Properties

Label 384.2.c.a.383.2
Level 384384
Weight 22
Character 384.383
Analytic conductor 3.0663.066
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,2,Mod(383,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.383");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 384=273 384 = 2^{7} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 384.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.066255437623.06625543762
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 383.2
Root 0.618034i0.618034i of defining polynomial
Character χ\chi == 384.383
Dual form 384.2.c.a.383.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.61803+0.618034i)q3+1.23607iq53.23607iq7+(2.236072.00000i)q9+0.763932q11+4.47214q13+(0.7639322.00000i)q15+6.47214iq17+5.23607iq19+(2.00000+5.23607i)q21+6.47214q23+3.47214q25+(2.38197+4.61803i)q279.23607iq29+0.763932iq31+(1.23607+0.472136i)q33+4.00000q350.472136q37+(7.23607+2.76393i)q392.47214iq412.76393iq43+(2.47214+2.76393i)q45+8.00000q473.47214q49+(4.0000010.4721i)q51+1.23607iq53+0.944272iq55+(3.236078.47214i)q57+3.23607q598.47214q61+(6.472147.23607i)q63+5.52786iq653.70820iq67+(10.4721+4.00000i)q6911.4164q712.00000q73+(5.61803+2.14590i)q752.47214iq77+13.7082iq79+(1.000008.94427i)q81+7.23607q838.00000q85+(5.70820+14.9443i)q87+4.00000iq8914.4721iq91+(0.4721361.23607i)q936.47214q958.47214q97+(1.708201.52786i)q99+O(q100)q+(-1.61803 + 0.618034i) q^{3} +1.23607i q^{5} -3.23607i q^{7} +(2.23607 - 2.00000i) q^{9} +0.763932 q^{11} +4.47214 q^{13} +(-0.763932 - 2.00000i) q^{15} +6.47214i q^{17} +5.23607i q^{19} +(2.00000 + 5.23607i) q^{21} +6.47214 q^{23} +3.47214 q^{25} +(-2.38197 + 4.61803i) q^{27} -9.23607i q^{29} +0.763932i q^{31} +(-1.23607 + 0.472136i) q^{33} +4.00000 q^{35} -0.472136 q^{37} +(-7.23607 + 2.76393i) q^{39} -2.47214i q^{41} -2.76393i q^{43} +(2.47214 + 2.76393i) q^{45} +8.00000 q^{47} -3.47214 q^{49} +(-4.00000 - 10.4721i) q^{51} +1.23607i q^{53} +0.944272i q^{55} +(-3.23607 - 8.47214i) q^{57} +3.23607 q^{59} -8.47214 q^{61} +(-6.47214 - 7.23607i) q^{63} +5.52786i q^{65} -3.70820i q^{67} +(-10.4721 + 4.00000i) q^{69} -11.4164 q^{71} -2.00000 q^{73} +(-5.61803 + 2.14590i) q^{75} -2.47214i q^{77} +13.7082i q^{79} +(1.00000 - 8.94427i) q^{81} +7.23607 q^{83} -8.00000 q^{85} +(5.70820 + 14.9443i) q^{87} +4.00000i q^{89} -14.4721i q^{91} +(-0.472136 - 1.23607i) q^{93} -6.47214 q^{95} -8.47214 q^{97} +(1.70820 - 1.52786i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+12q1112q15+8q21+8q234q2514q27+4q33+16q35+16q3720q398q45+32q47+4q4916q514q57+4q5916q61+20q99+O(q100) 4 q - 2 q^{3} + 12 q^{11} - 12 q^{15} + 8 q^{21} + 8 q^{23} - 4 q^{25} - 14 q^{27} + 4 q^{33} + 16 q^{35} + 16 q^{37} - 20 q^{39} - 8 q^{45} + 32 q^{47} + 4 q^{49} - 16 q^{51} - 4 q^{57} + 4 q^{59} - 16 q^{61}+ \cdots - 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/384Z)×\left(\mathbb{Z}/384\mathbb{Z}\right)^\times.

nn 127127 133133 257257
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −1.61803 + 0.618034i −0.934172 + 0.356822i
44 0 0
55 1.23607i 0.552786i 0.961045 + 0.276393i 0.0891392π0.0891392\pi
−0.961045 + 0.276393i 0.910861π0.910861\pi
66 0 0
77 3.23607i 1.22312i −0.791199 0.611559i 0.790543π-0.790543\pi
0.791199 0.611559i 0.209457π-0.209457\pi
88 0 0
99 2.23607 2.00000i 0.745356 0.666667i
1010 0 0
1111 0.763932 0.230334 0.115167 0.993346i 0.463260π-0.463260\pi
0.115167 + 0.993346i 0.463260π0.463260\pi
1212 0 0
1313 4.47214 1.24035 0.620174 0.784465i 0.287062π-0.287062\pi
0.620174 + 0.784465i 0.287062π0.287062\pi
1414 0 0
1515 −0.763932 2.00000i −0.197246 0.516398i
1616 0 0
1717 6.47214i 1.56972i 0.619671 + 0.784862i 0.287266π0.287266\pi
−0.619671 + 0.784862i 0.712734π0.712734\pi
1818 0 0
1919 5.23607i 1.20124i 0.799536 + 0.600618i 0.205079π0.205079\pi
−0.799536 + 0.600618i 0.794921π0.794921\pi
2020 0 0
2121 2.00000 + 5.23607i 0.436436 + 1.14260i
2222 0 0
2323 6.47214 1.34953 0.674767 0.738031i 0.264244π-0.264244\pi
0.674767 + 0.738031i 0.264244π0.264244\pi
2424 0 0
2525 3.47214 0.694427
2626 0 0
2727 −2.38197 + 4.61803i −0.458410 + 0.888741i
2828 0 0
2929 9.23607i 1.71509i −0.514405 0.857547i 0.671987π-0.671987\pi
0.514405 0.857547i 0.328013π-0.328013\pi
3030 0 0
3131 0.763932i 0.137206i 0.997644 + 0.0686031i 0.0218542π0.0218542\pi
−0.997644 + 0.0686031i 0.978146π0.978146\pi
3232 0 0
3333 −1.23607 + 0.472136i −0.215172 + 0.0821883i
3434 0 0
3535 4.00000 0.676123
3636 0 0
3737 −0.472136 −0.0776187 −0.0388093 0.999247i 0.512356π-0.512356\pi
−0.0388093 + 0.999247i 0.512356π0.512356\pi
3838 0 0
3939 −7.23607 + 2.76393i −1.15870 + 0.442583i
4040 0 0
4141 2.47214i 0.386083i −0.981191 0.193041i 0.938165π-0.938165\pi
0.981191 0.193041i 0.0618352π-0.0618352\pi
4242 0 0
4343 2.76393i 0.421496i −0.977540 0.210748i 0.932410π-0.932410\pi
0.977540 0.210748i 0.0675899π-0.0675899\pi
4444 0 0
4545 2.47214 + 2.76393i 0.368524 + 0.412023i
4646 0 0
4747 8.00000 1.16692 0.583460 0.812142i 0.301699π-0.301699\pi
0.583460 + 0.812142i 0.301699π0.301699\pi
