Properties

Label 384.10.a.a.1.4
Level $384$
Weight $10$
Character 384.1
Self dual yes
Analytic conductor $197.774$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,10,Mod(1,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(197.773761087\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 14124x^{2} - 170336x + 18391464 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-47.1038\) of defining polynomial
Character \(\chi\) \(=\) 384.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-81.0000 q^{3} +1350.54 q^{5} +4629.00 q^{7} +6561.00 q^{9} -35546.7 q^{11} +48411.4 q^{13} -109394. q^{15} -130374. q^{17} +561717. q^{19} -374949. q^{21} +400621. q^{23} -129157. q^{25} -531441. q^{27} -3.25076e6 q^{29} +379535. q^{31} +2.87928e6 q^{33} +6.25167e6 q^{35} -1.76862e7 q^{37} -3.92133e6 q^{39} +4.50782e6 q^{41} -2.91165e7 q^{43} +8.86092e6 q^{45} -3.36056e7 q^{47} -1.89260e7 q^{49} +1.05603e7 q^{51} -5.68080e6 q^{53} -4.80074e7 q^{55} -4.54991e7 q^{57} +8.79057e7 q^{59} -1.07388e8 q^{61} +3.03709e7 q^{63} +6.53817e7 q^{65} +1.95661e8 q^{67} -3.24503e7 q^{69} -4.89316e7 q^{71} -1.62014e8 q^{73} +1.04617e7 q^{75} -1.64546e8 q^{77} +1.10329e8 q^{79} +4.30467e7 q^{81} +2.60270e8 q^{83} -1.76076e8 q^{85} +2.63311e8 q^{87} +1.44221e8 q^{89} +2.24096e8 q^{91} -3.07423e7 q^{93} +7.58623e8 q^{95} +5.59756e8 q^{97} -2.33222e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 324 q^{3} - 1728 q^{5} + 4840 q^{7} + 26244 q^{9} - 15824 q^{11} - 82440 q^{13} + 139968 q^{15} + 165912 q^{17} - 539904 q^{19} - 392040 q^{21} + 729680 q^{23} + 224812 q^{25} - 2125764 q^{27} - 1850864 q^{29}+ \cdots - 103821264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −81.0000 −0.577350
\(4\) 0 0
\(5\) 1350.54 0.966370 0.483185 0.875518i \(-0.339480\pi\)
0.483185 + 0.875518i \(0.339480\pi\)
\(6\) 0 0
\(7\) 4629.00 0.728695 0.364348 0.931263i \(-0.381292\pi\)
0.364348 + 0.931263i \(0.381292\pi\)
\(8\) 0 0
\(9\) 6561.00 0.333333
\(10\) 0 0
\(11\) −35546.7 −0.732036 −0.366018 0.930608i \(-0.619279\pi\)
−0.366018 + 0.930608i \(0.619279\pi\)
\(12\) 0 0
\(13\) 48411.4 0.470114 0.235057 0.971982i \(-0.424472\pi\)
0.235057 + 0.971982i \(0.424472\pi\)
\(14\) 0 0
\(15\) −109394. −0.557934
\(16\) 0 0
\(17\) −130374. −0.378591 −0.189296 0.981920i \(-0.560620\pi\)
−0.189296 + 0.981920i \(0.560620\pi\)
\(18\) 0 0
\(19\) 561717. 0.988841 0.494420 0.869223i \(-0.335380\pi\)
0.494420 + 0.869223i \(0.335380\pi\)
\(20\) 0 0
\(21\) −374949. −0.420712
\(22\) 0 0
\(23\) 400621. 0.298510 0.149255 0.988799i \(-0.452313\pi\)
0.149255 + 0.988799i \(0.452313\pi\)
\(24\) 0 0
\(25\) −129157. −0.0661285
\(26\) 0 0
\(27\) −531441. −0.192450
\(28\) 0 0
\(29\) −3.25076e6 −0.853481 −0.426740 0.904374i \(-0.640338\pi\)
−0.426740 + 0.904374i \(0.640338\pi\)
\(30\) 0 0
\(31\) 379535. 0.0738115 0.0369057 0.999319i \(-0.488250\pi\)
0.0369057 + 0.999319i \(0.488250\pi\)
\(32\) 0 0
\(33\) 2.87928e6 0.422641
\(34\) 0 0
\(35\) 6.25167e6 0.704190
\(36\) 0 0
\(37\) −1.76862e7 −1.55141 −0.775707 0.631093i \(-0.782606\pi\)
−0.775707 + 0.631093i \(0.782606\pi\)
\(38\) 0 0
\(39\) −3.92133e6 −0.271420
\(40\) 0 0
\(41\) 4.50782e6 0.249138 0.124569 0.992211i \(-0.460245\pi\)
0.124569 + 0.992211i \(0.460245\pi\)
\(42\) 0 0
\(43\) −2.91165e7 −1.29877 −0.649384 0.760460i \(-0.724973\pi\)
−0.649384 + 0.760460i \(0.724973\pi\)
\(44\) 0 0
\(45\) 8.86092e6 0.322123
\(46\) 0 0
\(47\) −3.36056e7 −1.00455 −0.502275 0.864708i \(-0.667504\pi\)
−0.502275 + 0.864708i \(0.667504\pi\)
\(48\) 0 0
\(49\) −1.89260e7 −0.469003
\(50\) 0 0
\(51\) 1.05603e7 0.218580
\(52\) 0 0
\(53\) −5.68080e6 −0.0988935 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(54\) 0 0
\(55\) −4.80074e7 −0.707418
\(56\) 0 0
\(57\) −4.54991e7 −0.570907
\(58\) 0 0
\(59\) 8.79057e7 0.944459 0.472229 0.881476i \(-0.343449\pi\)
0.472229 + 0.881476i \(0.343449\pi\)
\(60\) 0 0
\(61\) −1.07388e8 −0.993051 −0.496526 0.868022i \(-0.665391\pi\)
−0.496526 + 0.868022i \(0.665391\pi\)
\(62\) 0 0
\(63\) 3.03709e7 0.242898
\(64\) 0 0
\(65\) 6.53817e7 0.454304
\(66\) 0 0
\(67\) 1.95661e8 1.18622 0.593112 0.805120i \(-0.297899\pi\)
0.593112 + 0.805120i \(0.297899\pi\)
\(68\) 0 0
\(69\) −3.24503e7 −0.172345
\(70\) 0 0
\(71\) −4.89316e7 −0.228521 −0.114261 0.993451i \(-0.536450\pi\)
−0.114261 + 0.993451i \(0.536450\pi\)
\(72\) 0 0
\(73\) −1.62014e8 −0.667726 −0.333863 0.942622i \(-0.608352\pi\)
