Properties

Label 384.4.a.m
Level $384$
Weight $4$
Character orbit 384.a
Self dual yes
Analytic conductor $22.657$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,4,Mod(1,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.6567334422\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta - 8) q^{5} + ( - 3 \beta - 2) q^{7} + 9 q^{9} + (2 \beta + 12) q^{11} + (4 \beta - 38) q^{13} + (3 \beta - 24) q^{15} + (2 \beta - 10) q^{17} + ( - 10 \beta - 16) q^{19} + ( - 9 \beta - 6) q^{21}+ \cdots + (18 \beta + 108) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 16 q^{5} - 4 q^{7} + 18 q^{9} + 24 q^{11} - 76 q^{13} - 48 q^{15} - 20 q^{17} - 32 q^{19} - 12 q^{21} - 72 q^{23} + 102 q^{25} + 54 q^{27} - 440 q^{29} - 436 q^{31} + 72 q^{33} - 640 q^{35}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 3.00000 0 −18.5830 0 29.7490 0 9.00000 0
1.2 0 3.00000 0 2.58301 0 −33.7490 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.4.a.m yes 2
3.b odd 2 1 1152.4.a.w 2
4.b odd 2 1 384.4.a.i 2
8.b even 2 1 384.4.a.l yes 2
8.d odd 2 1 384.4.a.p yes 2
12.b even 2 1 1152.4.a.x 2
16.e even 4 2 768.4.d.s 4
16.f odd 4 2 768.4.d.r 4
24.f even 2 1 1152.4.a.n 2
24.h odd 2 1 1152.4.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.a.i 2 4.b odd 2 1
384.4.a.l yes 2 8.b even 2 1
384.4.a.m yes 2 1.a even 1 1 trivial
384.4.a.p yes 2 8.d odd 2 1
768.4.d.r 4 16.f odd 4 2
768.4.d.s 4 16.e even 4 2
1152.4.a.m 2 24.h odd 2 1
1152.4.a.n 2 24.f even 2 1
1152.4.a.w 2 3.b odd 2 1
1152.4.a.x 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(384))\):

\( T_{5}^{2} + 16T_{5} - 48 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 1004 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 16T - 48 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 1004 \) Copy content Toggle raw display
$11$ \( T^{2} - 24T - 304 \) Copy content Toggle raw display
$13$ \( T^{2} + 76T - 348 \) Copy content Toggle raw display
$17$ \( T^{2} + 20T - 348 \) Copy content Toggle raw display
$19$ \( T^{2} + 32T - 10944 \) Copy content Toggle raw display
$23$ \( T^{2} + 72T + 848 \) Copy content Toggle raw display
$29$ \( T^{2} + 440T + 45600 \) Copy content Toggle raw display
$31$ \( T^{2} + 436T + 44724 \) Copy content Toggle raw display
$37$ \( T^{2} - 188T + 4804 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 161724 \) Copy content Toggle raw display
$43$ \( T^{2} + 592T + 87168 \) Copy content Toggle raw display
$47$ \( T^{2} + 424T - 30768 \) Copy content Toggle raw display
$53$ \( T^{2} + 408T - 128736 \) Copy content Toggle raw display
$59$ \( T^{2} + 232T - 51056 \) Copy content Toggle raw display
$61$ \( T^{2} + 612T + 82436 \) Copy content Toggle raw display
$67$ \( T^{2} + 984T + 234896 \) Copy content Toggle raw display
$71$ \( T^{2} + 568T + 80208 \) Copy content Toggle raw display
$73$ \( T^{2} - 364T - 112028 \) Copy content Toggle raw display
$79$ \( T^{2} - 620T - 320652 \) Copy content Toggle raw display
$83$ \( T^{2} - 312T - 657072 \) Copy content Toggle raw display
$89$ \( T^{2} + 1372T + 67396 \) Copy content Toggle raw display
$97$ \( T^{2} - 1780 T + 747300 \) Copy content Toggle raw display
show more
show less