4848 0 0
4949 −3.47214 −0.496019
5050 0 0
5151 −4.00000 10.4721i −0.560112 1.46639i
5252 0 0
5353 1.23607i 0.169787i 0.996390 + 0.0848935i 0.0270550π0.0270550\pi
−0.996390 + 0.0848935i 0.972945π0.972945\pi
5454 0 0
5555 0.944272i 0.127326i
5656 0 0
5757 −3.23607 8.47214i −0.428628 1.12216i
5858 0 0
5959 3.23607 0.421300 0.210650 0.977562i 0.432442π-0.432442\pi
0.210650 + 0.977562i 0.432442π0.432442\pi
6060 0 0
6161 −8.47214 −1.08475 −0.542373 0.840138i 0.682474π-0.682474\pi
−0.542373 + 0.840138i 0.682474π0.682474\pi
6262 0 0
6363 −6.47214 7.23607i −0.815412 0.911659i
6464 0 0
6565 5.52786i 0.685647i
6666 0 0
6767 3.70820i 0.453029i −0.974008 0.226515i 0.927267π-0.927267\pi
0.974008 0.226515i 0.0727331π-0.0727331\pi
6868 0 0
6969 −10.4721 + 4.00000i −1.26070 + 0.481543i
7070 0 0
7171 −11.4164 −1.35488 −0.677439 0.735579i 0.736910π-0.736910\pi
−0.677439 + 0.735579i 0.736910π0.736910\pi
7272 0 0
7373 −2.00000 −0.234082 −0.117041 0.993127i 0.537341π-0.537341\pi
−0.117041 + 0.993127i 0.537341π0.537341\pi
7474 0 0
7575 −5.61803 + 2.14590i −0.648715 + 0.247787i
7676 0 0
7777 2.47214i 0.281726i
7878 0 0
7979 13.7082i 1.54229i 0.636657 + 0.771147i 0.280317π0.280317\pi
−0.636657 + 0.771147i 0.719683π0.719683\pi
8080 0 0
8181 1.00000 8.94427i 0.111111 0.993808i
8282 0 0
8383 7.23607 0.794262 0.397131 0.917762i 0.370006π-0.370006\pi
0.397131 + 0.917762i 0.370006π0.370006\pi
8484 0 0
8585 −8.00000 −0.867722
8686 0 0
8787 5.70820 + 14.9443i 0.611984 + 1.60219i
8888 0 0
8989 4.00000i 0.423999i 0.977270 + 0.212000i 0.0679975π0.0679975\pi
−0.977270 + 0.212000i 0.932002π0.932002\pi
9090 0 0
9191 14.4721i 1.51709i
9292 0 0
9393 −0.472136 1.23607i −0.0489582 0.128174i
9494 0 0
9595 −6.47214 −0.664027
9696 0 0
9797 −8.47214 −0.860215 −0.430108 0.902778i 0.641524π-0.641524\pi
−0.430108 + 0.902778i 0.641524π0.641524\pi
9898 0 0
9999 1.70820 1.52786i 0.171681 0.153556i
100100 0 0
101101 11.7082i 1.16501i −0.812827 0.582505i 0.802073π-0.802073\pi
0.812827 0.582505i 0.197927π-0.197927\pi
102102 0 0
103103 8.18034i 0.806033i −0.915193 0.403016i 0.867962π-0.867962\pi
0.915193 0.403016i 0.132038π-0.132038\pi
104104 0 0
105105 −6.47214 + 2.47214i −0.631616 + 0.241256i
106106 0 0
107107 8.18034 0.790823 0.395412 0.918504i 0.370602π-0.370602\pi
0.395412 + 0.918504i 0.370602π0.370602\pi
108108 0 0
109109 −0.472136 −0.0452224 −0.0226112 0.999744i 0.507198π-0.507198\pi
−0.0226112 + 0.999744i 0.507198π0.507198\pi
110110 0 0
111111 0.763932 0.291796i 0.0725092 0.0276961i
112112 0 0
113113 8.00000i 0.752577i −0.926503 0.376288i 0.877200π-0.877200\pi
0.926503 0.376288i 0.122800π-0.122800\pi
114114 0 0
115115 8.00000i 0.746004i
116116 0 0
117117 10.0000 8.94427i 0.924500 0.826898i
118118 0 0
119119 20.9443 1.91996
120120 0 0
121121 −10.4164 −0.946946
122122 0 0
123123 1.52786 + 4.00000i 0.137763 + 0.360668i
124124 0 0
125125 10.4721i 0.936656i
126126 0 0
127127 8.76393i 0.777673i 0.921307 + 0.388837i 0.127123π0.127123\pi
−0.921307 + 0.388837i 0.872877π0.872877\pi
128128 0 0
129129 1.70820 + 4.47214i 0.150399 + 0.393750i
130130 0 0
131131 −11.2361 −0.981700 −0.490850 0.871244i 0.663314π-0.663314\pi
−0.490850 + 0.871244i 0.663314π0.663314\pi
132132 0 0
133133 16.9443 1.46925
134134 0 0
135135 −5.70820 2.94427i −0.491284 0.253403i
136136 0 0
137137 10.4721i 0.894695i 0.894360 + 0.447347i 0.147631π0.147631\pi
−0.894360 + 0.447347i 0.852369π0.852369\pi
138138 0 0
139139 3.70820i 0.314526i −0.987557 0.157263i 0.949733π-0.949733\pi
0.987557 0.157263i 0.0502670π-0.0502670\pi
140140 0 0
141141 −12.9443 + 4.94427i −1.09010 + 0.416383i
142142 0 0
143143 3.41641 0.285694
144144 0 0
145145 11.4164 0.948081
146146 0 0
147147 5.61803 2.14590i 0.463368 0.176991i
148148 0 0
149149 3.70820i 0.303788i −0.988397 0.151894i 0.951463π-0.951463\pi
0.988397 0.151894i 0.0485372π-0.0485372\pi
150150 0 0
151151 6.29180i 0.512019i −0.966674 0.256010i 0.917592π-0.917592\pi
0.966674 0.256010i 0.0824079π-0.0824079\pi
152152 0 0
153153 12.9443 + 14.4721i 1.04648 + 1.17000i
154154 0 0
155155 −0.944272 −0.0758457
156156 0 0
157157 4.47214 0.356915 0.178458 0.983948i 0.442889π-0.442889\pi
0.178458 + 0.983948i 0.442889π0.442889\pi
158158 0 0
159159 −0.763932 2.00000i −0.0605838 0.158610i
160160 0 0
161161 20.9443i 1.65064i
162162 0 0
163163 18.1803i 1.42399i 0.702182 + 0.711997i 0.252209π0.252209\pi
−0.702182 + 0.711997i 0.747791π0.747791\pi
164164 0 0
165165 −0.583592 1.52786i −0.0454326 0.118944i
166166 0 0
167167 −22.4721 −1.73895 −0.869473 0.493980i 0.835541π-0.835541\pi
−0.869473 + 0.493980i 0.835541π0.835541\pi
168168 0 0
169169 7.00000 0.538462
170170 0 0
171171 10.4721 + 11.7082i 0.800824 + 0.895349i
172172 0 0
173173 8.65248i 0.657836i 0.944359 + 0.328918i 0.106684π0.106684\pi
−0.944359 + 0.328918i 0.893316π0.893316\pi
174174 0 0
175175 11.2361i 0.849367i
176176 0 0
177177 −5.23607 + 2.00000i −0.393567 + 0.150329i
178178 0 0
179179 −16.1803 −1.20938 −0.604688 0.796463i 0.706702π-0.706702\pi
