Properties

Label 384.2.c.c
Level 384384
Weight 22
Character orbit 384.c
Analytic conductor 3.0663.066
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,2,Mod(383,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.383");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 384=273 384 = 2^{7} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 384.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.066255437623.06625543762
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q3+(β3+β1)q5+(β3+β2+β1)q7+(β3+β2+β1+1)q9+(β3+β12)q11+(2β32β12)q13++(5β32β2β1+2)q99+O(q100) q + (\beta_1 + 1) q^{3} + (\beta_{3} + \beta_1) q^{5} + (\beta_{3} + \beta_{2} + \beta_1) q^{7} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{3} + \beta_1 - 2) q^{11} + (2 \beta_{3} - 2 \beta_1 - 2) q^{13}+ \cdots + (5 \beta_{3} - 2 \beta_{2} - \beta_1 + 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q312q1112q158q21+8q234q25+14q27+4q3316q3516q3720q39+8q45+32q47+4q49+16q514q574q59+16q61++20q99+O(q100) 4 q + 2 q^{3} - 12 q^{11} - 12 q^{15} - 8 q^{21} + 8 q^{23} - 4 q^{25} + 14 q^{27} + 4 q^{33} - 16 q^{35} - 16 q^{37} - 20 q^{39} + 8 q^{45} + 32 q^{47} + 4 q^{49} + 16 q^{51} - 4 q^{57} - 4 q^{59} + 16 q^{61}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν2+ν+1 \nu^{2} + \nu + 1 Copy content Toggle raw display
β2\beta_{2}== 2ν3+4ν 2\nu^{3} + 4\nu Copy content Toggle raw display
β3\beta_{3}== ν2+ν1 -\nu^{2} + \nu - 1 Copy content Toggle raw display
ν\nu== (β3+β1)/2 ( \beta_{3} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+β12)/2 ( -\beta_{3} + \beta _1 - 2 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β3+β22β1)/2 ( -2\beta_{3} + \beta_{2} - 2\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/384Z)×\left(\mathbb{Z}/384\mathbb{Z}\right)^\times.

nn 127127 133133 257257
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
383.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −0.618034 1.61803i 0 3.23607i 0 1.23607i 0 −2.23607 + 2.00000i 0
383.2 0 −0.618034 + 1.61803i 0 3.23607i 0 1.23607i 0 −2.23607 2.00000i 0
383.3 0 1.61803 0.618034i 0 1.23607i 0 3.23607i 0 2.23607 2.00000i 0
383.4 0 1.61803 + 0.618034i 0 1.23607i 0 3.23607i 0 2.23607 + 2.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.2.c.c yes 4
3.b odd 2 1 384.2.c.b yes 4
4.b odd 2 1 384.2.c.b yes 4
8.b even 2 1 384.2.c.a 4
8.d odd 2 1 384.2.c.d yes 4
12.b even 2 1 inner 384.2.c.c yes 4
16.e even 4 1 768.2.f.c 4
16.e even 4 1 768.2.f.e 4
16.f odd 4 1 768.2.f.b 4
16.f odd 4 1 768.2.f.f 4
24.f even 2 1 384.2.c.a 4
24.h odd 2 1 384.2.c.d yes 4
48.i odd 4 1 768.2.f.b 4
48.i odd 4 1 768.2.f.f 4
48.k even 4 1 768.2.f.c 4
48.k even 4 1 768.2.f.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.2.c.a 4 8.b even 2 1
384.2.c.a 4 24.f even 2 1
384.2.c.b yes 4 3.b odd 2 1
384.2.c.b yes 4 4.b odd 2 1
384.2.c.c yes 4 1.a even 1 1 trivial
384.2.c.c yes 4 12.b even 2 1 inner
384.2.c.d yes 4 8.d odd 2 1
384.2.c.d yes 4 24.h odd 2 1
768.2.f.b 4 16.f odd 4 1
768.2.f.b 4 48.i odd 4 1
768.2.f.c 4 16.e even 4 1
768.2.f.c 4 48.k even 4 1
768.2.f.e 4 16.e even 4 1
768.2.f.e 4 48.k even 4 1
768.2.f.f 4 16.f odd 4 1
768.2.f.f 4 48.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(384,[χ])S_{2}^{\mathrm{new}}(384, [\chi]):

T112+6T11+4 T_{11}^{2} + 6T_{11} + 4 Copy content Toggle raw display
T2324T2316 T_{23}^{2} - 4T_{23} - 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T42T3++9 T^{4} - 2 T^{3} + \cdots + 9 Copy content Toggle raw display
55 T4+12T2+16 T^{4} + 12T^{2} + 16 Copy content Toggle raw display
77 T4+12T2+16 T^{4} + 12T^{2} + 16 Copy content Toggle raw display
1111 (T2+6T+4)2 (T^{2} + 6 T + 4)^{2} Copy content Toggle raw display
1313 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
1717 T4+48T2+256 T^{4} + 48T^{2} + 256 Copy content Toggle raw display
1919 T4+28T2+16 T^{4} + 28T^{2} + 16 Copy content Toggle raw display
2323 (T24T16)2 (T^{2} - 4 T - 16)^{2} Copy content Toggle raw display
2929 T4+108T2+1936 T^{4} + 108T^{2} + 1936 Copy content Toggle raw display
3131 T4+28T2+16 T^{4} + 28T^{2} + 16 Copy content Toggle raw display
3737 (T2+8T4)2 (T^{2} + 8 T - 4)^{2} Copy content Toggle raw display
4141 T4+48T2+256 T^{4} + 48T^{2} + 256 Copy content Toggle raw display
4343 T4+60T2+400 T^{4} + 60T^{2} + 400 Copy content Toggle raw display
4747 (T8)4 (T - 8)^{4} Copy content Toggle raw display
5353 T4+12T2+16 T^{4} + 12T^{2} + 16 Copy content Toggle raw display
5959 (T2+2T4)2 (T^{2} + 2 T - 4)^{2} Copy content Toggle raw display
6161 (T28T4)2 (T^{2} - 8 T - 4)^{2} Copy content Toggle raw display
6767 T4+108T2+1296 T^{4} + 108T^{2} + 1296 Copy content Toggle raw display
7171 (T24T176)2 (T^{2} - 4 T - 176)^{2} Copy content Toggle raw display
7373 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
7979 T4+188T2+16 T^{4} + 188T^{2} + 16 Copy content Toggle raw display
8383 (T2+10T+20)2 (T^{2} + 10 T + 20)^{2} Copy content Toggle raw display
8989 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
9797 (T2+8T4)2 (T^{2} + 8 T - 4)^{2} Copy content Toggle raw display
show more
show less