Properties

Label 384.4.a.o
Level $384$
Weight $4$
Character orbit 384.a
Self dual yes
Analytic conductor $22.657$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [384,4,Mod(1,384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("384.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{15}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta + 4) q^{5} + (\beta + 2) q^{7} + 9 q^{9} + (2 \beta + 20) q^{11} + 2 q^{13} + (3 \beta + 12) q^{15} + ( - 6 \beta + 14) q^{17} + ( - 2 \beta + 56) q^{19} + (3 \beta + 6) q^{21} + ( - 6 \beta - 28) q^{23}+ \cdots + (18 \beta + 180) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 8 q^{5} + 4 q^{7} + 18 q^{9} + 40 q^{11} + 4 q^{13} + 24 q^{15} + 28 q^{17} + 112 q^{19} + 12 q^{21} - 56 q^{23} + 262 q^{25} + 54 q^{27} - 144 q^{29} + 276 q^{31} + 120 q^{33} + 496 q^{35}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.87298
3.87298
0 3.00000 0 −11.4919 0 −13.4919 0 9.00000 0
1.2 0 3.00000 0 19.4919 0 17.4919 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 384.4.a.o yes 2
3.b odd 2 1 1152.4.a.p 2
4.b odd 2 1 384.4.a.k yes 2
8.b even 2 1 384.4.a.j 2
8.d odd 2 1 384.4.a.n yes 2
12.b even 2 1 1152.4.a.o 2
16.e even 4 2 768.4.d.q 4
16.f odd 4 2 768.4.d.t 4
24.f even 2 1 1152.4.a.u 2
24.h odd 2 1 1152.4.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
384.4.a.j 2 8.b even 2 1
384.4.a.k yes 2 4.b odd 2 1
384.4.a.n yes 2 8.d odd 2 1
384.4.a.o yes 2 1.a even 1 1 trivial
768.4.d.q 4 16.e even 4 2
768.4.d.t 4 16.f odd 4 2
1152.4.a.o 2 12.b even 2 1
1152.4.a.p 2 3.b odd 2 1
1152.4.a.u 2 24.f even 2 1
1152.4.a.v 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(384))\):

\( T_{5}^{2} - 8T_{5} - 224 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} - 236 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 8T - 224 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T - 236 \) Copy content Toggle raw display
$11$ \( T^{2} - 40T - 560 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 28T - 8444 \) Copy content Toggle raw display
$19$ \( T^{2} - 112T + 2176 \) Copy content Toggle raw display
$23$ \( T^{2} + 56T - 7856 \) Copy content Toggle raw display
$29$ \( T^{2} + 144T - 35376 \) Copy content Toggle raw display
$31$ \( T^{2} - 276T + 7284 \) Copy content Toggle raw display
$37$ \( T^{2} + 580T + 83140 \) Copy content Toggle raw display
$41$ \( T^{2} - 588T + 85476 \) Copy content Toggle raw display
$43$ \( T^{2} + 96T - 113856 \) Copy content Toggle raw display
$47$ \( T^{2} - 712T + 125776 \) Copy content Toggle raw display
$53$ \( T^{2} + 1104 T + 304464 \) Copy content Toggle raw display
$59$ \( T^{2} - 536T - 66416 \) Copy content Toggle raw display
$61$ \( T^{2} + 452T - 111164 \) Copy content Toggle raw display
$67$ \( T^{2} - 296T - 730736 \) Copy content Toggle raw display
$71$ \( T^{2} - 216T + 3024 \) Copy content Toggle raw display
$73$ \( T^{2} - 364T - 615836 \) Copy content Toggle raw display
$79$ \( T^{2} - 1076 T + 235444 \) Copy content Toggle raw display
$83$ \( T^{2} - 648T - 817584 \) Copy content Toggle raw display
$89$ \( T^{2} - 2308 T + 1235716 \) Copy content Toggle raw display
$97$ \( T^{2} + 1900 T + 806500 \) Copy content Toggle raw display
show more
show less