−0.604688 + 0.796463i 0.706702π0.706702\pi
180180 0 0
181181 −11.5279 −0.856859 −0.428430 0.903575i 0.640933π-0.640933\pi
−0.428430 + 0.903575i 0.640933π0.640933\pi
182182 0 0
183183 13.7082 5.23607i 1.01334 0.387061i
184184 0 0
185185 0.583592i 0.0429065i
186186 0 0
187187 4.94427i 0.361561i
188188 0 0
189189 14.9443 + 7.70820i 1.08704 + 0.560689i
190190 0 0
191191 −4.94427 −0.357755 −0.178877 0.983871i 0.557247π-0.557247\pi
−0.178877 + 0.983871i 0.557247π0.557247\pi
192192 0 0
193193 23.8885 1.71954 0.859768 0.510686i 0.170608π-0.170608\pi
0.859768 + 0.510686i 0.170608π0.170608\pi
194194 0 0
195195 −3.41641 8.94427i −0.244654 0.640513i
196196 0 0
197197 9.23607i 0.658043i 0.944323 + 0.329021i 0.106719π0.106719\pi
−0.944323 + 0.329021i 0.893281π0.893281\pi
198198 0 0
199199 16.1803i 1.14699i −0.819208 0.573497i 0.805586π-0.805586\pi
0.819208 0.573497i 0.194414π-0.194414\pi
200200 0 0
201201 2.29180 + 6.00000i 0.161651 + 0.423207i
202202 0 0
203203 −29.8885 −2.09776
204204 0 0
205205 3.05573 0.213421
206206 0 0
207207 14.4721 12.9443i 1.00588 0.899689i
208208 0 0
209209 4.00000i 0.276686i
210210 0 0
211211 6.76393i 0.465648i −0.972519 0.232824i 0.925203π-0.925203\pi
0.972519 0.232824i 0.0747967π-0.0747967\pi
212212 0 0
213213 18.4721 7.05573i 1.26569 0.483451i
214214 0 0
215215 3.41641 0.232997
216216 0 0
217217 2.47214 0.167820
218218 0 0
219219 3.23607 1.23607i 0.218673 0.0835257i
220220 0 0
221221 28.9443i 1.94700i
222222 0 0
223223 12.1803i 0.815656i −0.913059 0.407828i 0.866286π-0.866286\pi
0.913059 0.407828i 0.133714π-0.133714\pi
224224 0 0
225225 7.76393 6.94427i 0.517595 0.462951i
226226 0 0
227227 20.1803 1.33942 0.669708 0.742624i 0.266419π-0.266419\pi
0.669708 + 0.742624i 0.266419π0.266419\pi
228228 0 0
229229 20.4721 1.35284 0.676418 0.736518i 0.263531π-0.263531\pi
0.676418 + 0.736518i 0.263531π0.263531\pi
230230 0 0
231231 1.52786 + 4.00000i 0.100526 + 0.263181i
232232 0 0
233233 7.05573i 0.462236i −0.972926 0.231118i 0.925762π-0.925762\pi
0.972926 0.231118i 0.0742384π-0.0742384\pi
234234 0 0
235235 9.88854i 0.645057i
236236 0 0
237237 −8.47214 22.1803i −0.550324 1.44077i
238238 0 0
239239 −8.00000 −0.517477 −0.258738 0.965947i 0.583307π-0.583307\pi
−0.258738 + 0.965947i 0.583307π0.583307\pi
240240 0 0
241241 −2.00000 −0.128831 −0.0644157 0.997923i 0.520518π-0.520518\pi
−0.0644157 + 0.997923i 0.520518π0.520518\pi
242242 0 0
243243 3.90983 + 15.0902i 0.250816 + 0.968035i
244244 0 0
245245 4.29180i 0.274193i
246246 0 0
247247 23.4164i 1.48995i
248248 0 0
249249 −11.7082 + 4.47214i −0.741977 + 0.283410i
250250 0 0
251251 −10.2918 −0.649612 −0.324806 0.945781i 0.605299π-0.605299\pi
−0.324806 + 0.945781i 0.605299π0.605299\pi
252252 0 0
253253 4.94427 0.310844
254254 0 0
255255 12.9443 4.94427i 0.810602 0.309622i
256256 0 0
257257 3.05573i 0.190611i −0.995448 0.0953055i 0.969617π-0.969617\pi
0.995448 0.0953055i 0.0303828π-0.0303828\pi
258258 0 0
259259 1.52786i 0.0949369i
260260 0 0
261261 −18.4721 20.6525i −1.14340 1.27836i
262262 0 0
263263 −1.52786 −0.0942121 −0.0471061 0.998890i 0.515000π-0.515000\pi
−0.0471061 + 0.998890i 0.515000π0.515000\pi
264264 0 0
265265 −1.52786 −0.0938559
266266 0 0
267267 −2.47214 6.47214i −0.151292 0.396088i
268268 0 0
269269 6.18034i 0.376822i −0.982090 0.188411i 0.939666π-0.939666\pi
0.982090 0.188411i 0.0603337π-0.0603337\pi
270270 0 0
271271 13.7082i 0.832714i 0.909201 + 0.416357i 0.136693π0.136693\pi
−0.909201 + 0.416357i 0.863307π0.863307\pi
272272 0 0
273273 8.94427 + 23.4164i 0.541332 + 1.41723i
274274 0 0
275275 2.65248 0.159950
276276 0 0
277277 −16.4721 −0.989715 −0.494857 0.868974i 0.664780π-0.664780\pi
−0.494857 + 0.868974i 0.664780π0.664780\pi
278278 0 0
279279 1.52786 + 1.70820i 0.0914708 + 0.102267i
280280 0 0
281281 7.05573i 0.420909i 0.977604 + 0.210455i 0.0674945π0.0674945\pi
−0.977604 + 0.210455i 0.932506π0.932506\pi
282282 0 0
283283 25.2361i 1.50013i 0.661365 + 0.750064i 0.269977π0.269977\pi
−0.661365 + 0.750064i 0.730023π0.730023\pi
284284 0 0
285285 10.4721 4.00000i 0.620316 0.236940i
286286 0 0
287287 −8.00000 −0.472225
288288 0 0
289289 −24.8885 −1.46403
290290 0 0
291291 13.7082 5.23607i 0.803589 0.306944i
292292 0 0
293293 25.2361i 1.47431i 0.675725 + 0.737153i 0.263831π0.263831\pi
−0.675725 + 0.737153i 0.736169π0.736169\pi
294294 0 0
295295 4.00000i 0.232889i
296296 0 0
297297 −1.81966 + 3.52786i −0.105587 + 0.204707i
298298 0 0
299299 28.9443 1.67389
300300 0 0
301301 −8.94427 −0.515539
302302 0 0
303303 7.23607 + 18.9443i 0.415701 + 1.08832i
304304 0 0
305305 10.4721i 0.599633i
306306 0 0
307307 21.5967i 1.23259i −0.787515 0.616296i 0.788633π-0.788633\pi
0.787515 0.616296i 0.211367π-0.211367\pi
308308 0 0
309309 5.05573 + 13.2361i 0.287610 + 0.752974i
310310 0 0
311311 −14.4721 −0.820640 −0.410320 0.911942i 0.634583π-0.634583\pi
−0.410320 + 0.911942i 0.634583π0.634583\pi
312312 0 0
313313 8.47214 0.478873 0.239437 0.970912i 0.423037π-0.423037\pi
0.239437 + 0.970912i 0.423037π0.423037\pi