−0.333863 + 0.942622i \(0.608352\pi\)
\(74\) 0 0
\(75\) 1.04617e7 0.0381793
\(76\) 0 0
\(77\) −1.64546e8 −0.533431
\(78\) 0 0
\(79\) 1.10329e8 0.318689 0.159344 0.987223i \(-0.449062\pi\)
0.159344 + 0.987223i \(0.449062\pi\)
\(80\) 0 0
\(81\) 4.30467e7 0.111111
\(82\) 0 0
\(83\) 2.60270e8 0.601967 0.300983 0.953629i \(-0.402685\pi\)
0.300983 + 0.953629i \(0.402685\pi\)
\(84\) 0 0
\(85\) −1.76076e8 −0.365859
\(86\) 0 0
\(87\) 2.63311e8 0.492757
\(88\) 0 0
\(89\) 1.44221e8 0.243654 0.121827 0.992551i \(-0.461125\pi\)
0.121827 + 0.992551i \(0.461125\pi\)
\(90\) 0 0
\(91\) 2.24096e8 0.342570
\(92\) 0 0
\(93\) −3.07423e7 −0.0426151
\(94\) 0 0
\(95\) 7.58623e8 0.955586
\(96\) 0 0
\(97\) 5.59756e8 0.641987 0.320993 0.947081i \(-0.395983\pi\)
0.320993 + 0.947081i \(0.395983\pi\)
\(98\) 0 0
\(99\) −2.33222e8 −0.244012
\(100\) 0 0
\(101\) 9.19152e8 0.878904 0.439452 0.898266i \(-0.355173\pi\)
0.439452 + 0.898266i \(0.355173\pi\)
\(102\) 0 0
\(103\) 1.21707e8 0.106549 0.0532744 0.998580i \(-0.483034\pi\)
0.0532744 + 0.998580i \(0.483034\pi\)
\(104\) 0 0
\(105\) −5.06385e8 −0.406564
\(106\) 0 0
\(107\) −5.45508e8 −0.402322 −0.201161 0.979558i \(-0.564471\pi\)
−0.201161 + 0.979558i \(0.564471\pi\)
\(108\) 0 0
\(109\) −1.03012e9 −0.698988 −0.349494 0.936939i \(-0.613646\pi\)
−0.349494 + 0.936939i \(0.613646\pi\)
\(110\) 0 0
\(111\) 1.43258e9 0.895709
\(112\) 0 0
\(113\) 1.78088e9 1.02750 0.513750 0.857940i \(-0.328256\pi\)
0.513750 + 0.857940i \(0.328256\pi\)
\(114\) 0 0
\(115\) 5.41056e8 0.288471
\(116\) 0 0
\(117\) 3.17627e8 0.156705
\(118\) 0 0
\(119\) −6.03501e8 −0.275878
\(120\) 0 0
\(121\) −1.09438e9 −0.464124
\(122\) 0 0
\(123\) −3.65134e8 −0.143840
\(124\) 0 0
\(125\) −2.81221e9 −1.03027
\(126\) 0 0
\(127\) 2.25709e9 0.769897 0.384949 0.922938i \(-0.374219\pi\)
0.384949 + 0.922938i \(0.374219\pi\)
\(128\) 0 0
\(129\) 2.35844e9 0.749844
\(130\) 0 0
\(131\) −5.72321e9 −1.69793 −0.848964 0.528451i \(-0.822773\pi\)
−0.848964 + 0.528451i \(0.822773\pi\)
\(132\) 0 0
\(133\) 2.60019e9 0.720563
\(134\) 0 0
\(135\) −7.17734e8 −0.185978
\(136\) 0 0
\(137\) 3.64308e9 0.883539 0.441769 0.897129i \(-0.354351\pi\)
0.441769 + 0.897129i \(0.354351\pi\)
\(138\) 0 0
\(139\) 1.57294e9 0.357394 0.178697 0.983904i \(-0.442812\pi\)
0.178697 + 0.983904i \(0.442812\pi\)
\(140\) 0 0
\(141\) 2.72206e9 0.579978
\(142\) 0 0
\(143\) −1.72087e9 −0.344140
\(144\) 0 0
\(145\) −4.39029e9 −0.824778
\(146\) 0 0
\(147\) 1.53300e9 0.270779
\(148\) 0 0
\(149\) −6.20779e9 −1.03181 −0.515904 0.856646i \(-0.672544\pi\)
−0.515904 + 0.856646i \(0.672544\pi\)
\(150\) 0 0
\(151\) 1.61701e8 0.0253114 0.0126557 0.999920i \(-0.495971\pi\)
0.0126557 + 0.999920i \(0.495971\pi\)
\(152\) 0 0
\(153\) −8.55383e8 −0.126197
\(154\) 0 0
\(155\) 5.12578e8 0.0713292
\(156\) 0 0
\(157\) −9.93712e9 −1.30530 −0.652652 0.757657i \(-0.726344\pi\)
−0.652652 + 0.757657i \(0.726344\pi\)
\(158\) 0 0
\(159\) 4.60145e8 0.0570962
\(160\) 0 0
\(161\) 1.85448e9 0.217523
\(162\) 0 0
\(163\) 1.76080e9 0.195373 0.0976866 0.995217i \(-0.468856\pi\)
0.0976866 + 0.995217i \(0.468856\pi\)
\(164\) 0 0
\(165\) 3.88860e9 0.408428
\(166\) 0 0
\(167\) 7.70998e9 0.767060 0.383530 0.923528i \(-0.374708\pi\)
0.383530 + 0.923528i \(0.374708\pi\)
\(168\) 0 0
\(169\) −8.26083e9 −0.778993
\(170\) 0 0
\(171\) 3.68542e9 0.329614
\(172\) 0 0
\(173\) 2.06841e9 0.175562 0.0877808 0.996140i \(-0.472023\pi\)
0.0877808 + 0.996140i \(0.472023\pi\)
\(174\) 0 0
\(175\) −5.97869e8 −0.0481875
\(176\) 0 0
\(177\) −7.12036e9 −0.545283
\(178\) 0 0
\(179\) −1.60048e10 −1.16523 −0.582616 0.812747i \(-0.697971\pi\)
−0.582616 + 0.812747i \(0.697971\pi\)
\(180\) 0 0
\(181\) 1.01069e10 0.699945 0.349973 0.936760i \(-0.386191\pi\)
0.349973 + 0.936760i \(0.386191\pi\)
\(182\) 0 0
\(183\) 8.69843e9 0.573338
\(184\) 0 0
\(185\) −2.38860e10 −1.49924
\(186\) 0 0
\(187\) 4.63436e9 0.277142
\(188\) 0 0
\(189\) −2.46004e9 −0.140237
\(190\) 0 0
\(191\) −7.60249e9 −0.413338 −0.206669 0.978411i \(-0.566262\pi\)
−0.206669 + 0.978411i \(0.566262\pi\)
\(192\) 0 0
\(193\) −2.40493e10 −1.24765 −0.623827 0.781563i \(-0.714423\pi\)
−0.623827 + 0.781563i \(0.714423\pi\)
\(194\) 0 0
\(195\) −5.29592e9 −0.262292
\(196\) 0 0
\(197\) −3.54192e10 −1.67549 −0.837744 0.546064i \(-0.816126\pi\)
−0.837744 + 0.546064i \(0.816126\pi\)
\(198\) 0 0
