Properties

Label 384.4.a.m
Level 384384
Weight 44
Character orbit 384.a
Self dual yes
Analytic conductor 22.65722.657
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,4,Mod(1,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 384=273 384 = 2^{7} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 22.656733442222.6567334422
Analytic rank: 11
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x27 x^{2} - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=47\beta = 4\sqrt{7}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q3+(β8)q5+(3β2)q7+9q9+(2β+12)q11+(4β38)q13+(3β24)q15+(2β10)q17+(10β16)q19+(9β6)q21++(18β+108)q99+O(q100) q + 3 q^{3} + (\beta - 8) q^{5} + ( - 3 \beta - 2) q^{7} + 9 q^{9} + (2 \beta + 12) q^{11} + (4 \beta - 38) q^{13} + (3 \beta - 24) q^{15} + (2 \beta - 10) q^{17} + ( - 10 \beta - 16) q^{19} + ( - 9 \beta - 6) q^{21}+ \cdots + (18 \beta + 108) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q316q54q7+18q9+24q1176q1348q1520q1732q1912q2172q23+102q25+54q27440q29436q31+72q33640q35++216q99+O(q100) 2 q + 6 q^{3} - 16 q^{5} - 4 q^{7} + 18 q^{9} + 24 q^{11} - 76 q^{13} - 48 q^{15} - 20 q^{17} - 32 q^{19} - 12 q^{21} - 72 q^{23} + 102 q^{25} + 54 q^{27} - 440 q^{29} - 436 q^{31} + 72 q^{33} - 640 q^{35}+ \cdots + 216 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.64575
2.64575
0 3.00000 0 −18.5830 0 29.7490 0 9.00000 0
1.2 0 3.00000 0 2.58301 0 −33.7490 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.4.a.m yes 2
3.b odd 2 1 1152.4.a.w 2
4.b odd 2 1 384.4.a.i 2
8.b even 2 1 384.4.a.l yes 2
8.d odd 2 1 384.4.a.p yes 2
12.b even 2 1 1152.4.a.x 2
16.e even 4 2 768.4.d.s 4
16.f odd 4 2 768.4.d.r 4
24.f even 2 1 1152.4.a.n 2
24.h odd 2 1 1152.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.a.i 2 4.b odd 2 1
384.4.a.l yes 2 8.b even 2 1
384.4.a.m yes 2 1.a even 1 1 trivial
384.4.a.p yes 2 8.d odd 2 1
768.4.d.r 4 16.f odd 4 2
768.4.d.s 4 16.e even 4 2
1152.4.a.m 2 24.h odd 2 1
1152.4.a.n 2 24.f even 2 1
1152.4.a.w 2 3.b odd 2 1
1152.4.a.x 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(384))S_{4}^{\mathrm{new}}(\Gamma_0(384)):

T52+16T548 T_{5}^{2} + 16T_{5} - 48 Copy content Toggle raw display
T72+4T71004 T_{7}^{2} + 4T_{7} - 1004 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T2+16T48 T^{2} + 16T - 48 Copy content Toggle raw display
77 T2+4T1004 T^{2} + 4T - 1004 Copy content Toggle raw display
1111 T224T304 T^{2} - 24T - 304 Copy content Toggle raw display
1313 T2+76T348 T^{2} + 76T - 348 Copy content Toggle raw display
1717 T2+20T348 T^{2} + 20T - 348 Copy content Toggle raw display
1919 T2+32T10944 T^{2} + 32T - 10944 Copy content Toggle raw display
2323 T2+72T+848 T^{2} + 72T + 848 Copy content Toggle raw display
2929 T2+440T+45600 T^{2} + 440T + 45600 Copy content Toggle raw display
3131 T2+436T+44724 T^{2} + 436T + 44724 Copy content Toggle raw display
3737 T2188T+4804 T^{2} - 188T + 4804 Copy content Toggle raw display
4141 T2+4T161724 T^{2} + 4T - 161724 Copy content Toggle raw display
4343 T2+592T+87168 T^{2} + 592T + 87168 Copy content Toggle raw display
4747 T2+424T30768 T^{2} + 424T - 30768 Copy content Toggle raw display
5353 T2+408T128736 T^{2} + 408T - 128736 Copy content Toggle raw display
5959 T2+232T51056 T^{2} + 232T - 51056 Copy content Toggle raw display
6161 T2+612T+82436 T^{2} + 612T + 82436 Copy content Toggle raw display
6767 T2+984T+234896 T^{2} + 984T + 234896 Copy content Toggle raw display
7171 T2+568T+80208 T^{2} + 568T + 80208 Copy content Toggle raw display
7373 T2364T112028 T^{2} - 364T - 112028 Copy content Toggle raw display
7979 T2620T320652 T^{2} - 620T - 320652 Copy content Toggle raw display
8383 T2312T657072 T^{2} - 312T - 657072 Copy content Toggle raw display
8989 T2+1372T+67396 T^{2} + 1372T + 67396 Copy content Toggle raw display
9797 T21780T+747300 T^{2} - 1780 T + 747300 Copy content Toggle raw display
show more
show less