314314 0 0
315315 8.94427 8.00000i 0.503953 0.450749i
316316 0 0
317317 27.1246i 1.52347i −0.647889 0.761735i 0.724348π-0.724348\pi
0.647889 0.761735i 0.275652π-0.275652\pi
318318 0 0
319319 7.05573i 0.395045i
320320 0 0
321321 −13.2361 + 5.05573i −0.738765 + 0.282183i
322322 0 0
323323 −33.8885 −1.88561
324324 0 0
325325 15.5279 0.861331
326326 0 0
327327 0.763932 0.291796i 0.0422455 0.0161364i
328328 0 0
329329 25.8885i 1.42728i
330330 0 0
331331 34.5410i 1.89855i −0.314453 0.949273i 0.601821π-0.601821\pi
0.314453 0.949273i 0.398179π-0.398179\pi
332332 0 0
333333 −1.05573 + 0.944272i −0.0578535 + 0.0517458i
334334 0 0
335335 4.58359 0.250428
336336 0 0
337337 −22.3607 −1.21806 −0.609032 0.793146i 0.708442π-0.708442\pi
−0.609032 + 0.793146i 0.708442π0.708442\pi
338338 0 0
339339 4.94427 + 12.9443i 0.268536 + 0.703036i
340340 0 0
341341 0.583592i 0.0316033i
342342 0 0
343343 11.4164i 0.616428i
344344 0 0
345345 −4.94427 12.9443i −0.266191 0.696896i
346346 0 0
347347 −10.2918 −0.552493 −0.276246 0.961087i 0.589091π-0.589091\pi
−0.276246 + 0.961087i 0.589091π0.589091\pi
348348 0 0
349349 −19.5279 −1.04530 −0.522651 0.852547i 0.675057π-0.675057\pi
−0.522651 + 0.852547i 0.675057π0.675057\pi
350350 0 0
351351 −10.6525 + 20.6525i −0.568587 + 1.10235i
352352 0 0
353353 25.8885i 1.37791i 0.724805 + 0.688954i 0.241930π0.241930\pi
−0.724805 + 0.688954i 0.758070π0.758070\pi
354354 0 0
355355 14.1115i 0.748958i
356356 0 0
357357 −33.8885 + 12.9443i −1.79357 + 0.685084i
358358 0 0
359359 4.58359 0.241913 0.120956 0.992658i 0.461404π-0.461404\pi
0.120956 + 0.992658i 0.461404π0.461404\pi
360360 0 0
361361 −8.41641 −0.442969
362362 0 0
363363 16.8541 6.43769i 0.884611 0.337891i
364364 0 0
365365 2.47214i 0.129398i
366366 0 0
367367 0.763932i 0.0398769i 0.999801 + 0.0199385i 0.00634703π0.00634703\pi
−0.999801 + 0.0199385i 0.993653π0.993653\pi
368368 0 0
369369 −4.94427 5.52786i −0.257389 0.287769i
370370 0 0
371371 4.00000 0.207670
372372 0 0
373373 −29.4164 −1.52312 −0.761562 0.648092i 0.775567π-0.775567\pi
−0.761562 + 0.648092i 0.775567π0.775567\pi
374374 0 0
375375 −6.47214 16.9443i −0.334220 0.874998i
376376 0 0
377377 41.3050i 2.12731i
378378 0 0
379379 20.6525i 1.06085i −0.847733 0.530423i 0.822033π-0.822033\pi
0.847733 0.530423i 0.177967π-0.177967\pi
380380 0 0
381381 −5.41641 14.1803i −0.277491 0.726481i
382382 0 0
383383 −11.0557 −0.564921 −0.282461 0.959279i 0.591151π-0.591151\pi
−0.282461 + 0.959279i 0.591151π0.591151\pi
384384 0 0
385385 3.05573 0.155734
386386 0 0
387387 −5.52786 6.18034i −0.280997 0.314164i
388388 0 0
389389 9.81966i 0.497877i −0.968519 0.248938i 0.919918π-0.919918\pi
0.968519 0.248938i 0.0800816π-0.0800816\pi
390390 0 0
391391 41.8885i 2.11839i
392392 0 0
393393 18.1803 6.94427i 0.917077 0.350292i
394394 0 0
395395 −16.9443 −0.852559
396396 0 0
397397 9.41641 0.472596 0.236298 0.971681i 0.424066π-0.424066\pi
0.236298 + 0.971681i 0.424066π0.424066\pi
398398 0 0
399399 −27.4164 + 10.4721i −1.37254 + 0.524263i
400400 0 0
401401 16.3607i 0.817013i −0.912755 0.408507i 0.866050π-0.866050\pi
0.912755 0.408507i 0.133950π-0.133950\pi
402402 0 0
403403 3.41641i 0.170183i
404404 0 0
405405 11.0557 + 1.23607i 0.549364 + 0.0614207i
406406 0 0
407407 −0.360680 −0.0178782
408408 0 0
409409 3.88854 0.192276 0.0961381 0.995368i 0.469351π-0.469351\pi
0.0961381 + 0.995368i 0.469351π0.469351\pi
410410 0 0
411411 −6.47214 16.9443i −0.319247 0.835799i
412412 0 0
413413 10.4721i 0.515300i
414414 0 0
415415 8.94427i 0.439057i
416416 0 0
417417 2.29180 + 6.00000i 0.112230 + 0.293821i
418418 0 0
419419 12.1803 0.595049 0.297524 0.954714i 0.403839π-0.403839\pi
0.297524 + 0.954714i 0.403839π0.403839\pi
420420 0 0
421421 −5.41641 −0.263980 −0.131990 0.991251i 0.542137π-0.542137\pi
−0.131990 + 0.991251i 0.542137π0.542137\pi
422422 0 0
423423 17.8885 16.0000i 0.869771 0.777947i
424424 0 0
425425 22.4721i 1.09006i
426426 0 0
427427 27.4164i 1.32677i
428428 0 0
429429 −5.52786 + 2.11146i −0.266888 + 0.101942i
430430 0 0
431431 −8.00000 −0.385346 −0.192673 0.981263i 0.561716π-0.561716\pi
−0.192673 + 0.981263i 0.561716π0.561716\pi
432432 0 0
433433 7.52786 0.361766 0.180883 0.983505i 0.442104π-0.442104\pi
0.180883 + 0.983505i 0.442104π0.442104\pi
434434 0 0
435435 −18.4721 + 7.05573i −0.885671 + 0.338296i
436436 0 0
437437 33.8885i 1.62111i
438438 0 0
439439 0.180340i 0.00860715i −0.999991 0.00430358i 0.998630π-0.998630\pi
0.999991 0.00430358i 0.00136988π-0.00136988\pi
440440 0 0
441441 −7.76393 + 6.94427i −0.369711 + 0.330680i
442442 0 0
443443 29.7082 1.41148 0.705740 0.708471i 0.250615π-0.250615\pi
0.705740 + 0.708471i 0.250615π0.250615\pi
444444 0 0
445445 −4.94427 −0.234381
446446 0 0
447447 2.29180 + 6.00000i 0.108398 + 0.283790i
448448 0 0
449449 27.4164i 1.29386i 0.762549 + 0.646930i 0.223947π0.223947\pi
−0.762549 + 0.646930i 0.776053π0.776053\pi
450450 0 0
451451 1.88854i 0.0889281i
452452 0 0
453453 3.88854 + 10.1803i 0.182700 + 0.478314i
454454 0 0