\(199\) −1.45012e10 −0.655487 −0.327743 0.944767i \(-0.606288\pi\)
−0.327743 + 0.944767i \(0.606288\pi\)
\(200\) 0 0
\(201\) −1.58485e10 −0.684867
\(202\) 0 0
\(203\) −1.50478e10 −0.621927
\(204\) 0 0
\(205\) 6.08801e9 0.240759
\(206\) 0 0
\(207\) 2.62848e9 0.0995033
\(208\) 0 0
\(209\) −1.99672e10 −0.723867
\(210\) 0 0
\(211\) −2.22563e10 −0.773004 −0.386502 0.922289i \(-0.626317\pi\)
−0.386502 + 0.922289i \(0.626317\pi\)
\(212\) 0 0
\(213\) 3.96346e9 0.131937
\(214\) 0 0
\(215\) −3.93232e10 −1.25509
\(216\) 0 0
\(217\) 1.75687e9 0.0537861
\(218\) 0 0
\(219\) 1.31231e10 0.385512
\(220\) 0 0
\(221\) −6.31159e9 −0.177981
\(222\) 0 0
\(223\) 6.93618e10 1.87823 0.939114 0.343606i \(-0.111648\pi\)
0.939114 + 0.343606i \(0.111648\pi\)
\(224\) 0 0
\(225\) −8.47400e8 −0.0220428
\(226\) 0 0
\(227\) −4.24558e10 −1.06126 −0.530629 0.847604i \(-0.678044\pi\)
−0.530629 + 0.847604i \(0.678044\pi\)
\(228\) 0 0
\(229\) −2.55723e10 −0.614483 −0.307241 0.951632i \(-0.599406\pi\)
−0.307241 + 0.951632i \(0.599406\pi\)
\(230\) 0 0
\(231\) 1.33282e10 0.307977
\(232\) 0 0
\(233\) 7.42856e10 1.65121 0.825606 0.564247i \(-0.190833\pi\)
0.825606 + 0.564247i \(0.190833\pi\)
\(234\) 0 0
\(235\) −4.53859e10 −0.970768
\(236\) 0 0
\(237\) −8.93662e9 −0.183995
\(238\) 0 0
\(239\) 5.00750e10 0.992729 0.496365 0.868114i \(-0.334668\pi\)
0.496365 + 0.868114i \(0.334668\pi\)
\(240\) 0 0
\(241\) −2.67268e9 −0.0510353 −0.0255176 0.999674i \(-0.508123\pi\)
−0.0255176 + 0.999674i \(0.508123\pi\)
\(242\) 0 0
\(243\) −3.48678e9 −0.0641500
\(244\) 0 0
\(245\) −2.55603e10 −0.453231
\(246\) 0 0
\(247\) 2.71935e10 0.464867
\(248\) 0 0
\(249\) −2.10819e10 −0.347546
\(250\) 0 0
\(251\) −1.97889e10 −0.314696 −0.157348 0.987543i \(-0.550294\pi\)
−0.157348 + 0.987543i \(0.550294\pi\)
\(252\) 0 0
\(253\) −1.42408e10 −0.218520
\(254\) 0 0
\(255\) 1.42621e10 0.211229
\(256\) 0 0
\(257\) −9.15704e10 −1.30935 −0.654676 0.755910i \(-0.727195\pi\)
−0.654676 + 0.755910i \(0.727195\pi\)
\(258\) 0 0
\(259\) −8.18696e10 −1.13051
\(260\) 0 0
\(261\) −2.13282e10 −0.284494
\(262\) 0 0
\(263\) 5.43794e10 0.700863 0.350432 0.936588i \(-0.386035\pi\)
0.350432 + 0.936588i \(0.386035\pi\)
\(264\) 0 0
\(265\) −7.67217e9 −0.0955678
\(266\) 0 0
\(267\) −1.16819e10 −0.140674
\(268\) 0 0
\(269\) 3.46224e8 0.00403155 0.00201578 0.999998i \(-0.499358\pi\)
0.00201578 + 0.999998i \(0.499358\pi\)
\(270\) 0 0
\(271\) 1.03029e11 1.16037 0.580184 0.814485i \(-0.302980\pi\)
0.580184 + 0.814485i \(0.302980\pi\)
\(272\) 0 0
\(273\) −1.81518e10 −0.197783
\(274\) 0 0
\(275\) 4.59111e9 0.0484084
\(276\) 0 0
\(277\) −3.01924e10 −0.308133 −0.154066 0.988060i \(-0.549237\pi\)
−0.154066 + 0.988060i \(0.549237\pi\)
\(278\) 0 0
\(279\) 2.49013e9 0.0246038
\(280\) 0 0
\(281\) 2.70465e9 0.0258781 0.0129391 0.999916i \(-0.495881\pi\)
0.0129391 + 0.999916i \(0.495881\pi\)
\(282\) 0 0
\(283\) −1.69965e11 −1.57514 −0.787572 0.616222i \(-0.788662\pi\)
−0.787572 + 0.616222i \(0.788662\pi\)
\(284\) 0 0
\(285\) −6.14485e10 −0.551708
\(286\) 0 0
\(287\) 2.08667e10 0.181546
\(288\) 0 0
\(289\) −1.01591e11 −0.856669
\(290\) 0 0
\(291\) −4.53403e10 −0.370651
\(292\) 0 0
\(293\) −7.58823e10 −0.601500 −0.300750 0.953703i \(-0.597237\pi\)
−0.300750 + 0.953703i \(0.597237\pi\)
\(294\) 0 0
\(295\) 1.18720e11 0.912697
\(296\) 0 0
\(297\) 1.88910e10 0.140880
\(298\) 0 0
\(299\) 1.93946e10 0.140333
\(300\) 0 0
\(301\) −1.34780e11 −0.946407
\(302\) 0 0
\(303\) −7.44513e10 −0.507435
\(304\) 0 0
\(305\) −1.45032e11 −0.959655
\(306\) 0 0
\(307\) 1.64274e11 1.05547 0.527735 0.849409i \(-0.323042\pi\)
0.527735 + 0.849409i \(0.323042\pi\)
\(308\) 0 0
\(309\) −9.85828e9 −0.0615160
\(310\) 0 0
\(311\) 2.36639e11 1.43438 0.717189 0.696878i \(-0.245428\pi\)
0.717189 + 0.696878i \(0.245428\pi\)
\(312\) 0 0
\(313\) −2.03140e11 −1.19632 −0.598158 0.801378i \(-0.704100\pi\)
−0.598158 + 0.801378i \(0.704100\pi\)
\(314\) 0 0
\(315\) 4.10172e10 0.234730
\(316\) 0 0
\(317\) −2.78065e11 −1.54661 −0.773304 0.634036i \(-0.781397\pi\)
−0.773304 + 0.634036i \(0.781397\pi\)
\(318\) 0 0
\(319\) 1.15554e11 0.624778
\(320\) 0 0
\(321\) 4.41861e10 0.232281
\(322\) 0 0
\(323\) −7.32332e10 −0.374366
\(324\) 0 0
\(325\) −6.25268e9 −0.0310879
\(326\) 0 0
\(327\) 8.34399e10 0.403561
\(328\) 0 0
\(329\) −1.55561e11 −0.732012
\(330\) 0 0
\(331\) 1.08372e10 0.0496240 0.0248120 0.999692i \(-0.492101\pi\)
