pi\)
\(770\) 65.2926 2.35298
\(771\) 33.7951 1.21710
\(772\) −35.2683 −1.26933
\(773\) −4.95998 −0.178398 −0.0891991 0.996014i \(-0.528431\pi\)
−0.0891991 + 0.996014i \(0.528431\pi\)
\(774\) −9.13579 −0.328379
\(775\) −2.83028 −0.101667
\(776\) 46.4169 1.66627
\(777\) −7.32552 −0.262802
\(778\) −64.3323 −2.30643
\(779\) −24.1365 −0.864780
\(780\) −62.9879 −2.25533
\(781\) −63.5058 −2.27242
\(782\) 56.0733 2.00518
\(783\) 33.5035 1.19732
\(784\) −20.7909 −0.742531
\(785\) 29.5244 1.05377
\(786\) 11.6802 0.416620
\(787\) 10.7172 0.382026 0.191013 0.981588i \(-0.438823\pi\)
0.191013 + 0.981588i \(0.438823\pi\)
\(788\) 82.0657 2.92347
\(789\) −6.79092 −0.241763
\(790\) −70.3793 −2.50398
\(791\) 1.95488 0.0695076
\(792\) 30.7803 1.09373
\(793\) −8.95346 −0.317947
\(794\) 55.6957 1.97657
\(795\) −56.7690 −2.01339
\(796\) −50.8189 −1.80123
\(797\) −13.8652 −0.491132 −0.245566 0.969380i \(-0.578974\pi\)
−0.245566 + 0.969380i \(0.578974\pi\)
\(798\) 11.2108 0.396859
\(799\) 12.9740 0.458988
\(800\) −5.10469 −0.180478
\(801\) 14.5188 0.512995
\(802\) −4.23359 −0.149493
\(803\) 38.8394 1.37061
\(804\) −51.3261 −1.81013
\(805\) 36.3672 1.28178
\(806\) −1.31415 −0.0462889
\(807\) −2.67539 −0.0941783
\(808\) 88.5792 3.11620
\(809\) −26.5096 −0.932028 −0.466014 0.884777i \(-0.654310\pi\)
−0.466014 + 0.884777i \(0.654310\pi\)
\(810\) −36.7345 −1.29072
\(811\) −39.1324 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(812\) −29.0554 −1.01965
\(813\) 8.24547 0.289181
\(814\) 55.2062 1.93498
\(815\) −0.0293027 −0.00102643
\(816\) 16.8720 0.590639
\(817\) 8.25684 0.288870
\(818\) −42.5985 −1.48942
\(819\) 4.40360 0.153874
\(820\) −147.196 −5.14030
\(821\) 20.6885 0.722034 0.361017 0.932559i \(-0.382430\pi\)
0.361017 + 0.932559i \(0.382430\pi\)
\(822\) 62.8394 2.19178
\(823\) 48.9776 1.70725 0.853626 0.520886i \(-0.174398\pi\)
0.853626 + 0.520886i \(0.174398\pi\)
\(824\) 34.6992 1.20881
\(825\) 93.3550 3.25020
\(826\) 2.21079 0.0769234
\(827\) −37.4455 −1.30211 −0.651053 0.759032i \(-0.725673\pi\)
−0.651053 + 0.759032i \(0.725673\pi\)
\(828\) 34.6058 1.20263
\(829\) 14.8501 0.515764 0.257882 0.966176i \(-0.416975\pi\)
0.257882 + 0.966176i \(0.416975\pi\)
\(830\) −45.3808 −1.57519
\(831\) 1.33667 0.0463687
\(832\) −23.2520 −0.806118
\(833\) 18.8009 0.651414
\(834\) 13.7634 0.476586
\(835\) 54.2333 1.87682
\(836\) −56.1527 −1.94208
\(837\) −1.09318 −0.0377858
\(838\) −66.0714 −2.28240
\(839\) −34.2367 −1.18198 −0.590991 0.806678i \(-0.701263\pi\)
−0.590991 + 0.806678i \(0.701263\pi\)
\(840\) 33.8711 1.16866
\(841\) 6.71414 0.231522
\(842\) −41.5237 −1.43100
\(843\) −40.4527 −1.39327
\(844\) 76.6477 2.63832
\(845\) −23.7838 −0.818186
\(846\) 12.0471 0.414189
\(847\) −16.3708 −0.562508
\(848\) 37.2984 1.28083
\(849\) 23.5440 0.808029
\(850\) −121.267 −4.15944
\(851\) 30.7492 1.05407
\(852\) −66.4980 −2.27818