455455 17.8885 0.838628
456456 0 0
457457 −22.0000 −1.02912 −0.514558 0.857455i 0.672044π-0.672044\pi
−0.514558 + 0.857455i 0.672044π0.672044\pi
458458 0 0
459459 −29.8885 15.4164i −1.39508 0.719576i
460460 0 0
461461 14.1803i 0.660444i −0.943903 0.330222i 0.892876π-0.892876\pi
0.943903 0.330222i 0.107124π-0.107124\pi
462462 0 0
463463 39.2361i 1.82345i −0.410796 0.911727i 0.634749π-0.634749\pi
0.410796 0.911727i 0.365251π-0.365251\pi
464464 0 0
465465 1.52786 0.583592i 0.0708530 0.0270634i
466466 0 0
467467 15.2361 0.705041 0.352521 0.935804i 0.385325π-0.385325\pi
0.352521 + 0.935804i 0.385325π0.385325\pi
468468 0 0
469469 −12.0000 −0.554109
470470 0 0
471471 −7.23607 + 2.76393i −0.333420 + 0.127355i
472472 0 0
473473 2.11146i 0.0970849i
474474 0 0
475475 18.1803i 0.834171i
476476 0 0
477477 2.47214 + 2.76393i 0.113191 + 0.126552i
478478 0 0
479479 41.8885 1.91394 0.956968 0.290193i 0.0937194π-0.0937194\pi
0.956968 + 0.290193i 0.0937194π0.0937194\pi
480480 0 0
481481 −2.11146 −0.0962741
482482 0 0
483483 12.9443 + 33.8885i 0.588985 + 1.54198i
484484 0 0
485485 10.4721i 0.475515i
486486 0 0
487487 1.34752i 0.0610621i −0.999534 0.0305311i 0.990280π-0.990280\pi
0.999534 0.0305311i 0.00971985π-0.00971985\pi
488488 0 0
489489 −11.2361 29.4164i −0.508113 1.33026i
490490 0 0
491491 26.0689 1.17647 0.588236 0.808689i 0.299823π-0.299823\pi
0.588236 + 0.808689i 0.299823π0.299823\pi
492492 0 0
493493 59.7771 2.69222
494494 0 0
495495 1.88854 + 2.11146i 0.0848837 + 0.0949029i
496496 0 0
497497 36.9443i 1.65718i
498498 0 0
499499 22.7639i 1.01905i −0.860455 0.509527i 0.829820π-0.829820\pi
0.860455 0.509527i 0.170180π-0.170180\pi
500500 0 0
501501 36.3607 13.8885i 1.62448 0.620494i
502502 0 0
503503 −30.4721 −1.35869 −0.679343 0.733821i 0.737735π-0.737735\pi
−0.679343 + 0.733821i 0.737735π0.737735\pi
504504 0 0
505505 14.4721 0.644002
506506 0 0
507507 −11.3262 + 4.32624i −0.503016 + 0.192135i
508508 0 0
509509 12.2918i 0.544824i −0.962181 0.272412i 0.912179π-0.912179\pi
0.962181 0.272412i 0.0878214π-0.0878214\pi
510510 0 0
511511 6.47214i 0.286310i
512512 0 0
513513 −24.1803 12.4721i −1.06759 0.550658i
514514 0 0
515515 10.1115 0.445564
516516 0 0
517517 6.11146 0.268782
518518 0 0
519519 −5.34752 14.0000i −0.234730 0.614532i
520520 0 0
521521 20.3607i 0.892018i 0.895029 + 0.446009i 0.147155π0.147155\pi
−0.895029 + 0.446009i 0.852845π0.852845\pi
522522 0 0
523523 34.1803i 1.49460i 0.664486 + 0.747301i 0.268651π0.268651\pi
−0.664486 + 0.747301i 0.731349π0.731349\pi
524524 0 0
525525 6.94427 + 18.1803i 0.303073 + 0.793455i
526526 0 0
527527 −4.94427 −0.215376
528528 0 0
529529 18.8885 0.821241
530530 0 0
531531 7.23607 6.47214i 0.314019 0.280867i
532532 0 0
533533 11.0557i 0.478877i
534534 0 0
535535 10.1115i 0.437156i
536536 0 0
537537 26.1803 10.0000i 1.12977 0.431532i
538538 0 0
539539 −2.65248 −0.114250
540540 0 0
541541 −18.3607 −0.789387 −0.394694 0.918813i 0.629149π-0.629149\pi
−0.394694 + 0.918813i 0.629149π0.629149\pi
542542 0 0
543543 18.6525 7.12461i 0.800454 0.305746i
544544 0 0
545545 0.583592i 0.0249983i
546546 0 0
547547 2.76393i 0.118177i −0.998253 0.0590886i 0.981181π-0.981181\pi
0.998253 0.0590886i 0.0188194π-0.0188194\pi
548548 0 0
549549 −18.9443 + 16.9443i −0.808522 + 0.723164i
550550 0 0
551551 48.3607 2.06023
552552 0 0
553553 44.3607 1.88641
554554 0 0
555555 0.360680 + 0.944272i 0.0153100 + 0.0400821i
556556 0 0
557557 16.6525i 0.705588i 0.935701 + 0.352794i 0.114768π0.114768\pi
−0.935701 + 0.352794i 0.885232π0.885232\pi
558558 0 0
559559 12.3607i 0.522801i
560560 0 0
561561 −3.05573 8.00000i −0.129013 0.337760i
562562 0 0
563563 −36.5410 −1.54002 −0.770010 0.638032i 0.779749π-0.779749\pi
−0.770010 + 0.638032i 0.779749π0.779749\pi
564564 0 0
565565 9.88854 0.416014
566566 0 0
567567 −28.9443 3.23607i −1.21555 0.135902i
568568 0 0
569569 37.5279i 1.57325i 0.617431 + 0.786625i 0.288173π0.288173\pi
−0.617431 + 0.786625i 0.711827π0.711827\pi
570570 0 0
571571 35.1246i 1.46992i 0.678111 + 0.734960i 0.262799π0.262799\pi
−0.678111 + 0.734960i 0.737201π0.737201\pi
572572 0 0
573573 8.00000 3.05573i 0.334205 0.127655i
574574 0 0
575575 22.4721 0.937153
576576 0 0
577577 19.5279 0.812956 0.406478 0.913661i 0.366757π-0.366757\pi
0.406478 + 0.913661i 0.366757π0.366757\pi
578578 0 0
579579 −38.6525 + 14.7639i −1.60634 + 0.613568i
580580 0 0
581581 23.4164i 0.971476i
582582 0 0
583583 0.944272i 0.0391077i
584584 0 0
585585 11.0557 + 12.3607i 0.457098 + 0.511051i
586586 0 0
587587 −27.5967 −1.13904 −0.569520 0.821978i 0.692871π-0.692871\pi
−0.569520 + 0.821978i 0.692871π0.692871\pi
588588 0 0
589589 −4.00000 −0.164817
590590 0 0
591591 −5.70820 14.9443i −0.234804 0.614725i
592592 0 0
593593 11.0557i 0.454004i −0.973894 0.227002i 0.927108π-0.927108\pi
0.973894 0.227002i 0.0728924π-0.0728924\pi
594594 0 0
595595 25.8885i 1.06133i
596596 0 0
597597 10.0000 + 26.1803i 0.409273 + 1.07149i
598598 0 0
599599 −19.4164 −0.793333 −0.396666 0.917963i 0.629833π-0.629833\pi