0.0248120 + 0.999692i \(0.492101\pi\)
\(332\) 0 0
\(333\) −1.16039e11 −0.517138
\(334\) 0 0
\(335\) 2.64248e11 1.14633
\(336\) 0 0
\(337\) 1.39972e11 0.591161 0.295581 0.955318i \(-0.404487\pi\)
0.295581 + 0.955318i \(0.404487\pi\)
\(338\) 0 0
\(339\) −1.44251e11 −0.593228
\(340\) 0 0
\(341\) −1.34912e10 −0.0540326
\(342\) 0 0
\(343\) −2.74405e11 −1.07046
\(344\) 0 0
\(345\) −4.38256e10 −0.166549
\(346\) 0 0
\(347\) −5.60241e10 −0.207440 −0.103720 0.994607i \(-0.533075\pi\)
−0.103720 + 0.994607i \(0.533075\pi\)
\(348\) 0 0
\(349\) −2.40745e11 −0.868647 −0.434324 0.900757i \(-0.643013\pi\)
−0.434324 + 0.900757i \(0.643013\pi\)
\(350\) 0 0
\(351\) −2.57278e10 −0.0904734
\(352\) 0 0
\(353\) −4.30557e11 −1.47586 −0.737928 0.674879i \(-0.764196\pi\)
−0.737928 + 0.674879i \(0.764196\pi\)
\(354\) 0 0
\(355\) −6.60843e10 −0.220836
\(356\) 0 0
\(357\) 4.88836e10 0.159278
\(358\) 0 0
\(359\) 2.82766e11 0.898467 0.449234 0.893414i \(-0.351697\pi\)
0.449234 + 0.893414i \(0.351697\pi\)
\(360\) 0 0
\(361\) −7.16187e9 −0.0221944
\(362\) 0 0
\(363\) 8.86448e10 0.267962
\(364\) 0 0
\(365\) −2.18806e11 −0.645271
\(366\) 0 0
\(367\) −2.58503e11 −0.743821 −0.371910 0.928269i \(-0.621297\pi\)
−0.371910 + 0.928269i \(0.621297\pi\)
\(368\) 0 0
\(369\) 2.95758e10 0.0830459
\(370\) 0 0
\(371\) −2.62964e10 −0.0720633
\(372\) 0 0
\(373\) −3.13543e11 −0.838701 −0.419351 0.907824i \(-0.637742\pi\)
−0.419351 + 0.907824i \(0.637742\pi\)
\(374\) 0 0
\(375\) 2.27789e11 0.594829
\(376\) 0 0
\(377\) −1.57374e11 −0.401233
\(378\) 0 0
\(379\) −7.27877e11 −1.81210 −0.906049 0.423172i \(-0.860916\pi\)
−0.906049 + 0.423172i \(0.860916\pi\)
\(380\) 0 0
\(381\) −1.82825e11 −0.444500
\(382\) 0 0
\(383\) −2.35565e11 −0.559393 −0.279696 0.960089i \(-0.590234\pi\)
−0.279696 + 0.960089i \(0.590234\pi\)
\(384\) 0 0
\(385\) −2.22226e11 −0.515492
\(386\) 0 0
\(387\) −1.91034e11 −0.432923
\(388\) 0 0
\(389\) 4.88725e11 1.08216 0.541080 0.840971i \(-0.318016\pi\)
0.541080 + 0.840971i \(0.318016\pi\)
\(390\) 0 0
\(391\) −5.22305e10 −0.113013
\(392\) 0 0
\(393\) 4.63580e11 0.980299
\(394\) 0 0
\(395\) 1.49004e11 0.307971
\(396\) 0 0
\(397\) −5.70044e11 −1.15173 −0.575865 0.817545i \(-0.695335\pi\)
−0.575865 + 0.817545i \(0.695335\pi\)
\(398\) 0 0
\(399\) −2.10615e11 −0.416018
\(400\) 0 0
\(401\) 1.61868e11 0.312617 0.156308 0.987708i \(-0.450041\pi\)
0.156308 + 0.987708i \(0.450041\pi\)
\(402\) 0 0
\(403\) 1.83738e10 0.0346998
\(404\) 0 0
\(405\) 5.81365e10 0.107374
\(406\) 0 0
\(407\) 6.28687e11 1.13569
\(408\) 0 0
\(409\) −3.26776e11 −0.577424 −0.288712 0.957416i \(-0.593227\pi\)
−0.288712 + 0.957416i \(0.593227\pi\)
\(410\) 0 0
\(411\) −2.95089e11 −0.510111
\(412\) 0 0
\(413\) 4.06915e11 0.688223
\(414\) 0 0
\(415\) 3.51506e11 0.581723
\(416\) 0 0
\(417\) −1.27408e11 −0.206341
\(418\) 0 0
\(419\) −9.19459e11 −1.45737 −0.728684 0.684850i \(-0.759868\pi\)
−0.728684 + 0.684850i \(0.759868\pi\)
\(420\) 0 0
\(421\) 8.51831e11 1.32155 0.660776 0.750583i \(-0.270227\pi\)
0.660776 + 0.750583i \(0.270227\pi\)
\(422\) 0 0
\(423\) −2.20487e11 −0.334850
\(424\) 0 0
\(425\) 1.68387e10 0.0250357
\(426\) 0 0
\(427\) −4.97099e11 −0.723632
\(428\) 0 0
\(429\) 1.39390e11 0.198689
\(430\) 0 0
\(431\) −2.24830e10 −0.0313839 −0.0156920 0.999877i \(-0.504995\pi\)
−0.0156920 + 0.999877i \(0.504995\pi\)
\(432\) 0 0
\(433\) −1.37987e12 −1.88644 −0.943218 0.332173i \(-0.892218\pi\)
−0.943218 + 0.332173i \(0.892218\pi\)
\(434\) 0 0
\(435\) 3.55613e11 0.476186
\(436\) 0 0
\(437\) 2.25036e11 0.295179
\(438\) 0 0
\(439\) −1.97737e11 −0.254096 −0.127048 0.991897i \(-0.540550\pi\)
−0.127048 + 0.991897i \(0.540550\pi\)
\(440\) 0 0
\(441\) −1.24173e11 −0.156334
\(442\) 0 0
\(443\) −4.21012e10 −0.0519371 −0.0259685 0.999663i \(-0.508267\pi\)
−0.0259685 + 0.999663i \(0.508267\pi\)
\(444\) 0 0
\(445\) 1.94777e11 0.235460
\(446\) 0 0
\(447\) 5.02831e11 0.595715
\(448\) 0 0
\(449\) 2.04126e11 0.237023 0.118511 0.992953i \(-0.462188\pi\)
0.118511 + 0.992953i \(0.462188\pi\)
\(450\) 0 0
\(451\) −1.60238e11 −0.182378
\(452\) 0 0
\(453\) −1.30978e10 −0.0146135
\(454\) 0 0
\(455\) 3.02652e11 0.331049
\(456\) 0 0
\(457\) 1.44309e12 1.54764 0.773820 0.633405i \(-0.218343\pi\)
0.773820 + 0.633405i \(0.218343\pi\)
\(458\) 0 0
\(459\) 6.92860e10 0.0728599
\(460\) 0 0
\(461\) −5.27006e11 −0.543452 −0.271726 0.962375i \(-0.587594\pi\)
