gp: [N,k,chi] = [384,2,Mod(383,384)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(384, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("384.383");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,2,0,0,0,0,0,0,0,-12,0,0,0,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 3 x 2 + 1 x^{4} + 3x^{2} + 1 x 4 + 3 x 2 + 1
x^4 + 3*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
ν 2 + ν + 1 \nu^{2} + \nu + 1 ν 2 + ν + 1
v^2 + v + 1
β 2 \beta_{2} β 2 = = =
2 ν 3 + 4 ν 2\nu^{3} + 4\nu 2 ν 3 + 4 ν
2*v^3 + 4*v
β 3 \beta_{3} β 3 = = =
− ν 2 + ν − 1 -\nu^{2} + \nu - 1 − ν 2 + ν − 1
-v^2 + v - 1
ν \nu ν = = =
( β 3 + β 1 ) / 2 ( \beta_{3} + \beta_1 ) / 2 ( β 3 + β 1 ) / 2
(b3 + b1) / 2
ν 2 \nu^{2} ν 2 = = =
( − β 3 + β 1 − 2 ) / 2 ( -\beta_{3} + \beta _1 - 2 ) / 2 ( − β 3 + β 1 − 2 ) / 2
(-b3 + b1 - 2) / 2
ν 3 \nu^{3} ν 3 = = =
( − 2 β 3 + β 2 − 2 β 1 ) / 2 ( -2\beta_{3} + \beta_{2} - 2\beta_1 ) / 2 ( − 2 β 3 + β 2 − 2 β 1 ) / 2
(-2*b3 + b2 - 2*b1) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 384 Z ) × \left(\mathbb{Z}/384\mathbb{Z}\right)^\times ( Z / 3 8 4 Z ) × .
n n n
127 127 1 2 7
133 133 1 3 3
257 257 2 5 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 384 , [ χ ] ) S_{2}^{\mathrm{new}}(384, [\chi]) S 2 n e w ( 3 8 4 , [ χ ] ) :
T 11 2 + 6 T 11 + 4 T_{11}^{2} + 6T_{11} + 4 T 1 1 2 + 6 T 1 1 + 4
T11^2 + 6*T11 + 4
T 23 2 − 4 T 23 − 16 T_{23}^{2} - 4T_{23} - 16 T 2 3 2 − 4 T 2 3 − 1 6
T23^2 - 4*T23 - 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − 2 T 3 + ⋯ + 9 T^{4} - 2 T^{3} + \cdots + 9 T 4 − 2 T 3 + ⋯ + 9
T^4 - 2*T^3 + 2*T^2 - 6*T + 9
5 5 5
T 4 + 12 T 2 + 16 T^{4} + 12T^{2} + 16 T 4 + 1 2 T 2 + 1 6
T^4 + 12*T^2 + 16
7 7 7
T 4 + 12 T 2 + 16 T^{4} + 12T^{2} + 16 T 4 + 1 2 T 2 + 1 6
T^4 + 12*T^2 + 16
11 11 1 1
( T 2 + 6 T + 4 ) 2 (T^{2} + 6 T + 4)^{2} ( T 2 + 6 T + 4 ) 2
(T^2 + 6*T + 4)^2
13 13 1 3
( T 2 − 20 ) 2 (T^{2} - 20)^{2} ( T 2 − 2 0 ) 2
(T^2 - 20)^2
17 17 1 7
T 4 + 48 T 2 + 256 T^{4} + 48T^{2} + 256 T 4 + 4 8 T 2 + 2 5 6
T^4 + 48*T^2 + 256
19 19 1 9
T 4 + 28 T 2 + 16 T^{4} + 28T^{2} + 16 T 4 + 2 8 T 2 + 1 6
T^4 + 28*T^2 + 16
23 23 2 3
( T 2 − 4 T − 16 ) 2 (T^{2} - 4 T - 16)^{2} ( T 2 − 4 T − 1 6 ) 2
(T^2 - 4*T - 16)^2
29 29 2 9
T 4 + 108 T 2 + 1936 T^{4} + 108T^{2} + 1936 T 4 + 1 0 8 T 2 + 1 9 3 6
T^4 + 108*T^2 + 1936
31 31 3 1
T 4 + 28 T 2 + 16 T^{4} + 28T^{2} + 16 T 4 + 2 8 T 2 + 1 6
T^4 + 28*T^2 + 16
37 37 3 7
( T 2 + 8 T − 4 ) 2 (T^{2} + 8 T - 4)^{2} ( T 2 + 8 T − 4 ) 2
(T^2 + 8*T - 4)^2
41 41 4 1
T 4 + 48 T 2 + 256 T^{4} + 48T^{2} + 256 T 4 + 4 8 T 2 + 2 5 6
T^4 + 48*T^2 + 256
43 43 4 3
T 4 + 60 T 2 + 400 T^{4} + 60T^{2} + 400 T 4 + 6 0 T 2 + 4 0 0
T^4 + 60*T^2 + 400
47 47 4 7
( T − 8 ) 4 (T - 8)^{4} ( T − 8 ) 4
(T - 8)^4
53 53 5 3
T 4 + 12 T 2 + 16 T^{4} + 12T^{2} + 16 T 4 + 1 2 T 2 + 1 6
T^4 + 12*T^2 + 16
59 59 5 9
( T 2 + 2 T − 4 ) 2 (T^{2} + 2 T - 4)^{2} ( T 2 + 2 T − 4 ) 2
(T^2 + 2*T - 4)^2
61 61 6 1
( T 2 − 8 T − 4 ) 2 (T^{2} - 8 T - 4)^{2} ( T 2 − 8 T − 4 ) 2
(T^2 - 8*T - 4)^2
67 67 6 7
T 4 + 108 T 2 + 1296 T^{4} + 108T^{2} + 1296 T 4 + 1 0 8 T 2 + 1 2 9 6
T^4 + 108*T^2 + 1296
71 71 7 1
( T 2 − 4 T − 176 ) 2 (T^{2} - 4 T - 176)^{2} ( T 2 − 4 T − 1 7 6 ) 2
(T^2 - 4*T - 176)^2
73 73 7 3
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
79 79 7 9
T 4 + 188 T 2 + 16 T^{4} + 188T^{2} + 16 T 4 + 1 8 8 T 2 + 1 6
T^4 + 188*T^2 + 16
83 83 8 3
( T 2 + 10 T + 20 ) 2 (T^{2} + 10 T + 20)^{2} ( T 2 + 1 0 T + 2 0 ) 2
(T^2 + 10*T + 20)^2
89 89 8 9
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
97 97 9 7
( T 2 + 8 T − 4 ) 2 (T^{2} + 8 T - 4)^{2} ( T 2 + 8 T − 4 ) 2
(T^2 + 8*T - 4)^2
show more
show less