−0.396666 + 0.917963i 0.629833π0.629833\pi
600600 0 0
601601 −37.7771 −1.54096 −0.770480 0.637464i 0.779983π-0.779983\pi
−0.770480 + 0.637464i 0.779983π0.779983\pi
602602 0 0
603603 −7.41641 8.29180i −0.302019 0.337668i
604604 0 0
605605 12.8754i 0.523459i
606606 0 0
607607 39.2361i 1.59254i −0.604940 0.796271i 0.706803π-0.706803\pi
0.604940 0.796271i 0.293197π-0.293197\pi
608608 0 0
609609 48.3607 18.4721i 1.95967 0.748529i
610610 0 0
611611 35.7771 1.44739
612612 0 0
613613 43.3050 1.74907 0.874535 0.484962i 0.161167π-0.161167\pi
0.874535 + 0.484962i 0.161167π0.161167\pi
614614 0 0
615615 −4.94427 + 1.88854i −0.199372 + 0.0761534i
616616 0 0
617617 13.8885i 0.559132i −0.960127 0.279566i 0.909809π-0.909809\pi
0.960127 0.279566i 0.0901905π-0.0901905\pi
618618 0 0
619619 11.1246i 0.447136i 0.974688 + 0.223568i 0.0717705π0.0717705\pi
−0.974688 + 0.223568i 0.928230π0.928230\pi
620620 0 0
621621 −15.4164 + 29.8885i −0.618639 + 1.19939i
622622 0 0
623623 12.9443 0.518601
624624 0 0
625625 4.41641 0.176656
626626 0 0
627627 −2.47214 6.47214i −0.0987276 0.258472i
628628 0 0
629629 3.05573i 0.121840i
630630 0 0
631631 21.1246i 0.840958i −0.907302 0.420479i 0.861862π-0.861862\pi
0.907302 0.420479i 0.138138π-0.138138\pi
632632 0 0
633633 4.18034 + 10.9443i 0.166154 + 0.434996i
634634 0 0
635635 −10.8328 −0.429887
636636 0 0
637637 −15.5279 −0.615236
638638 0 0
639639 −25.5279 + 22.8328i −1.00987 + 0.903252i
640640 0 0
641641 37.3050i 1.47346i −0.676189 0.736729i 0.736370π-0.736370\pi
0.676189 0.736729i 0.263630π-0.263630\pi
642642 0 0
643643 44.6525i 1.76092i −0.474119 0.880461i 0.657233π-0.657233\pi
0.474119 0.880461i 0.342767π-0.342767\pi
644644 0 0
645645 −5.52786 + 2.11146i −0.217659 + 0.0831385i
646646 0 0
647647 29.3050 1.15210 0.576048 0.817416i 0.304594π-0.304594\pi
0.576048 + 0.817416i 0.304594π0.304594\pi
648648 0 0
649649 2.47214 0.0970398
650650 0 0
651651 −4.00000 + 1.52786i −0.156772 + 0.0598817i
652652 0 0
653653 27.7082i 1.08431i 0.840280 + 0.542153i 0.182391π0.182391\pi
−0.840280 + 0.542153i 0.817609π0.817609\pi
654654 0 0
655655 13.8885i 0.542670i
656656 0 0
657657 −4.47214 + 4.00000i −0.174475 + 0.156055i
658658 0 0
659659 41.7082 1.62472 0.812360 0.583156i 0.198182π-0.198182\pi
0.812360 + 0.583156i 0.198182π0.198182\pi
660660 0 0
661661 11.3050 0.439712 0.219856 0.975532i 0.429441π-0.429441\pi
0.219856 + 0.975532i 0.429441π0.429441\pi
662662 0 0
663663 −17.8885 46.8328i −0.694733 1.81884i
664664 0 0
665665 20.9443i 0.812184i
666666 0 0
667667 59.7771i 2.31458i
668668 0 0
669669 7.52786 + 19.7082i 0.291044 + 0.761963i
670670 0 0
671671 −6.47214 −0.249854
672672 0 0
673673 1.41641 0.0545985 0.0272993 0.999627i 0.491309π-0.491309\pi
0.0272993 + 0.999627i 0.491309π0.491309\pi
674674 0 0
675675 −8.27051 + 16.0344i −0.318332 + 0.617166i
676676 0 0
677677 27.7082i 1.06491i −0.846457 0.532456i 0.821269π-0.821269\pi
0.846457 0.532456i 0.178731π-0.178731\pi
678678 0 0
679679 27.4164i 1.05215i
680680 0 0
681681 −32.6525 + 12.4721i −1.25125 + 0.477933i
682682 0 0
683683 8.76393 0.335343 0.167671 0.985843i 0.446375π-0.446375\pi
0.167671 + 0.985843i 0.446375π0.446375\pi
684684 0 0
685685 −12.9443 −0.494575
686686 0 0
687687 −33.1246 + 12.6525i −1.26378 + 0.482722i
688688 0 0
689689 5.52786i 0.210595i
690690 0 0
691691 16.2918i 0.619769i 0.950774 + 0.309885i 0.100290π0.100290\pi
−0.950774 + 0.309885i 0.899710π0.899710\pi
692692 0 0
693693 −4.94427 5.52786i −0.187817 0.209986i
694694 0 0
695695 4.58359 0.173866
696696 0 0
697697 16.0000 0.606043
698698 0 0
699699 4.36068 + 11.4164i 0.164936 + 0.431808i
700700 0 0
701701 27.7082i 1.04652i 0.852172 + 0.523262i 0.175285π0.175285\pi
−0.852172 + 0.523262i 0.824715π0.824715\pi
702702 0 0
703703 2.47214i 0.0932384i
704704 0 0
705705 −6.11146 16.0000i −0.230171 0.602595i
706706 0 0
707707 −37.8885 −1.42495
708708 0 0
709709 −16.4721 −0.618624 −0.309312 0.950961i 0.600099π-0.600099\pi
−0.309312 + 0.950961i 0.600099π0.600099\pi
710710 0 0
711711 27.4164 + 30.6525i 1.02820 + 1.14956i
712712 0 0
713713 4.94427i 0.185164i
714714 0 0
715715 4.22291i 0.157928i
716716 0 0
717717 12.9443 4.94427i 0.483413 0.184647i
718718 0 0
719719 −22.8328 −0.851520 −0.425760 0.904836i 0.639993π-0.639993\pi
−0.425760 + 0.904836i 0.639993π0.639993\pi
720720 0 0
721721 −26.4721 −0.985874
722722 0 0
723723 3.23607 1.23607i 0.120351 0.0459699i
724724 0 0
725725 32.0689i 1.19101i
726726 0 0
727727 8.18034i 0.303392i −0.988427 0.151696i 0.951527π-0.951527\pi
0.988427 0.151696i 0.0484735π-0.0484735\pi
728728 0 0
729729 −15.6525 22.0000i −0.579721 0.814815i
730730 0 0
731731 17.8885 0.661632
732732 0 0
733733 2.58359 0.0954272 0.0477136 0.998861i 0.484807π-0.484807\pi
0.0477136 + 0.998861i 0.484807π0.484807\pi
734734 0 0
735735 2.65248 + 6.94427i 0.0978380 + 0.256143i
736736 0 0
737737 2.83282i 0.104348i
738738 0 0
739739 27.1246i 0.997795i 0.866661 + 0.498897i 0.166262π0.166262\pi
−0.866661 + 0.498897i 0.833738π0.833738\pi
740740 0 0