−0.271726 + 0.962375i \(0.587594\pi\)
\(462\) 0 0
\(463\) 2.42042e11 0.244780 0.122390 0.992482i \(-0.460944\pi\)
0.122390 + 0.992482i \(0.460944\pi\)
\(464\) 0 0
\(465\) −4.15188e10 −0.0411819
\(466\) 0 0
\(467\) 1.73785e12 1.69078 0.845390 0.534150i \(-0.179368\pi\)
0.845390 + 0.534150i \(0.179368\pi\)
\(468\) 0 0
\(469\) 9.05713e11 0.864396
\(470\) 0 0
\(471\) 8.04906e11 0.753618
\(472\) 0 0
\(473\) 1.03500e12 0.950745
\(474\) 0 0
\(475\) −7.25498e10 −0.0653905
\(476\) 0 0
\(477\) −3.72717e10 −0.0329645
\(478\) 0 0
\(479\) −7.67989e11 −0.666569 −0.333284 0.942826i \(-0.608157\pi\)
−0.333284 + 0.942826i \(0.608157\pi\)
\(480\) 0 0
\(481\) −8.56216e11 −0.729341
\(482\) 0 0
\(483\) −1.50212e11 −0.125587
\(484\) 0 0
\(485\) 7.55975e11 0.620397
\(486\) 0 0
\(487\) −9.42997e11 −0.759678 −0.379839 0.925053i \(-0.624021\pi\)
−0.379839 + 0.925053i \(0.624021\pi\)
\(488\) 0 0
\(489\) −1.42625e11 −0.112799
\(490\) 0 0
\(491\) 2.21900e10 0.0172302 0.00861511 0.999963i \(-0.497258\pi\)
0.00861511 + 0.999963i \(0.497258\pi\)
\(492\) 0 0
\(493\) 4.23814e11 0.323120
\(494\) 0 0
\(495\) −3.14976e11 −0.235806
\(496\) 0 0
\(497\) −2.26504e11 −0.166523
\(498\) 0 0
\(499\) 1.67958e12 1.21269 0.606344 0.795202i \(-0.292635\pi\)
0.606344 + 0.795202i \(0.292635\pi\)
\(500\) 0 0
\(501\) −6.24509e11 −0.442862
\(502\) 0 0
\(503\) −2.12521e12 −1.48028 −0.740142 0.672451i \(-0.765242\pi\)
−0.740142 + 0.672451i \(0.765242\pi\)
\(504\) 0 0
\(505\) 1.24136e12 0.849347
\(506\) 0 0
\(507\) 6.69127e11 0.449752
\(508\) 0 0
\(509\) −2.37137e12 −1.56592 −0.782958 0.622074i \(-0.786290\pi\)
−0.782958 + 0.622074i \(0.786290\pi\)
\(510\) 0 0
\(511\) −7.49961e11 −0.486569
\(512\) 0 0
\(513\) −2.98519e11 −0.190302
\(514\) 0 0
\(515\) 1.64371e11 0.102966
\(516\) 0 0
\(517\) 1.19457e12 0.735367
\(518\) 0 0
\(519\) −1.67541e11 −0.101360
\(520\) 0 0
\(521\) 2.63954e12 1.56949 0.784744 0.619820i \(-0.212794\pi\)
0.784744 + 0.619820i \(0.212794\pi\)
\(522\) 0 0
\(523\) 4.55831e11 0.266407 0.133204 0.991089i \(-0.457474\pi\)
0.133204 + 0.991089i \(0.457474\pi\)
\(524\) 0 0
\(525\) 4.84274e10 0.0278211
\(526\) 0 0
\(527\) −4.94814e10 −0.0279444
\(528\) 0 0
\(529\) −1.64066e12 −0.910892
\(530\) 0 0
\(531\) 5.76749e11 0.314820
\(532\) 0 0
\(533\) 2.18230e11 0.117123
\(534\) 0 0
\(535\) −7.36732e11 −0.388792
\(536\) 0 0
\(537\) 1.29639e12 0.672747
\(538\) 0 0
\(539\) 6.72756e11 0.343327
\(540\) 0 0
\(541\) 1.14393e12 0.574133 0.287067 0.957911i \(-0.407320\pi\)
0.287067 + 0.957911i \(0.407320\pi\)
\(542\) 0 0
\(543\) −8.18658e11 −0.404114
\(544\) 0 0
\(545\) −1.39122e12 −0.675481
\(546\) 0 0
\(547\) −8.54220e11 −0.407969 −0.203984 0.978974i \(-0.565389\pi\)
−0.203984 + 0.978974i \(0.565389\pi\)
\(548\) 0 0
\(549\) −7.04573e11 −0.331017
\(550\) 0 0
\(551\) −1.82601e12 −0.843956
\(552\) 0 0
\(553\) 5.10711e11 0.232227
\(554\) 0 0
\(555\) 1.93477e12 0.865587
\(556\) 0 0
\(557\) −1.98459e12 −0.873618 −0.436809 0.899554i \(-0.643891\pi\)
−0.436809 + 0.899554i \(0.643891\pi\)
\(558\) 0 0
\(559\) −1.40957e12 −0.610569
\(560\) 0 0
\(561\) −3.75383e11 −0.160008
\(562\) 0 0
\(563\) −1.38422e11 −0.0580655 −0.0290327 0.999578i \(-0.509243\pi\)
−0.0290327 + 0.999578i \(0.509243\pi\)
\(564\) 0 0
\(565\) 2.40516e12 0.992946
\(566\) 0 0
\(567\) 1.99263e11 0.0809662
\(568\) 0 0
\(569\) 2.40884e12 0.963391 0.481696 0.876339i \(-0.340021\pi\)
0.481696 + 0.876339i \(0.340021\pi\)
\(570\) 0 0
\(571\) 1.02972e12 0.405374 0.202687 0.979244i \(-0.435033\pi\)
0.202687 + 0.979244i \(0.435033\pi\)
\(572\) 0 0
\(573\) 6.15802e11 0.238641
\(574\) 0 0
\(575\) −5.17431e10 −0.0197400
\(576\) 0 0
\(577\) 1.57101e12 0.590047 0.295023 0.955490i \(-0.404673\pi\)
0.295023 + 0.955490i \(0.404673\pi\)
\(578\) 0 0
\(579\) 1.94799e12 0.720333
\(580\) 0 0
\(581\) 1.20479e12 0.438650
\(582\) 0 0
\(583\) 2.01934e11 0.0723936
\(584\) 0 0
\(585\) 4.28970e11 0.151435
\(586\) 0 0
\(587\) 3.36810e12 1.17088 0.585442 0.810714i \(-0.300921\pi\)
0.585442 + 0.810714i \(0.300921\pi\)
\(588\) 0 0
\(589\) 2.13191e11 0.0729878
\(590\) 0 0
\(591\) 2.86896e12 0.967343
\(592\) 0 0
\(593\) 3.52259e12 1.16981 0.584906 0.811101i \(-0.301131\pi\)
0.584906 + 0.811101i \(0.301131\pi\)
\(594\) 0 0
\(595\) −8.15054e11 −0.266600
\(596\) 0 0
\(597\) 1.17459e12 0.378445
\(598\) 0 0
\(599\) 1.57104e12 0.498617 0.249308 0.968424i \(-0.419797\pi\)