\(853\) 38.4698 1.31718 0.658591 0.752501i \(-0.271153\pi\)
0.658591 + 0.752501i \(0.271153\pi\)
\(854\) 9.71835 0.332555
\(855\) −16.4995 −0.564270
\(856\) −24.7557 −0.846132
\(857\) 25.0469 0.855585 0.427793 0.903877i \(-0.359291\pi\)
0.427793 + 0.903877i \(0.359291\pi\)
\(858\) 43.3463 1.47982
\(859\) −39.5530 −1.34953 −0.674766 0.738032i \(-0.735756\pi\)
−0.674766 + 0.738032i \(0.735756\pi\)
\(860\) 50.3541 1.71706
\(861\) −13.4413 −0.458079
\(862\) −26.4274 −0.900120
\(863\) 28.7031 0.977066 0.488533 0.872545i \(-0.337532\pi\)
0.488533 + 0.872545i \(0.337532\pi\)
\(864\) −1.97166 −0.0670772
\(865\) 28.4840 0.968484
\(866\) 9.06914 0.308182
\(867\) 6.90248 0.234420
\(868\) 0.948046 0.0321788
\(869\) 32.1902 1.09198
\(870\) −84.0372 −2.84913
\(871\) 27.4153 0.928931
\(872\) 44.9059 1.52071
\(873\) −12.5917 −0.426164
\(874\) −47.0579 −1.59176
\(875\) −51.5567 −1.74293
\(876\) 40.6693 1.37409
\(877\) 19.0593 0.643588 0.321794 0.946810i \(-0.395714\pi\)
0.321794 + 0.946810i \(0.395714\pi\)
\(878\) 33.8342 1.14185
\(879\) −4.32711 −0.145950
\(880\) −82.4651 −2.77990
\(881\) 34.6912 1.16878 0.584388 0.811475i \(-0.301335\pi\)
0.584388 + 0.811475i \(0.301335\pi\)
\(882\) 17.4578 0.587833
\(883\) 11.5748 0.389525 0.194762 0.980850i \(-0.437606\pi\)
0.194762 + 0.980850i \(0.437606\pi\)
\(884\) −37.4233 −1.25868
\(885\) 4.24987 0.142858
\(886\) 47.6321 1.60023
\(887\) 25.6422 0.860980 0.430490 0.902595i \(-0.358341\pi\)
0.430490 + 0.902595i \(0.358341\pi\)
\(888\) 28.6387 0.961051
\(889\) −21.1157 −0.708199
\(890\) −120.402 −4.03589
\(891\) 16.8017 0.562878
\(892\) 5.64272 0.188932
\(893\) −10.8881 −0.364356
\(894\) 3.69788 0.123676
\(895\) 25.4339 0.850162
\(896\) 24.3756 0.814333
\(897\) 24.1434 0.806124
\(898\) 31.4173 1.04841
\(899\) −1.16531 −0.0388653
\(900\) −74.8405 −2.49468
\(901\) −33.7285 −1.12366
\(902\) 101.296 3.37277
\(903\) 4.59813 0.153016
\(904\) −7.64248 −0.254185
\(905\) −51.7206 −1.71925
\(906\) −64.4476 −2.14113
\(907\) 34.4910 1.14525 0.572627 0.819816i \(-0.305924\pi\)
0.572627 + 0.819816i \(0.305924\pi\)
\(908\) 2.25713 0.0749055
\(909\) −24.0292 −0.796998
\(910\) −36.5185 −1.21058
\(911\) 8.69842 0.288191 0.144096 0.989564i \(-0.453973\pi\)
0.144096 + 0.989564i \(0.453973\pi\)
\(912\) −14.1594 −0.468864
\(913\) 20.7564 0.686936
\(914\) 41.7718 1.38169
\(915\) 18.6819 0.617603
\(916\) 82.5624 2.72794
\(917\) 4.50082 0.148630
\(918\) −46.8389 −1.54591
\(919\) 57.4064 1.89366 0.946831 0.321732i \(-0.104265\pi\)
0.946831 + 0.321732i \(0.104265\pi\)
\(920\) −142.175 −4.68738
\(921\) −33.4827 −1.10329
\(922\) −48.4776 −1.59653
\(923\) 35.5192 1.16913
\(924\) −31.2707 −1.02873
\(925\) −66.5000 −2.18651
\(926\) 89.4537 2.93963
\(927\) −9.41300 −0.309163
\(928\) −2.10175 −0.0689935
\(929\) −35.1129 −1.15202 −0.576008 0.817444i \(-0.695390\pi\)
−0.576008 + 0.817444i \(0.695390\pi\)