741741 −14.4721 37.8885i −0.531647 1.39187i
742742 0 0
743743 19.4164 0.712319 0.356159 0.934425i 0.384086π-0.384086\pi
0.356159 + 0.934425i 0.384086π0.384086\pi
744744 0 0
745745 4.58359 0.167930
746746 0 0
747747 16.1803 14.4721i 0.592008 0.529508i
748748 0 0
749749 26.4721i 0.967271i
750750 0 0
751751 31.5967i 1.15298i 0.817104 + 0.576491i 0.195578π0.195578\pi
−0.817104 + 0.576491i 0.804422π0.804422\pi
752752 0 0
753753 16.6525 6.36068i 0.606850 0.231796i
754754 0 0
755755 7.77709 0.283037
756756 0 0
757757 −21.4164 −0.778393 −0.389196 0.921155i 0.627247π-0.627247\pi
−0.389196 + 0.921155i 0.627247π0.627247\pi
758758 0 0
759759 −8.00000 + 3.05573i −0.290382 + 0.110916i
760760 0 0
761761 38.2492i 1.38653i 0.720681 + 0.693267i 0.243829π0.243829\pi
−0.720681 + 0.693267i 0.756171π0.756171\pi
762762 0 0
763763 1.52786i 0.0553124i
764764 0 0
765765 −17.8885 + 16.0000i −0.646762 + 0.578481i
766766 0 0
767767 14.4721 0.522559
768768 0 0
769769 −21.7771 −0.785302 −0.392651 0.919688i 0.628442π-0.628442\pi
−0.392651 + 0.919688i 0.628442π0.628442\pi
770770 0 0
771771 1.88854 + 4.94427i 0.0680142 + 0.178064i
772772 0 0
773773 30.1803i 1.08551i 0.839891 + 0.542756i 0.182619π0.182619\pi
−0.839891 + 0.542756i 0.817381π0.817381\pi
774774 0 0
775775 2.65248i 0.0952797i
776776 0 0
777777 −0.944272 2.47214i −0.0338756 0.0886874i
778778 0 0
779779 12.9443 0.463777
780780 0 0
781781 −8.72136 −0.312075
782782 0 0
783783 42.6525 + 22.0000i 1.52428 + 0.786216i
784784 0 0
785785 5.52786i 0.197298i
786786 0 0
787787 5.81966i 0.207448i −0.994606 0.103724i 0.966924π-0.966924\pi
0.994606 0.103724i 0.0330759π-0.0330759\pi
788788 0 0
789789 2.47214 0.944272i 0.0880104 0.0336170i
790790 0 0
791791 −25.8885 −0.920491
792792 0 0
793793 −37.8885 −1.34546
794794 0 0
795795 2.47214 0.944272i 0.0876776 0.0334899i
796796 0 0
797797 8.06888i 0.285815i −0.989736 0.142907i 0.954355π-0.954355\pi
0.989736 0.142907i 0.0456451π-0.0456451\pi
798798 0 0
799799 51.7771i 1.83174i
800800 0 0
801801 8.00000 + 8.94427i 0.282666 + 0.316030i
802802 0 0
803803 −1.52786 −0.0539172
804804 0 0
805805 25.8885 0.912451
806806 0 0
807807 3.81966 + 10.0000i 0.134458 + 0.352017i
808808 0 0
809809 23.4164i 0.823277i 0.911347 + 0.411639i 0.135043π0.135043\pi
−0.911347 + 0.411639i 0.864957π0.864957\pi
810810 0 0
811811 29.8197i 1.04711i −0.851992 0.523555i 0.824605π-0.824605\pi
0.851992 0.523555i 0.175395π-0.175395\pi
812812 0 0
813813 −8.47214 22.1803i −0.297131 0.777898i
814814 0 0
815815 −22.4721 −0.787165
816816 0 0
817817 14.4721 0.506316
818818 0 0
819819 −28.9443 32.3607i −1.01139 1.13077i
820820 0 0
821821 52.4296i 1.82980i −0.403676 0.914902i 0.632268π-0.632268\pi
0.403676 0.914902i 0.367732π-0.367732\pi
822822 0 0
823823 10.8754i 0.379092i 0.981872 + 0.189546i 0.0607016π0.0607016\pi
−0.981872 + 0.189546i 0.939298π0.939298\pi
824824 0 0
825825 −4.29180 + 1.63932i −0.149421 + 0.0570738i
826826 0 0
827827 21.1246 0.734575 0.367287 0.930108i 0.380287π-0.380287\pi
0.367287 + 0.930108i 0.380287π0.380287\pi
828828 0 0
829829 4.47214 0.155324 0.0776619 0.996980i 0.475255π-0.475255\pi
0.0776619 + 0.996980i 0.475255π0.475255\pi
830830 0 0
831831 26.6525 10.1803i 0.924564 0.353152i
832832 0 0
833833 22.4721i 0.778613i
834834 0 0
835835 27.7771i 0.961266i
836836 0 0
837837 −3.52786 1.81966i −0.121941 0.0628967i
838838 0 0
839839 4.58359 0.158243 0.0791216 0.996865i 0.474788π-0.474788\pi
0.0791216 + 0.996865i 0.474788π0.474788\pi
840840 0 0
841841 −56.3050 −1.94155
842842 0 0
843843 −4.36068 11.4164i −0.150190 0.393202i
844844 0 0
845845 8.65248i 0.297654i
846846 0 0
847847 33.7082i 1.15823i
848848 0 0
849849 −15.5967 40.8328i −0.535279 1.40138i
850850 0 0
851851 −3.05573 −0.104749
852852 0 0
853853 −23.3050 −0.797946 −0.398973 0.916963i 0.630633π-0.630633\pi
−0.398973 + 0.916963i 0.630633π0.630633\pi
854854 0 0
855855 −14.4721 + 12.9443i −0.494937 + 0.442685i
856856 0 0
857857 52.3607i 1.78861i −0.447461 0.894303i 0.647672π-0.647672\pi
0.447461 0.894303i 0.352328π-0.352328\pi
858858 0 0
859859 21.2361i 0.724565i 0.932068 + 0.362283i 0.118002π0.118002\pi
−0.932068 + 0.362283i 0.881998π0.881998\pi
860860 0 0
861861 12.9443 4.94427i 0.441140 0.168500i
862862 0 0
863863 −30.8328 −1.04956 −0.524781 0.851238i 0.675853π-0.675853\pi
−0.524781 + 0.851238i 0.675853π0.675853\pi
864864 0 0
865865 −10.6950 −0.363643
866866 0 0
867867 40.2705 15.3820i 1.36766 0.522399i
868868 0 0
869869 10.4721i 0.355243i
870870 0 0
871871 16.5836i 0.561914i
872872 0 0
873873 −18.9443 + 16.9443i −0.641166 + 0.573477i
874874 0 0
875875 33.8885 1.14564
876876 0 0
877877 −45.4164 −1.53360 −0.766802 0.641884i 0.778153π-0.778153\pi
−0.766802 + 0.641884i 0.778153π0.778153\pi
878878 0 0
879879 −15.5967 40.8328i −0.526065 1.37726i
880880 0 0
881881 24.0000i 0.808581i −0.914631 0.404290i 0.867519π-0.867519\pi
0.914631 0.404290i 0.132481π-0.132481\pi
882882 0 0
883883 5.23607i 0.176208i 0.996111 + 0.0881039i 0.0280807π0.0280807\pi