0.249308 + 0.968424i \(0.419797\pi\)
\(600\) 0 0
\(601\) 5.03628e12 1.57462 0.787309 0.616559i \(-0.211474\pi\)
0.787309 + 0.616559i \(0.211474\pi\)
\(602\) 0 0
\(603\) 1.28373e12 0.395408
\(604\) 0 0
\(605\) −1.47801e12 −0.448515
\(606\) 0 0
\(607\) −1.56139e11 −0.0466834 −0.0233417 0.999728i \(-0.507431\pi\)
−0.0233417 + 0.999728i \(0.507431\pi\)
\(608\) 0 0
\(609\) 1.21887e12 0.359070
\(610\) 0 0
\(611\) −1.62690e12 −0.472253
\(612\) 0 0
\(613\) 5.67864e12 1.62432 0.812160 0.583434i \(-0.198291\pi\)
0.812160 + 0.583434i \(0.198291\pi\)
\(614\) 0 0
\(615\) −4.93129e11 −0.139003
\(616\) 0 0
\(617\) 2.84876e12 0.791357 0.395678 0.918389i \(-0.370510\pi\)
0.395678 + 0.918389i \(0.370510\pi\)
\(618\) 0 0
\(619\) 3.40171e12 0.931299 0.465650 0.884969i \(-0.345821\pi\)
0.465650 + 0.884969i \(0.345821\pi\)
\(620\) 0 0
\(621\) −2.12906e11 −0.0574482
\(622\) 0 0
\(623\) 6.67598e11 0.177549
\(624\) 0 0
\(625\) −3.54576e12 −0.929499
\(626\) 0 0
\(627\) 1.61734e12 0.417925
\(628\) 0 0
\(629\) 2.30582e12 0.587352
\(630\) 0 0
\(631\) −3.11154e12 −0.781347 −0.390673 0.920529i \(-0.627758\pi\)
−0.390673 + 0.920529i \(0.627758\pi\)
\(632\) 0 0
\(633\) 1.80276e12 0.446294
\(634\) 0 0
\(635\) 3.04830e12 0.744006
\(636\) 0 0
\(637\) −9.16233e11 −0.220485
\(638\) 0 0
\(639\) −3.21040e11 −0.0761738
\(640\) 0 0
\(641\) 5.65123e11 0.132215 0.0661077 0.997812i \(-0.478942\pi\)
0.0661077 + 0.997812i \(0.478942\pi\)
\(642\) 0 0
\(643\) −6.39312e12 −1.47490 −0.737451 0.675401i \(-0.763971\pi\)
−0.737451 + 0.675401i \(0.763971\pi\)
\(644\) 0 0
\(645\) 3.18518e12 0.724627
\(646\) 0 0
\(647\) −4.53481e12 −1.01740 −0.508698 0.860945i \(-0.669873\pi\)
−0.508698 + 0.860945i \(0.669873\pi\)
\(648\) 0 0
\(649\) −3.12476e12 −0.691377
\(650\) 0 0
\(651\) −1.42306e11 −0.0310534
\(652\) 0 0
\(653\) 3.45675e12 0.743975 0.371987 0.928238i \(-0.378676\pi\)
0.371987 + 0.928238i \(0.378676\pi\)
\(654\) 0 0
\(655\) −7.72945e12 −1.64083
\(656\) 0 0
\(657\) −1.06297e12 −0.222575
\(658\) 0 0
\(659\) 6.26729e12 1.29448 0.647240 0.762286i \(-0.275923\pi\)
0.647240 + 0.762286i \(0.275923\pi\)
\(660\) 0 0
\(661\) 5.54653e12 1.13010 0.565048 0.825058i \(-0.308858\pi\)
0.565048 + 0.825058i \(0.308858\pi\)
\(662\) 0 0
\(663\) 5.11239e11 0.102757
\(664\) 0 0
\(665\) 3.51167e12 0.696331
\(666\) 0 0
\(667\) −1.30232e12 −0.254772
\(668\) 0 0
\(669\) −5.61830e12 −1.08440
\(670\) 0 0
\(671\) 3.81729e12 0.726949
\(672\) 0 0
\(673\) −3.74900e12 −0.704445 −0.352223 0.935916i \(-0.614574\pi\)
−0.352223 + 0.935916i \(0.614574\pi\)
\(674\) 0 0
\(675\) 6.86394e10 0.0127264
\(676\) 0 0
\(677\) 9.07618e12 1.66056 0.830279 0.557348i \(-0.188181\pi\)
0.830279 + 0.557348i \(0.188181\pi\)
\(678\) 0 0
\(679\) 2.59111e12 0.467813
\(680\) 0 0
\(681\) 3.43892e12 0.612718
\(682\) 0 0
\(683\) −4.23293e12 −0.744300 −0.372150 0.928173i \(-0.621379\pi\)
−0.372150 + 0.928173i \(0.621379\pi\)
\(684\) 0 0
\(685\) 4.92013e12 0.853826
\(686\) 0 0
\(687\) 2.07136e12 0.354772
\(688\) 0 0
\(689\) −2.75016e11 −0.0464912
\(690\) 0 0
\(691\) 1.16308e12 0.194071 0.0970354 0.995281i \(-0.469064\pi\)
0.0970354 + 0.995281i \(0.469064\pi\)
\(692\) 0 0
\(693\) −1.07958e12 −0.177810
\(694\) 0 0
\(695\) 2.12433e12 0.345375
\(696\) 0 0
\(697\) −5.87703e11 −0.0943214
\(698\) 0 0
\(699\) −6.01713e12 −0.953328
\(700\) 0 0
\(701\) −9.11768e12 −1.42611 −0.713055 0.701108i \(-0.752689\pi\)
−0.713055 + 0.701108i \(0.752689\pi\)
\(702\) 0 0
\(703\) −9.93466e12 −1.53410
\(704\) 0 0
\(705\) 3.67626e12 0.560473
\(706\) 0 0
\(707\) 4.25476e12 0.640453
\(708\) 0 0
\(709\) 1.13764e13 1.69082 0.845411 0.534117i \(-0.179356\pi\)
0.845411 + 0.534117i \(0.179356\pi\)
\(710\) 0 0
\(711\) 7.23866e11 0.106230
\(712\) 0 0
\(713\) 1.52050e11 0.0220334
\(714\) 0 0
\(715\) −2.32411e12 −0.332567
\(716\) 0 0
\(717\) −4.05608e12 −0.573152
\(718\) 0 0
\(719\) 2.03795e12 0.284389 0.142194 0.989839i \(-0.454584\pi\)
0.142194 + 0.989839i \(0.454584\pi\)
\(720\) 0 0
\(721\) 5.63382e11 0.0776416
\(722\) 0 0
\(723\) 2.16487e11 0.0294652
\(724\) 0 0
\(725\) 4.19859e11 0.0564394
\(726\) 0 0
\(727\) −1.32610e13 −1.76064 −0.880320 0.474381i \(-0.842672\pi\)
−0.880320 + 0.474381i \(0.842672\pi\)
\(728\) 0 0
\(729\) 2.82430e11 0.0370370
\(730\) 0 0
\(731\) 3.79604e12 0.491702
\(732\) 0 0
\(733\) −1.06385e13 −1.36117 −0.680587 0.732667i \(-0.738275\pi\)
−0.680587 + 0.732667i \(0.738275\pi\)