\(930\) 2.74204 0.0899150
\(931\) −15.7782 −0.517108
\(932\) 2.42280 0.0793616
\(933\) −19.5581 −0.640304
\(934\) −38.7470 −1.26784
\(935\) 74.5722 2.43877
\(936\) −17.2156 −0.562709
\(937\) −5.40809 −0.176675 −0.0883373 0.996091i \(-0.528155\pi\)
−0.0883373 + 0.996091i \(0.528155\pi\)
\(938\) −29.7573 −0.971611
\(939\) 16.4375 0.536419
\(940\) −66.4006 −2.16575
\(941\) 19.5106 0.636026 0.318013 0.948086i \(-0.396984\pi\)
0.318013 + 0.948086i \(0.396984\pi\)
\(942\) −21.2751 −0.693179
\(943\) 56.4204 1.83730
\(944\) −2.79225 −0.0908800
\(945\) −30.3781 −0.988200
\(946\) −34.6521 −1.12664
\(947\) 15.1064 0.490893 0.245446 0.969410i \(-0.421065\pi\)
0.245446 + 0.969410i \(0.421065\pi\)
\(948\) 33.7069 1.09475
\(949\) −21.7231 −0.705160
\(950\) 101.770 3.30186
\(951\) 7.34837 0.238287
\(952\) 20.1240 0.652223
\(953\) 9.54005 0.309033 0.154516 0.987990i \(-0.450618\pi\)
0.154516 + 0.987990i \(0.450618\pi\)
\(954\) −31.3188 −1.01399
\(955\) −61.6881 −1.99618
\(956\) −91.8525 −2.97072
\(957\) 38.4371 1.24249
\(958\) −94.6432 −3.05778
\(959\) 24.2143 0.781920
\(960\) 48.5165 1.56586
\(961\) −30.9620 −0.998773
\(962\) −30.8771 −0.995518
\(963\) 6.71557 0.216406
\(964\) −80.7961 −2.60227
\(965\) −39.3068 −1.26533
\(966\) −26.2059 −0.843162
\(967\) 46.1794 1.48503 0.742514 0.669831i \(-0.233633\pi\)
0.742514 + 0.669831i \(0.233633\pi\)
\(968\) 64.0007 2.05706
\(969\) 12.8042 0.411329
\(970\) 104.421 3.35276
\(971\) 6.72490 0.215812 0.107906 0.994161i \(-0.465585\pi\)
0.107906 + 0.994161i \(0.465585\pi\)
\(972\) −49.0702 −1.57393
\(973\) 5.30352 0.170023
\(974\) 55.5128 1.77875
\(975\) −52.2140 −1.67218
\(976\) −12.2743 −0.392892
\(977\) 26.3977 0.844538 0.422269 0.906470i \(-0.361234\pi\)
0.422269 + 0.906470i \(0.361234\pi\)
\(978\) 0.0211153 0.000675194 0
\(979\) 55.0698 1.76004
\(980\) −96.2226 −3.07372
\(981\) −12.1818 −0.388935
\(982\) −18.0269 −0.575262
\(983\) 27.9249 0.890667 0.445333 0.895365i \(-0.353085\pi\)
0.445333 + 0.895365i \(0.353085\pi\)
\(984\) 52.5480 1.67517
\(985\) 91.4630 2.91425
\(986\) −49.9295 −1.59008
\(987\) −6.06343 −0.193001
\(988\) 31.4065 0.999173
\(989\) −19.3008 −0.613731
\(990\) 69.2446 2.20074
\(991\) 50.4571 1.60282 0.801412 0.598113i \(-0.204083\pi\)
0.801412 + 0.598113i \(0.204083\pi\)
\(992\) 0.0685779 0.00217735
\(993\) 9.50186 0.301532
\(994\) −38.5535 −1.22284
\(995\) −56.6381 −1.79555
\(996\) 21.7343 0.688678
\(997\) −11.1734 −0.353864 −0.176932 0.984223i \(-0.556617\pi\)
−0.176932 + 0.984223i \(0.556617\pi\)
\(998\) 8.11882 0.256997
\(999\) −25.6853 −0.812646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 383.2.a.c.1.21 24
3.2 odd 2 3447.2.a.j.1.4 24
4.3 odd 2 6128.2.a.p.1.16 24
5.4 even 2 9575.2.a.e.1.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.21 24 1.1 even 1 trivial
3447.2.a.j.1.4 24 3.2 odd 2
6128.2.a.p.1.16 24 4.3 odd 2
9575.2.a.e.1.4 24 5.4 even 2