−0.996111 + 0.0881039i 0.971919π0.971919\pi
884884 0 0
885885 −2.47214 6.47214i −0.0830999 0.217558i
886886 0 0
887887 −24.3607 −0.817952 −0.408976 0.912545i 0.634114π-0.634114\pi
−0.408976 + 0.912545i 0.634114π0.634114\pi
888888 0 0
889889 28.3607 0.951187
890890 0 0
891891 0.763932 6.83282i 0.0255927 0.228908i
892892 0 0
893893 41.8885i 1.40175i
894894 0 0
895895 20.0000i 0.668526i
896896 0 0
897897 −46.8328 + 17.8885i −1.56370 + 0.597281i
898898 0 0
899899 7.05573 0.235322
900900 0 0
901901 −8.00000 −0.266519
902902 0 0
903903 14.4721 5.52786i 0.481603 0.183956i
904904 0 0
905905 14.2492i 0.473660i
906906 0 0
907907 34.7639i 1.15432i −0.816632 0.577159i 0.804161π-0.804161\pi
0.816632 0.577159i 0.195839π-0.195839\pi
908908 0 0
909909 −23.4164 26.1803i −0.776673 0.868347i
910910 0 0
911911 1.88854 0.0625702 0.0312851 0.999511i 0.490040π-0.490040\pi
0.0312851 + 0.999511i 0.490040π0.490040\pi
912912 0 0
913913 5.52786 0.182946
914914 0 0
915915 6.47214 + 16.9443i 0.213962 + 0.560160i
916916 0 0
917917 36.3607i 1.20074i
918918 0 0
919919 8.54102i 0.281742i 0.990028 + 0.140871i 0.0449903π0.0449903\pi
−0.990028 + 0.140871i 0.955010π0.955010\pi
920920 0 0
921921 13.3475 + 34.9443i 0.439816 + 1.15145i
922922 0 0
923923 −51.0557 −1.68052
924924 0 0
925925 −1.63932 −0.0539005
926926 0 0
927927 −16.3607 18.2918i −0.537355 0.600781i
928928 0 0
929929 20.5836i 0.675326i 0.941267 + 0.337663i 0.109636π0.109636\pi
−0.941267 + 0.337663i 0.890364π0.890364\pi
930930 0 0
931931 18.1803i 0.595837i
932932 0 0
933933 23.4164 8.94427i 0.766619 0.292822i
934934 0 0
935935 −6.11146 −0.199866
936936 0 0
937937 30.3607 0.991840 0.495920 0.868368i 0.334831π-0.334831\pi
0.495920 + 0.868368i 0.334831π0.334831\pi
938938 0 0
939939 −13.7082 + 5.23607i −0.447350 + 0.170873i
940940 0 0
941941 11.7082i 0.381677i 0.981621 + 0.190838i 0.0611206π0.0611206\pi
−0.981621 + 0.190838i 0.938879π0.938879\pi
942942 0 0
943943 16.0000i 0.521032i
944944 0 0
945945 −9.52786 + 18.4721i −0.309941 + 0.600899i
946946 0 0
947947 −34.0689 −1.10709 −0.553545 0.832819i 0.686725π-0.686725\pi
−0.553545 + 0.832819i 0.686725π0.686725\pi
948948 0 0
949949 −8.94427 −0.290343
950950 0 0
951951 16.7639 + 43.8885i 0.543608 + 1.42318i
952952 0 0
953953 20.3607i 0.659547i −0.944060 0.329774i 0.893028π-0.893028\pi
0.944060 0.329774i 0.106972π-0.106972\pi
954954 0 0
955955 6.11146i 0.197762i
956956 0 0
957957 4.36068 + 11.4164i 0.140961 + 0.369040i
958958 0 0
959959 33.8885 1.09432
960960 0 0
961961 30.4164 0.981174
962962 0 0
963963 18.2918 16.3607i 0.589445 0.527216i
964964 0 0
965965 29.5279i 0.950536i
966966 0 0
967967 4.76393i 0.153198i 0.997062 + 0.0765989i 0.0244061π0.0244061\pi
−0.997062 + 0.0765989i 0.975594π0.975594\pi
968968 0 0
969969 54.8328 20.9443i 1.76148 0.672827i
970970 0 0
971971 −59.0132 −1.89382 −0.946911 0.321495i 0.895815π-0.895815\pi
−0.946911 + 0.321495i 0.895815π0.895815\pi
972972 0 0
973973 −12.0000 −0.384702
974974 0 0
975975 −25.1246 + 9.59675i −0.804632 + 0.307342i
976976 0 0
977977 15.6393i 0.500346i −0.968201 0.250173i 0.919512π-0.919512\pi
0.968201 0.250173i 0.0804875π-0.0804875\pi
978978 0 0
979979 3.05573i 0.0976615i
980980 0 0
981981 −1.05573 + 0.944272i −0.0337068 + 0.0301483i
982982 0 0
983983 −30.4721 −0.971910 −0.485955 0.873984i 0.661528π-0.661528\pi
−0.485955 + 0.873984i 0.661528π0.661528\pi
984984 0 0
985985 −11.4164 −0.363757
986986 0 0
987987 16.0000 + 41.8885i 0.509286 + 1.33333i
988988 0 0
989989 17.8885i 0.568823i
990990 0 0
991991 27.8197i 0.883721i 0.897084 + 0.441860i 0.145681π0.145681\pi
−0.897084 + 0.441860i 0.854319π0.854319\pi
992992 0 0
993993 21.3475 + 55.8885i 0.677443 + 1.77357i
994994 0 0
995995 20.0000 0.634043
996996 0 0
997997 −26.3607 −0.834851 −0.417426 0.908711i 0.637068π-0.637068\pi
−0.417426 + 0.908711i 0.637068π0.637068\pi
998998 0 0
999999 1.12461 2.18034i 0.0355811 0.0689829i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.2.c.a.383.2 yes 4
3.2 odd 2 384.2.c.d.383.4 yes 4
4.3 odd 2 384.2.c.d.383.3 yes 4
8.3 odd 2 384.2.c.b.383.2 yes 4
8.5 even 2 384.2.c.c.383.3 yes 4
12.11 even 2 inner 384.2.c.a.383.1 4
16.3 odd 4 768.2.f.b.383.4 4
16.5 even 4 768.2.f.c.383.4 4
16.11 odd 4 768.2.f.f.383.1 4
16.13 even 4 768.2.f.e.383.1 4
24.5 odd 2 384.2.c.b.383.1 yes 4
24.11 even 2 384.2.c.c.383.4 yes 4
48.5 odd 4 768.2.f.b.383.3 4
48.11 even 4 768.2.f.e.383.2 4
48.29 odd 4 768.2.f.f.383.2 4
48.35 even 4 768.2.f.c.383.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.2.c.a.383.1 4 12.11 even 2 inner
384.2.c.a.383.2 yes 4 1.1 even 1 trivial
384.2.c.b.383.1 yes 4 24.5 odd 2
384.2.c.b.383.2 yes 4 8.3 odd 2
384.2.c.c.383.3 yes 4 8.5 even 2
384.2.c.c.383.4 yes 4 24.11 even 2
384.2.c.d.383.3 yes 4 4.3 odd 2
384.2.c.d.383.4 yes 4 3.2 odd 2
768.2.f.b.383.3 4 48.5 odd 4
768.2.f.b.383.4 4 16.3 odd 4
768.2.f.c.383.3 4 48.35 even 4
768.2.f.c.383.4 4 16.5 even 4
768.2.f.e.383.1 4 16.13 even 4
768.2.f.e.383.2 4 48.11 even 4
768.2.f.f.383.1 4 16.11 odd 4
768.2.f.f.383.2 4 48.29 odd 4