\(734\) 0 0
\(735\) 2.07039e12 0.261673
\(736\) 0 0
\(737\) −6.95509e12 −0.868359
\(738\) 0 0
\(739\) −1.85609e12 −0.228928 −0.114464 0.993427i \(-0.536515\pi\)
−0.114464 + 0.993427i \(0.536515\pi\)
\(740\) 0 0
\(741\) −2.20267e12 −0.268391
\(742\) 0 0
\(743\) −3.97256e12 −0.478212 −0.239106 0.970993i \(-0.576854\pi\)
−0.239106 + 0.970993i \(0.576854\pi\)
\(744\) 0 0
\(745\) −8.38389e12 −0.997109
\(746\) 0 0
\(747\) 1.70763e12 0.200656
\(748\) 0 0
\(749\) −2.52516e12 −0.293170
\(750\) 0 0
\(751\) −6.16552e12 −0.707278 −0.353639 0.935382i \(-0.615056\pi\)
−0.353639 + 0.935382i \(0.615056\pi\)
\(752\) 0 0
\(753\) 1.60290e12 0.181690
\(754\) 0 0
\(755\) 2.18384e11 0.0244602
\(756\) 0 0
\(757\) −1.04042e13 −1.15154 −0.575768 0.817613i \(-0.695297\pi\)
−0.575768 + 0.817613i \(0.695297\pi\)
\(758\) 0 0
\(759\) 1.15350e12 0.126162
\(760\) 0 0
\(761\) 1.30033e13 1.40547 0.702737 0.711450i \(-0.251961\pi\)
0.702737 + 0.711450i \(0.251961\pi\)
\(762\) 0 0
\(763\) −4.76844e12 −0.509349
\(764\) 0 0
\(765\) −1.15523e12 −0.121953
\(766\) 0 0
\(767\) 4.25564e12 0.444003
\(768\) 0 0
\(769\) −1.32065e13 −1.36182 −0.680909 0.732368i \(-0.738415\pi\)
−0.680909 + 0.732368i \(0.738415\pi\)
\(770\) 0 0
\(771\) 7.41721e12 0.755954
\(772\) 0 0
\(773\) −5.64488e11 −0.0568653 −0.0284326 0.999596i \(-0.509052\pi\)
−0.0284326 + 0.999596i \(0.509052\pi\)
\(774\) 0 0
\(775\) −4.90196e10 −0.00488104
\(776\) 0 0
\(777\) 6.63144e12 0.652699
\(778\) 0 0
\(779\) 2.53212e12 0.246358
\(780\) 0 0
\(781\) 1.73936e12 0.167286
\(782\) 0 0
\(783\) 1.72759e12 0.164252
\(784\) 0 0
\(785\) −1.34205e13 −1.26141
\(786\) 0 0
\(787\) −1.90473e13 −1.76989 −0.884946 0.465694i \(-0.845805\pi\)
−0.884946 + 0.465694i \(0.845805\pi\)
\(788\) 0 0
\(789\) −4.40473e12 −0.404644
\(790\) 0 0
\(791\) 8.24370e12 0.748735
\(792\) 0 0
\(793\) −5.19881e12 −0.466847
\(794\) 0 0
\(795\) 6.21445e11 0.0551761
\(796\) 0 0
\(797\) 1.11890e13 0.982270 0.491135 0.871084i \(-0.336582\pi\)
0.491135 + 0.871084i \(0.336582\pi\)
\(798\) 0 0
\(799\) 4.38130e12 0.380314
\(800\) 0 0
\(801\) 9.46233e11 0.0812179
\(802\) 0 0
\(803\) 5.75905e12 0.488799
\(804\) 0 0
\(805\) 2.50455e12 0.210207
\(806\) 0 0
\(807\) −2.80442e10 −0.00232762
\(808\) 0 0
\(809\) 1.37095e12 0.112526 0.0562629 0.998416i \(-0.482082\pi\)
0.0562629 + 0.998416i \(0.482082\pi\)
\(810\) 0 0
\(811\) −6.16928e12 −0.500772 −0.250386 0.968146i \(-0.580558\pi\)
−0.250386 + 0.968146i \(0.580558\pi\)
\(812\) 0 0
\(813\) −8.34532e12 −0.669939
\(814\) 0 0
\(815\) 2.37803e12 0.188803
\(816\) 0 0
\(817\) −1.63553e13 −1.28428
\(818\) 0 0
\(819\) 1.47030e12 0.114190
\(820\) 0 0
\(821\) −1.77345e13 −1.36231 −0.681153 0.732141i \(-0.738521\pi\)
−0.681153 + 0.732141i \(0.738521\pi\)
\(822\) 0 0
\(823\) 3.20099e12 0.243212 0.121606 0.992578i \(-0.461196\pi\)
0.121606 + 0.992578i \(0.461196\pi\)
\(824\) 0 0
\(825\) −3.71880e11 −0.0279486
\(826\) 0 0
\(827\) 1.27493e13 0.947787 0.473894 0.880582i \(-0.342848\pi\)
0.473894 + 0.880582i \(0.342848\pi\)
\(828\) 0 0
\(829\) 8.80649e12 0.647601 0.323801 0.946125i \(-0.395039\pi\)
0.323801 + 0.946125i \(0.395039\pi\)
\(830\) 0 0
\(831\) 2.44558e12 0.177901
\(832\) 0 0
\(833\) 2.46745e12 0.177560
\(834\) 0 0
\(835\) 1.04127e13 0.741264
\(836\) 0 0
\(837\) −2.01700e11 −0.0142050
\(838\) 0 0
\(839\) 1.84537e13 1.28574 0.642872 0.765974i \(-0.277743\pi\)
0.642872 + 0.765974i \(0.277743\pi\)
\(840\) 0 0
\(841\) −3.93972e12 −0.271571
\(842\) 0 0
\(843\) −2.19077e11 −0.0149408
\(844\) 0 0
\(845\) −1.11566e13 −0.752796
\(846\) 0 0
\(847\) −5.06588e12 −0.338205
\(848\) 0 0
\(849\) 1.37672e13 0.909410
\(850\) 0 0
\(851\) −7.08548e12 −0.463112
\(852\) 0 0
\(853\) 1.83968e13 1.18980 0.594898 0.803801i \(-0.297192\pi\)
0.594898 + 0.803801i \(0.297192\pi\)
\(854\) 0 0
\(855\) 4.97733e12 0.318529
\(856\) 0 0
\(857\) −6.78324e12 −0.429560 −0.214780 0.976662i \(-0.568903\pi\)
−0.214780 + 0.976662i \(0.568903\pi\)
\(858\) 0 0
\(859\) −2.47177e13 −1.54895 −0.774477 0.632602i \(-0.781987\pi\)
−0.774477 + 0.632602i \(0.781987\pi\)
\(860\) 0 0
\(861\) −1.69020e12 −0.104815
\(862\) 0 0
\(863\) 2.85222e13 1.75039 0.875193 0.483773i \(-0.160734\pi\)
0.875193 + 0.483773i \(0.160734\pi\)
\(864\) 0 0
\(865\) 2.79348e12 0.169657
\(866\) 0 0
\(867\) 8.22883e12 0.494598
\(868\) 0 0
\(869\) −3.92182e12 −0.233291
\(870\) 0 0
\(871\) 9.47221e12 0.557660
\(872\) 0 0
\(873\) 3.67256e12 0.213996
\(874\) 0 0
\(875\) −1.30177e13 −0.750757
\(876\) 0 0
\(877\) 4.00775e12 0.228772 0.114386 0.993436i \(-0.463510\pi\)
0.114386 + 0.993436i \(0.463510\pi\)
\(878\) 0 0
\(879\) 6.14646e12 0.347276
\(880\) 0 0
\(881\) −1.66457e13 −0.930914 −0.465457 0.885070i \(-0.654110\pi\)
−0.465457 + 0.885070i \(0.654110\pi\)
\(882\) 0 0
\(883\) −3.02477e13 −1.67444 −0.837218 0.546869i \(-0.815819\pi\)
−0.837218 + 0.546869i \(0.815819\pi\)
\(884\) 0 0
\(885\) −9.61636e12 −0.526946
\(886\) 0 0
\(887\) 1.79172e13 0.971883 0.485941 0.873991i \(-0.338477\pi\)
0.485941 + 0.873991i \(0.338477\pi\)
\(888\) 0 0
\(889\) 1.04481e13 0.561021
\(890\) 0 0
\(891\) −1.53017e12 −0.0813373
\(892\) 0 0
\(893\) −1.88769e13 −0.993341
\(894\) 0 0
\(895\) −2.16152e13 −1.12605
\(896\) 0 0
\(897\) −1.57097e12 −0.0810216
\(898\) 0 0
\(899\) −1.23378e12 −0.0629967
\(900\) 0 0
\(901\) 7.40628e11 0.0374402
\(902\) 0 0
\(903\) 1.09172e13 0.546408
\(904\) 0 0
\(905\) 1.36498e13 0.676406
\(906\) 0 0
\(907\) −2.41416e13 −1.18450 −0.592248 0.805756i \(-0.701759\pi\)
−0.592248 + 0.805756i \(0.701759\pi\)
\(908\) 0 0
\(909\) 6.03056e12 0.292968
\(910\) 0 0
\(911\) 1.75577e12 0.0844568 0.0422284 0.999108i \(-0.486554\pi\)
0.0422284 + 0.999108i \(0.486554\pi\)
\(912\) 0 0
\(913\) −9.25174e12 −0.440661
\(914\) 0 0
\(915\) 1.17476e13 0.554057
\(916\) 0 0
\(917\) −2.64928e13 −1.23727
\(918\) 0 0
\(919\) 1.49135e13 0.689701 0.344851 0.938658i \(-0.387930\pi\)
0.344851 + 0.938658i \(0.387930\pi\)
\(920\) 0 0
\(921\) −1.33062e13 −0.609376
\(922\) 0 0
\(923\) −2.36885e12 −0.107431
\(924\) 0 0
\(925\) 2.28430e12 0.102593
\(926\) 0 0
\(927\) 7.98520e11 0.0355163
\(928\) 0 0
\(929\) 1.18835e13 0.523450 0.261725 0.965143i \(-0.415709\pi\)
0.261725 + 0.965143i \(0.415709\pi\)
\(930\) 0 0
\(931\) −1.06310e13 −0.463769
\(932\) 0 0
\(933\) −1.91677e13 −0.828139
\(934\) 0 0
\(935\) 6.25891e12 0.267822
\(936\) 0 0
\(937\) −1.47326e13 −0.624384 −0.312192 0.950019i \(-0.601063\pi\)
−0.312192 + 0.950019i \(0.601063\pi\)
\(938\) 0 0
\(939\) 1.64543e13 0.690693
\(940\) 0 0
\(941\) −1.80614e13 −0.750927 −0.375463 0.926837i \(-0.622516\pi\)
−0.375463 + 0.926837i \(0.622516\pi\)
\(942\) 0 0
\(943\) 1.80593e12 0.0743701
\(944\) 0 0
\(945\) −3.32239e12 −0.135521
\(946\) 0 0
\(947\) −4.85911e12 −0.196328 −0.0981639 0.995170i \(-0.531297\pi\)
−0.0981639 + 0.995170i \(0.531297\pi\)
\(948\) 0 0
\(949\) −7.84330e12 −0.313907
\(950\) 0 0
\(951\) 2.25233e13 0.892934
\(952\) 0 0
\(953\) −9.86205e12 −0.387301 −0.193651 0.981071i \(-0.562033\pi\)
−0.193651 + 0.981071i \(0.562033\pi\)
\(954\) 0 0
\(955\) −1.02675e13 −0.399438
\(956\) 0 0
\(957\) −9.35985e12 −0.360716
\(958\) 0 0
\(959\) 1.68638e13 0.643831
\(960\) 0 0
\(961\) −2.62956e13 −0.994552
\(962\) 0 0
\(963\) −3.57908e12 −0.134107
\(964\) 0 0
\(965\) −3.24796e13 −1.20569
\(966\) 0 0
\(967\) 1.32058e12 0.0485676 0.0242838 0.999705i \(-0.492269\pi\)
0.0242838 + 0.999705i \(0.492269\pi\)
\(968\) 0 0
\(969\) 5.93189e12 0.216141
\(970\) 0 0
\(971\) −1.01689e13 −0.367103 −0.183551 0.983010i \(-0.558759\pi\)
−0.183551 + 0.983010i \(0.558759\pi\)
\(972\) 0 0
\(973\) 7.28116e12 0.260431
\(974\) 0 0
\(975\) 5.06467e11 0.0179486
\(976\) 0 0
\(977\) 5.13095e13 1.80166 0.900829 0.434173i \(-0.142959\pi\)
0.900829 + 0.434173i \(0.142959\pi\)
\(978\) 0 0
\(979\) −5.12658e12 −0.178363
\(980\) 0 0
\(981\) −6.75863e12 −0.232996
\(982\) 0 0
\(983\) −3.90789e13 −1.33491 −0.667455 0.744650i \(-0.732616\pi\)
−0.667455 + 0.744650i \(0.732616\pi\)
\(984\) 0 0
\(985\) −4.78352e13 −1.61914
\(986\) 0 0
\(987\) 1.26004e13 0.422627
\(988\) 0 0
\(989\) −1.16647e13 −0.387695
\(990\) 0 0
\(991\) 7.00140e11 0.0230597 0.0115298 0.999934i \(-0.496330\pi\)
0.0115298 + 0.999934i \(0.496330\pi\)
\(992\) 0 0
\(993\) −8.77814e11 −0.0286504
\(994\) 0 0
\(995\) −1.95844e13 −0.633443
\(996\) 0 0
\(997\) 4.06223e13 1.30208 0.651038 0.759045i \(-0.274334\pi\)
0.651038 + 0.759045i \(0.274334\pi\)
\(998\) 0 0
\(999\) 9.39919e12 0.298570
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.10.a.a.1.4 4
4.3 odd 2 384.10.a.e.1.4 yes 4
8.3 odd 2 384.10.a.d.1.1 yes 4
8.5 even 2 384.10.a.h.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.10.a.a.1.4 4 1.1 even 1 trivial
384.10.a.d.1.1 yes 4 8.3 odd 2
384.10.a.e.1.4 yes 4 4.3 odd 2
384.10.a.h.1.1 yes 4 8.5 even 2